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Abstract

Spatial interpolation is a procedure for estimating the value of a variable of interest at unsampled sites within an area 
covered by existing observations. The output of spatial interpolation is an integrated data set in which meteorologi-
cal data are arranged along an evenly spaced matrix (gridded data). This work evaluates the uncertainty related to 
meteorological gridded data in the simulation of daily streamflow over two Mexican basins. The use of gridded data 
is an alternative to direct observations in those Mexican regions with low density of gauging stations. First, two me-
teorological data sets (observed and processed gridded data) were compared. Results show that gridded data under-
estimate precipitation, maximum and minimum temperature, despite the relative good agreement in the annual 
cycle for the latter variable. Second, the lumped conceptual rainfall-runoff model GR4J was fed with meteorological 
data from both data sets in order to evaluate the error that gridded data translate to simulated daily streamflow. 
Results show that the hydrological model can be calibrated with both data sets, leading to a good performance for 
medium and high flows in terms of the Nash- Sutcliffe efficiency coefficient; nevertheless, low flows are overestima-
ted when gridded meteorological data are used. The analysis of the GR4J optimized parameters shows that the hy-
drological model increases the contribution of groundwater exchange to compensate for the underestimated 
precipitation, leading to a misrepresentation of the hydrological response of the study basins. All in all, gridded 
processed meteorological data should be evaluated before its use on hydrological risk assessment and climate chan-
ge impact studies on water resources. 
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Introduction

Nowadays, there is a growing concern in the scientific 
community about the climate change impact on water 
resources. The expected changes in precipitation and 
temperature would have an effect on the hydrological 
response of river basins around the world (Arnell and 
Gosling, 2013). In order to understand the hydrological 
processes involved in floods, droughts and extreme 
events, there is a need of good-quality meteorological 
data, particularly in regions with a scarce number of 
stations. An interesting option is the use of spatial inter-
polated meteorological data. Spatial interpolation is a 
procedure for estimating the value of a variable of inter-
est at unsampled sites within an area covered by exis-
ting observations. The techniques for estimating data 
are essentially applications of statistics (WMO, 2011). 
The output of spatial interpolation is an integrated data 
set, in which meteorological data are arranged along an 
evenly spaced matrix (hereafter called processed 
gridded data set). 

The Intergovernmental Panel on Climate Change 
(IPCC) argues that the historical record for many regions 
is poor, especially for those regions more vulnerable to 
climate change, so it recommends more research to inte-
grate raw observations into processed gridded products 
(IPCC, 2014). For example, the meteorological station 
density in Mexico is higher in the central region and in 
the south than in the north of the country. Therefore, the 
use of gridded data is an alternative to observed data for 
hydrological risk assessment and the evaluation of cli-

mate change impact on water resources, in particular for 
those Mexican regions with low density of meteorologi-
cal gauging stations. 

Several studies compared gridded meteorological 
data sets and their results evidence a large uncertainty 
in the estimation of precipitation. For instance, Koutsou-
ris et al., (2016) compared seven global precipitation 
data sets for a basin located in Tanzania. The precipita-
tion data come from satellite, reanalysis and interpola-
tion. Results show that the selected data sets present 
differences in long-term averages, mainly in the wet 
season. In particular, interpolated data overestimated 
precipitation during the dry period, and showed a di-
fference in the peak-time in the wet season. 

Other studies evaluated the uncertainty related to 
precipitation data in the estimation of discharge. For 
example, Fekete et al. (2004) compared six global 
monthly precipitation data sets to assess their spatial 
and temporal differences and the uncertainty that ari-
ses when they are used as input to a global water balan-
ce model. They found important numerical differences 
in precipitation between data sets, especially in wet tro-
pics. Besides, results show that the uncertainty in preci-
pitation translates much greater uncertainty in runoff 
in semi-dry regions where the rainfall-runoff process is 
highly nonlinear. In addition, the authors claim that the 
comparison of simulated runoff to observed river dis-
charge has the potential to objectively evaluate the per-
formance of a given data set.

Biemans et al. (2009) assessed the uncertainty in si-
mulated discharge originated by precipitation data 

Resumen

La interpolación espacial es un procedimiento estadístico para estimar los valores de las variables meteorológicas en sitios sin 
medición que se encuentran en un área con registros de observaciones. El resultado de esta interpolación espacial es una base de 
datos ordenada en una matriz (datos en malla). Este trabajo evalúa la incertidumbre relacionada con los datos meteorológicos 
procesados en malla en la modelación hidrológica del caudal diario en dos cuencas localizadas en México. El uso de datos meteo-
rológicos en malla es una alternativa a las observaciones directas en aquellas regiones en México con una baja densidad de esta-
ciones meteorológicas. En un primer paso, dos conjuntos de datos (observaciones y datos en malla) se compararon. Los resultados 
muestran que los datos en malla subestiman la precipitación y las temperaturas mínimas y máximas en las cuencas de estudio, 
aunque en el último caso muestran cierta correspondencia en el ciclo anual. En un segundo paso, los dos tipos de datos meteo-
rológicos se emplearon como datos de entrada en el modelo hidrológico conceptual global GR4J para evaluar el error causado 
cuando se simula el caudal con los datos en malla. Los resultados muestran que GR4J se puede calibrar con ambos conjuntos de 
datos obteniéndose un buen desempeño en la simulación de caudales medios y altos en términos del coeficiente de eficiencia Nash-
Sutcliffe. Sin embargo, los caudales bajos son sobre estimados cuando se simulan con los datos en malla. El análisis de los pará-
metros optimizados de GR4J muestra que el modelo hidrológico aumenta el intercambio del agua subterránea para compensar por 
la subestimación de la precipitación, lo que lleva a una interpretación errónea de la respuesta hidrológica de la cuenca. Por esta 
razón se debe evaluar la calidad de los datos meteorológicos en malla antes de su uso en la evaluación de riesgos hidrológicos y en 
los estudios de impacto del cambio climático en los recursos hídricos. 
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over several large river basins around the world. The 
precipitation data come from seven gridded data sets, 
and results show a large uncertainty in mean annual 
precipitation (around 30%). In a second step, the preci-
pitation data were used to feed an uncalibrated global 
water balance model to evaluate the transfer of uncer-
tainty to simulated discharge. Results show that uncer-
tainty in discharge is about three times higher than the 
estimated uncertainty in precipitation. 

Getirana et al. (2010) evaluated six gridded daily 
precipitations data sets for one South-American basin. 
The data sets included gauged, satellite and reanalysis 
data. The precipitation data were used to feed a hydro-
logical model to simulate discharge. Results are mixed, 
so discharge simulated with gauged data agreed best 
with observed discharge, while other data sets underes-
timated precipitation fields and discharge.  

The studies above show, by using water balance 
models, that the uncertainty from meteorological data 
is translated to discharge over large basins located 
around the world. This study has two main scopes: 
first, this work compares observed and gridded meteo-
rological data for two small Mexican basins; in a second 
step, a rainfall-runoff model is fed with meteorological 
data from both data sets in order to evaluate the uncer-
tainty that arises when gridded meteorological data are 
used to simulate discharge. The manuscript is organi-
zed as follows: firstly, the study basins, the meteorolo-
gical data and the hydrological model are presented; 
secondly, the simulated discharges are compared; fina-
lly, concluding remarks close the manuscript. 

Data and methods	

Study basins and meteorological data sets

The Papagayo River has its farthest headwater in the 
Sierra Madre del Sur mountain chain and it discharges 
into the Pacific Ocean. The basin covers an area of 7067 
km2, and it is located entirely in the State of Guerrero. 
The basin is situated over a Tropical Savannah (Aw)  
climate region (Peel et al., 2007). 

The Valles River Basin is located mostly in the State 
of San Luis Potosí, covering an area of 3521 km2. The 
Valles River flows north to south through the Sierra 
Madre Oriental mountain chain, and it discharges into 
the major Pánuco River Basin. The Valles River Basin is 
situated over Tropical Savanna (Aw) and Tropical 
Monsoon (Am) climatic regions. Figure 1 shows the lo-
cation of the study basins.

The discharge data come from the National Data of 
Surface Water (i.e. BANDAS; IMTA 2016). The data 

were obtained for the gauging stations La Parota and 
Santa Rosa for the Papagayo River Basin and the Valles 
River Basin respectively. Figure 2 and Table 1 shows the 
mean monthly discharge for the study basins. The Pa-
pagayo River Basin has a peak flow in September while 
the Valles River basin presents one peak flow in July 
and another peak flow in September. Low flow occurs 
from December to May for both basins.  

Daily time series of precipitation and minimum and 
maximum temperature were obtained from two sour-
ces, called observed and processed gridded data sets. 
The observed data come from the CLICOM climatolo-
gical database (CICESE, 2016), built by the Servicio Me-
teorológico Nacional (SMN). Observed data were 
obtained from five meteorological stations for the Papa-
gayo River Basin (for the 1971-2000 period), and from 
three stations for the Valles River Basin (for the 1973-
1996 period). The processed gridded data (resolution of 
1/16°) were taken from the hydrometeorological data 
set for Mexico, the U.S., and Southern Canada presen-
ted by Livneh et al. (2015), which covers the 1950-2013 
period. The SMN meteorological data were used to 
build this data set for Mexico. The processed gridded 
data set used in this study incorporates a topographic 
adjustment in order to take into account mountain pre-
cipitation. Indeed, interpolating between lower-eleva-
tion stations across a complex topography would 
systematically misrepresent the precipitation fields (Li-
vneh et al., 2015). The adjustment procedure first com-
putes the ratio between the mean monthly interpolated 
precipitation and the mean monthly climatological pre-
cipitation (obtained from the data set presented by 
Vose et al. (2014) which takes topographic effects into 
account). Then, daily interpolated precipitation was 
scaled for the entire record with the computed monthly 
ratios.

Figure 1. Study basins
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Figure 2. Observed mean monthly discharge (1971-2000) for 
the study basins

Table 1. Observed mean monthly discharge (m3 s-1) for the study 
basins over the period 1971-2000

month

Discharge (m3 s-1)
1971-2000

Papagayo
River Basin

Valles
River Basin

Jan 42.82 14.04

Feb 31.51 10.16

Mar 24.88 7.20

Apr 20.59 5.70

May 22.57 6.43

Jun 91.89 36.71

Jul 179.38 92.13

Aug 257.59 66.16

Sep 432.09 92.54

Oct 277.92 59.30

Nov 103.73 30.81

Dec 59.65 20.40

The hydrological model

The rainfall-runoff model used in this study is GR4J 
(Perrin, 2000) which is a conceptual lumped model that 
simulates streamflow at daily time step. GR4J uses 
daily potential evapotranspiration (PE) and daily preci-
pitation (P) as input variables. For this study, the PE 
was computed using the formulation proposed by Ou-
din et al. (2005), which is based on mean temperature 
and incoming solar radiation. GR4J has been largely 
used to simulate discharge in basins located in France 
(Le Moine et al., 2007), Australia (Coron et al., 2012), and 
recently it was also used to assess climate change im-

pacts on water resources in Mexico (Velázquez et al., 
2015), China (Tian et al., 2013) and Canada (Seiller and 
Anctil, 2014), among other countries.

Figure 3 shows the GR4J diagram. The model simu-
lates the hydrology as follows: if P ≥ PE, then net rain-
fall (Pn) is computed as the difference between P and 
PE, and net evapotranspiration capacity (En) is zero. 
Otherwise, the actual evapotranspiration (Es) is calcula-
ted. Then, a part of the net rainfall (Ps) fills the produc-
tion store, which accounts for soil conditions. Another 
part of net rainfall joins percolation (Perc) from produc-
tion store. The total quantity of water is divided in two 
flow components: 90% is routed to a unit hydrograph 
(UH1) and then to a non-linear routing store, while the 
rest is routed to another unit hydrograph (UH2). The 
total streamflow (Q) is computed with both flows. In 
addition, the model accounts for ground water exchan-
ge (F). Four parameters are optimized in GR4J: the 
maximum capacity of the production store (x1 , in mm), 
the groundwater exchange coefficient (x2 , in mm), the 
one day ahead maximum capacity of the routing store 
(x3, in mm) and the time base of unit hydrograph UH1 
(x4, days). A detailed description of GR4J is given by 
Perrin et al. (2003). 

Figure 3. GR4J diagram (adapted from Perrin et al., 2003)

The Nash-Sutcliffe (NS) coefficient (Nash and Sutcliffe, 
1970) was used to evaluate the performance of the hy-
drological model 
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where Qobs,i and Qsim,i are the observed and simulated 
streamflows at time step i, and n is the total number of 
daily observations. A NS=1 corresponds to a perfect 
match between observed and simulated discharge.

Results and discussion

Figure 4 shows the meteorological stations and grid 
points used for the meteorological data comparison. 
The mean areal observed precipitation was computed 
following the Thiessen Polygon Method (OMM, 1994). 
For gridded data, the average precipitation was compu-
ted with the grid points inside the basins.

Figure 4. Location of meteorological stations and grid points

Figure 5 and Table 2 shows the mean monthly Precipi-
tation (Precip.), maximum (Tmax) and minimum 
(Tmin) temperature computed with observations and 
gridded data. It can be seen that gridded data underes-
timate mean precipitation for both basins, especially in 
wet months (from June to October). Similarly, Tmax 

and Tmin are underestimated about 2°C; however, des-
pite the bias, there are similarities in the annual cycle 
computed with both data sets, particularly for the Pa-
pagayo River Basin. 

The former comparison was performed with obser-
vations from five and three meteorological stations for 
the Papagayo River Basin and the Valles River Basin 
respectively (Figure 4); on the other hand, gridded me-
teorological data were computed with spatially com-
prehensive observations (Livneh et al., 2015). In 
addition, both basins have a complex topography, ran-
ging from 3317 m to sea level for the Papagayo River 
Basin, and from 1918 m to 69 m for the Valles River Ba-
sin (Figure 1). In order to assess the effect of the limited 
number of meteorological stations and the complex to-
pography of the basins in the computation of the mean 
precipitation, the comparison between data sets was 
performed by considering only the nearest grid points 
to meteorological stations (so-called virtual stations). 
The mean precipitation was computed with the Thies-
sen Polygon Method for both meteorological and vir-
tual stations. Results show that the mean annual 
precipitation computed for the Papagayo River Basin is 
4.20, 2.57 and 2.68 mm day-1 for observed data, gridded 
data and virtual stations data respectively. Similarly, 
the mean annual precipitation computed for the Valles 
River Basin is 3.76, 2.26 and 2.52 mm day-1 for observed 
data, gridded data and virtual stations data respecti-
vely. Thus, there is a similar underestimation of preci-
pitation when considering all grid points inside the 
basins or only a few virtual stations.

Figure 5. Mean monthly precipitation (Precip), maximum (Tmax) and minimum (Tmin) temperature from observed and gridded 
data sets, for the Papagayo River Basin (1971-2000, upper) and the Valles River Basin (1973-1996, lower)
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Figure 6 shows the empirical cumulative distribution 
functions for the meteorological variables obtained 
from observed and gridded data. As showed in Figure 
5, it can be seen that gridded data generally underesti-
mate precipitation and temperature. Table 3 shows se-
lected percentiles computed for the observed and 
gridded data. The relative difference in precipitation is 
-31% (-43%) for percentile 75 (90) for the Papagayo Ri-
ver Basin. Similarly, the relative difference is +20 (-40%) 
for percentile 75 (90) for the Valles River Basin. Besides, 

gridded data estimate more days with precipitation: 
the difference between data sets in the number of days 
with precipitation ≥1mm is 100 and 323 days (over the 
analyzed period) for the Papagayo River Basin and the 
Valles River Basin respectively. Regarding Tmax and 
Tmin, it can be seen from Figure 6 that the difference 
between data sets is higher for high quantiles than for 
low quantiles. For instance, in the Papagayo River Ba-
sin (Figure 6b), the difference in Tmax is -2.6°C and 
-3.5°C for percentiles 10 and 90 respectively. 

Table 2. Mean monthly precipitation (Precip.), maximum (Tmax) and minimum (Tmin) temperatures computed with observed and 
gridded data for the Papagayo River Basin (1971-2000) and the Valles River Basin (1973-1996)

month

Papagayo River Basin Valles River Basin

Precip.
(mm day-1)

Tmax
 (°C)

Tmin
 (°C)

Precip.
(mm day-1)

Tmax 
(°C)

Tmin
 (°C)

Obs. Grid. Obs. Grid. Obs. Grid. Obs. Grid. Obs. Grid. Obs. Grid.

Jan 0.41 0.33 30.33 27.47 14.18 11.78 0.90 0.68 23.06 22.52 11.00 9.52

Feb 0.32 0.21 31.29 28.29 14.49 12.11 0.45 0.40 25.68 24.80 12.05 10.59

Mar 0.17 0.17 32.66 29.41 15.14 12.81 0.77 0.43 29.79 28.59 15.12 13.41

Apr 0.48 0.58 33.75 30.27 16.61 14.16 1.52 1.11 32.43 30.95 18.10 16.23

May 2.04 1.89 33.43 30.05 18.30 15.48 3.57 2.47 33.97 32.39 21.15 19.04

Jun 9.40 6.81 30.96 27.97 19.20 16.19 8.06 4.28 33.43 31.65 21.79 19.51

Jul 9.83 5.58 30.28 27.45 18.60 15.74 10.20 4.65 32.15 30.40 21.25 19.07

Aug 10.51 6.04 30.11 27.23 18.72 15.72 6.57 4.10 32.48 30.69 21.29 19.01

Sep 10.48 6.13 29.67 26.83 18.71 15.73 8.53 5.74 31.07 29.44 20.62 18.42

Oct 5.37 2.61 30.07 27.30 18.22 15.22 2.71 2.14 28.93 27.77 17.99 16.00

Nov 1.07 0.38 30.52 27.77 16.85 14.00 0.95 0.61 26.03 25.54 15.01 13.16

Dec 0.43 0.20 30.33 27.55 15.37 12.71 0.97 0.56 23.47 23.12 12.42 10.78

Figure 6. Empirical cumulative distribution functions for the observed and gridded meteorological variables for the 
Papagayo River Basin (1971-2000, upper) and the Valles River Basin (1973-1996, lower)
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The results presented above indicate important di-
fferences between meteorological data sets. In order to 
evaluate the effect of such differences on simulated dis-
charge, the rainfall-runoff model was fed with meteoro-
logical data from both data sets. GR4J was calibrated 
and validated over 9-yr periods, and Table 4 shows the 
obtained NS values. Results show that, in general, there 
is a good agreement between simulated and observed 
discharges. 

A further insight on the influence of meteorological 
data on model performance is given by the scatterplot 
presented in Figure 7. From this figure, it can be seen a 
good agreement between observed and simulated daily 
discharges when observed meteorological is used (Figu-
re 7a and c). For instance, low and high flows are well 
simulated for Papagayo River Basin, as the scatters tend 
to concentrate around the 1:1 line. For the Valles River 
Basin, high flows are well simulated, but there is a slight 
underestimation of low flows. In contrast, when gridded 
data is used to simulate daily discharge, low flows are 
not correctly simulated, and only medium and high 
flows agree to a certain extent (Figure 7b and d). Similar 
results were obtained for validation period (not shown). 
Table 4 shows that NS values are comparable for both 
data sets (NS is higher than 0.8 in the calibration period) 
which gives the idea that the model performance is good 
when gridded data are used to simulate discharge. The 
comparable values of NS could be explained because the 
efficiency coefficient is computed with differences bet-
ween simulated and observed discharge as squared va-
lues (see Eq. 1), so NS overestimates large values while 
lower values are neglected (Legates and McCabe, 1999), 
leading to an overestimation of the model performance 

during high flows and an underestimation during low 
flow conditions (Krause et al., 2005).

The hydrological model shows a good performance 
in the simulation of medium and high flows despite the 
systematic bias in gridded data. This issue can be ex-
plained by comparing the hydrological model parame-
ters, which take different values depending on the 
meteorological data used to feed GR4J. Although para-
meters in GR4J have no physical meaning, Pagano et al. 
(2010) assume that each parameter controls a process in 
the model. Thus, lower values of x1 (the maximum ca-
pacity of the production store) decrease soil moisture in 
the basin. Then, for the Papagayo River Basin, parame-
ter x1 has a value of 1357 and 181 for observed and 
gridded data respectively. Similarly, for the Valles Ri-
ver Basin, x1 takes a value of 3040 and 294 for observed 
and gridded data respectively. On the other hand, a 
positive value of x2 (the groundwater exchange coeffi-
cient) indicates water export (Perrin et al., 2003), so hig-
her values of this parameter increase streamflow 
(Pagano et al., 2010).The results show that, for the Papa-
gayo River Basin, parameter x2 takes a value of 1.44 and 
5.04 for observed and gridded data respectively. For the 
Valles River Basin, x2 has a value of 0.09 and 3.71 for 
observed and gridded data, respectively. 

Gridded data clearly underestimate precipitation (Fi-
gure 5). Therefore, in order to simulate medium and 
high flows with gridded data, GR4J decreases soil mois-
ture and increases the contribution of groundwater to 
streamflow, losing low flows representation. In other 
words, optimized GR4J parameters represent the hydro-
logy of the study basins in a very different way when 
observed and gridded data are used to feed the model. 

Table 3. Percentiles (pctl) for precipitation (Precip.), maximum (Tmax) and minimum (Tmin) temperatures, computed with 
observed and gridded data for the Papagayo River Basin (1971-2000) and the Valles River Basin (1973-1996)

pctl

Precip.
(mm day-1)

pctl

Tmax
(°C)

Tmin
(°C)

Papagayo River 
Basin

Valles River 
Basin

Papagayo River 
Basin

Valles River 
Basin

Papagayo River 
Basin

Valles River 
Basin

Obs. Grid. Obs. Grid. Obs. Grid. Obs. Grid. Obs. Grid. Obs. Grid.

50 0.08 0.34 0 0.14 10 28.85 26.25 22.17 22.01 14.00 11.78 10.50 9.30

75 5.35 3.67 1.43 1.71 50 30.94 27.99 30.28 28.86 17.50 14.76 18.67 16.64

90 13.92 7.89 11.12 6.60 90 33.80 30.26 35.17 33.22 19.40 16.30 22.17 19.79

Table 4. Nash-Sutcliffe coefficient (NS) obtained for calibration (Cal.) and validation (Val.)

Observed Data Gridded Data

Papagayo 
River Basin

Cal. 1985-1993 Val. 1974-1982 Cal. 1985-1993 Val. 1974-1982

0.84 0.78 0.84 0.73

Valles River 
Basin

Cal. 1974-1982 Val. 1986-1994 Cal. 1974-1982 Val. 1986-1994

0.89 0.75 0.89 0.67
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Conclusions

Hydrological modelling has different sources of uncer-
tainty that compromises their use for water manage-
ment. Previous studies showed that the uncertainty 
related to meteorological data is translated to simulated 
discharge, leading to errors on streamflow estimation. 
This study has two main scopes: the comparison bet-
ween observed and processed gridded data sets and 
the evaluation of the uncertainty related to the latter in 
the simulated discharge for two Mexican basins. The 
use of gridded data could be an alternative to observed 
data in those Mexican regions with low density of gau-
ging stations.

Our results show that the gridded data underesti-
mate precipitation, minimum and maximum tempera-
ture in the study basins. For instance, the precipitation 
is underestimated by about 40% for high quantiles. 
Besides, gridded data estimate more days with preci-
pitation. Regarding the temperature, the differences 
between observed a gridded data is about 2°C, despite 
the good agreement in the annual cycle. Moreover, the 
difference in maximum temperature is larger for high 
quantiles than for low quantiles.

In order to assess the error that the bias on gridded 
data causes to simulated streamflow, both data sets 
were used to feed the rainfall-runoff model GR4J. Re-
sults show that the model parameters can be optimi-
zed (by using the Nash-Sutcliffe coefficient) with 
both data sets, resulting in a good model performan-
ce for medium and high discharges. However, when 

gridded data are used, low flows are completely 
overestimated. The analysis of the optimized GR4J 
parameters shows that hydrological model has two 
representations of the basins response, so when 
gridded meteorological data are used to feed the mo-
del, GR4J decreases soil moisture and increases 
groundwater exchange, leading to a misrepresenta-
tion of the hydrological basins behavior. 

The use of biased meteorological data results in dis-
charge errors. Our results show that such errors could 
be erroneously perceived as small for the estimation of 
medium and high flows, which are generally the more 
evaluated in water management. However, errors in 
meteorological data lead to a lack of knowledge of the 
basin’s hydrological system. In that aspect, Beven 
(2016) suggests that we should take a much closer look 
at the data to be used in model calibration and evalua-
tion before running a model.

This study uses one processed gridded data set. Fu-
ture work should consider several data sets, computed 
with different interpolation methods in order to take 
into account the uncertainty that arises when precipita-
tion fields are calculated in regions with complex topo-
graphy. For instance, the work of Hofstra et al. (2008) 
compares six different interpolation methods to inter-
polate meteorological data over Europe. The results 
show that the difference in the skill between interpola-
tion methods is small; however, the authors claim that 
the skill of interpolation methods is influenced by sta-
tion density, and tends to be poor in areas with com-
plex topography. 

Figure 7. Daily discharges as simulated by GR4J 
for calibration period for the Papagayo River 
Basin (upper panels) and the Valles River Basin 
(lower panels) computed with observed data 
(right panels) and gridded data (left panels).
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