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Resumen

El disefio estructural basado en métodos de optimizacion es muy eficiente en la generacion de estructuras de peso minimo, maxi-
ma rigidez, etc.; sin embargo, tiene la desventaja de genera geometria muy complejas, cuya manufactura es dificil o imposible.
Por ello, estas geometrias deben ser adaptadas a los procesos de manufactura, de tal forma que se obtienen soluciones de disefio
viables. Durante el proceso de adaptacion, varias de las caracteristicas dptimas se pierden. Para minimizar esta pérdida se propone
un método de adaptacion, basado en esqueletonizacion, para soluciones topologicas. El objetivo es generar una estructura ma-
nufacturable a partir de una solucidn topoldgica, considerando miembros estructurales estandar. En este trabajo, se desarrollé un
algoritmo para interpretar y adaptar soluciones topologicas. Esqueletonizacion se aplica para obtener una representacion simplifi-
cada de la solucion optima, sin perder su topologia. El resultado se transforma en un conjunto de lineas rectas unidad por vértices.
Estas lineas son reemplazadas por miembros estandar de seccion transversal parametrizada. Mediante optimizacion de forma las
dimensiones de la seccion transversal son definidas. Como ejemplo, se aplica el método al disefio de una viga corta en cantiléver,
obteniendo una estructura completamente manufacturable, cuyas caracteristicas topoldgicas son preservadas.

Abstract

The structural design based on optimization methods is very efficient in generating structures of minimum weight, maximum
stiffness, etc.; nevertheless, it has the disadvantage of producing very complex geometries, whose manufacture is difficult or
unfeasible. Therefore, these geometries have to be adapted to manufacturing processes, obtaining in this way feasible design
solutions. During this adaptation process, several optimal characteristics are lost. In order to minimize this loss the authors
propose an adaptation method, based on skeletonization, for topological solutions. The objective is to generate a manufacturable
structure from a topological solution considering standard structural members. In this work, an algorithm to interpret and adapt
the topological solution was developed. Skeletonization is applied to obtain a simpler representation of the optimal solution
without losing its topology. The result is transformed in a set of straight lines joined by vertices. These lines are replaced by stan-
dard members, whose cross-section is parameterized. By applying size optimization, the dimensions of this cross-section are
defined. As an example the method is applied to design an optimal short cantilever beam, showing a final structure completely
manufacturable, whose topological characteristics are preserved.
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Introduction

Nowadays the use of optimization methods for solving struc-
tural problems has become very common because of their ad-
vantages versus conventional structural design methods. The
lightest and stiffest structures can be designed by optimiza-
tion methods, nevertheless they are very difficult to manufac-
ture because these methods generate irregular and complex
geometries, similar to those found in nature. Based on their
experience, designers make several subjective decisions in
order to simplify these geometries and make them manufac-
turable, at the expense of losing optimality. Some techniques
have been developed to obtain regular geometries from opti-
mized solutions without that losing. Chyi-Yeu & Shin-Hong
[1] developed an algorithm based on an artificial neural ne-
twork to identify geometrical patterns in optimized geome-
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tries; then these patterns are superpositioned to simplify the
geometries. The main disadvantage is the limited number of
regular geometries available. Ming-Hsiu & Yeh-Liang [2]
and Yeh-Liang, Ming-Sho & Chuan-Tang [3] present auto-
matic algorithms to interpret structures from a topological
solution; with these methods the geometric irregularities are
minimized, however the final geometry is still very irregular
and complex, therefore quite difficult to manufacture.

The material distribution in geometries optimized by topolo-
gical optimization is related with the structural functionality,
which means material tends to be added and concentrated
along areas where stress level is high, and eliminated along
areas where stress level is low [4, 5]. The material distribu-
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tion provides information to interpret the topological results
as material paths.

Adaptation methodologies imply that designers have to
make several decisions about which geometries are suitable
to modify a geometry optimized by topological optimiza-
tion. In the simplest approach, designers interpret that result
as material paths along the design domain, as is shown in
Figure 1; thereby the layout of material paths has a strong
subjectivity. For that reason it is interesting to propose an au-
tomatic adaptation method, based in a computational algori-
thm, capable to generate material paths without subjectivity.

- = W (,

) '\AWU

N

Figure 1. Structural optimization of an electric delivery car [6]. a) and b)
show material paths adapted by a designer, ¢) Representation of the car with

standard structural members. The subjectivity in the final result is quite high.

The adaptation method presented in this work is based on
skeletonization, which is a morphological operation for
image processing that transforms a binary image into its
minimum representation (called skeleton) without losing
its topological characteristics. Although there are several
approaches for skeletonization process (morphological ope-
rators [7], curve evolution [8], level sets [9], among others),
for all of them the skeleton of any geometry is a thin version
of it, which is equidistant to its boundaries; in this way, to-
pological properties of the geometry are emphasized instead
of being lost. Once the skeleton is obtained, the vertices or
intersections are identified. Subsequently, based on their
connectivity, paths in the skeleton are replaced with strai-
ght lines. These lines represent structural members, whose
cross-sectional dimensions are determined by size optimi-
zation. The final result is a structure that preserves optimal
topological characteristics without subjectivity.
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2. Method

In the following sections the method proposed is described.
The set of steps is constituted for:

Skeletonization.
Vertices localization.
Vertices connectivity and straight lines generation.
Minimum length application.
2.1 Skeletonization

Skeletonization is an iterative process that consists in ma-
king a binary image thinner and thinner until its thickness is
one pixel. The result is a set of connected paths that is known
as skeleton, which preserves the base lines and connections
that characterize the geometry, i.e. its topology. This ope-
ration is also known as medial axis transformation [10, 11]
because all the lines are equidistant to the border of the geo-
metry (Figure 2).
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Figure 2. Complex geometries and their skeletons. [11]

2.2 Vertices Localization

Once that skeleton is generated, the vertices or intersections
are located. In this paper a vertex (V) is defined as a pixel
where three or more paths converge. The skeleton is trans-
formed in a matrix, where a white pixel is 1 and a black pixel
is 0, therefore paths are represented by 1’s in the matrix.

B B B
After, a submatrix of order 3x3 | | B, P, B, ||isusedto
B By By

identify vertices. This submatrix is moved, inside the skele-
ton matrix, from the top left corner to the lower right corner,
using unitary displacements from left to right and top to bo-
ttom. When the central position of this submatrix (P,,) is lo-
cated over a 1 value (white pixels), values of the adjacent
positions are summed. If the sum is equal or higher than 3
the central pixel is marked as a vertex.
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P11+ P12+ P13+ P21+ P23+ P31+ P32+ P33>3
(D

At the end of this process, all the inner vertices are found.
In the other hand, there are two particular types of vertices
that do not follow the described rule: 1) vertices at the start
or the end of a path and 2) vertices with loads or constrains
(boundary conditions). The Figure 3 shows a vertex type 1,
for this vertex the sum of the adjacent positions is 1. For the
type 2 the vertex must be identified explicitly.
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Figure 3. Vertex at the end or the start of a path.

If several paths concur at the same vertex, the described pro-
cess generates a neighborhood of vertices (Figure 4). In or-
der to obtain a single vertex in a neighborhood the following
process is proposed, which is based on centroid calculation
of a plane geometry.

First, the 3x3 submatrix is centered in each vertex (V) of
the neighborhood and a local coordinate system is defined
(Figure 5). The local coordinates of the centroid (X,Y) are
calculated with the following expressions:
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Figure 4. Vertices neighborhood.
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Figure 5. Local coordinate system.

, where 7 goes from 1 to 3, V_and V, represent the number
of vertices at a distance i in x and y direction respectively.
In this way, the neighborhood of vertices is substituted for a
new single vertex with coordinates X, Y. (Figure 6).
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Figure 6. Single vertex from the neighborhood of Figure 5.
2.3 Vertices Connectivity and Straight Lines

The next step is to identify the vertices at the start and the
end of each path, in order to replace these paths with straight
lines. For this purpose the 3x3 submatrix is located in a ver-
tex (start of the path) to identify adjacent pixels with value
1, these pixels indicate the direction of each path connected
to the vertex. Then, the 3x3 submatrix is centered in one of
the adjacent pixels with value 1. If the submatrix contains
another vertex, this is the end of the path and its connectivity
is defined by the start and end vertices; else the submatrix is
centered in the next pixel with value 1 in the path until ano-
ther vertex is reached. This process is repeated for each pixel
with value 1 adjacent to the start vertex. (Figure 7).

When the connectivity of all the paths is known, these are
replaced with straight lines. In this way the irregular topo-
logical result is transformed into a geometry topologically
identical, but simpler than the original one. The structure ob-
tained is called skeleton-structure.

2.4 Minimum Length Algorithm

The skeleton-structure might contain some very short mem-
bers that hinder the manufacture process. For this reason the
minimum length algorithm creates a submatrix that covers
the vertices whose distance among them is less than a mini-
mum value. This submatrix has the double size of the mini-
mum length value, translated in pixels, in order to consider
all the neighborhood of vertices that are very close; the mini-
mum length must be specified explicitly.

The algorithm calculates a new vertex using the equation (2)
but, given that the length of the submatrix is twice the mini-
mum length, the distance of the vertices is recalculated until
the vertices that do not fulfill the condition are vanished. This
process is repeated until all the members which do not fulfill
the minimum length are suppressed into a single vertex.

3. Case Study: the Short Cantilever Beam

As an application example, the short cantilever beam pro-
blem is addressed. The result of the topological structural
optimization of the design domain and its adaptation based
on the proposed method is shown in the Table 1. Evidently
the final skeleton structure generated is topologically quite
similar to the topological optimized structure.
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Adjacent pixels of V, which represent the
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Figure 7. Connectivity between vertices V_1 and V_2. Once the start and end vertices are found, the connectivity of a path is defined.

In this example the standard member in Figure 8 is selected
(the selection of a feasible cross section is not considered
in this paper, so it has to be a decision of the designer.); its
cross-sectional dimensions are generated via size optimiza-
tion. The objective is to define the optimal dimensions of the
cross section to resist the boundary conditions (constrains
and loads). The size optimization process is performed using
OptiStruct from the Altair HyperWorks® software.

DIM3
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DIM4

DIM5
DIM2

Figure 8. Parametric cross-sectional dimensions of the standard member.

All the straight lines are meshed with 1D finite elements as is
shown in Figure 9. The cross-sectional dimensions are con-
sidered as design variables, whose initial values are presen-
ted in Table 2. The objective function is set to minimize the
compliance for a mass percentage of 25%. Structural steel
ASTM A36 is selected as the material of the structure.
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Figure 9. FEA model.

Topological Optimized

Structure

Skeletonization

Design Domain
100 KN

1000 m

Design Domain

Skeleton-Structure
before Minimum Length
Modification

Final Skeleton-Structure

Table 1. Adaptation of the topological optimized structure for the short beam problem.
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Dimension Initial Value
mm
DIM1 127
DIM2 76
DIM3 76
DIM4 5.4
DIMS 8.3
DIM6 8.3

Table 2. Cross-sectional initial dimensions.

The results of the optimal solution are shown in Table 3. In
order to select a standard member, the S75x8.5 member is
chosen because its dimensions are the closest to the optimal
results.

Dimension Optimum Values | S75x8.5 Shape
mm mm
DIM1 78.82 76
DIM2 36.45 59
DIM3 36.45 59
DIM4 2.459 4.3
DIMS 3.963 6.6
DIM6 3.963 6.6

Table 3. Optimal cross-sectional and S75X8.5 dimensions.

FEA is applied to the structure considering the S75x8.5 stan-
dard member to evaluate the performance of the structure
[12]. In Figure 10 the maximum stress in each bar is shown.
The Safety Factor (SF) of the structure is 1.2.

Finally, in order to complete the structural design, four diffe-
rent options for connections are presented, considering that
all the joints are bolted or welded (Figure 11).

4. Other Cases Study.

The following Table shows the results of applying the propo-
sed algorithm to other two classical optimization problems:

Michell’s structure and a bridge structure [13]. In both cases
the efficient performance of the algorithm is proved. Once
again the topology of the optimal structure is preserved, wi-
thout the loss of optimality associated with subjective deci-
sions.

Contour Plot
Element Stresses (1D)(CBARICBEAM Long. Stress SAMAX)
9

2
[171 234 Sy
134.799

98.365

61.930

25.495

-10.939

-47.374

-83.809

-120.244
m No result

Figure 10. Maximum stress.
5. Conclusions.

The adaptation algorithm presented is useful for topologica-
Ily optimized structures because it transforms a non-manu-
facturable structure into a totally manufacturable one. Once
the algorithm is applied, the skeleton-structure obtained
preserves, without subjectivity, the topology of the optimal
solution.

The minimum length algorithm allows the designer to con-
trol the existence of short members, which hinder manufac-
ture, without affecting the topology significantly. Size opti-
mization allows to select an appropriate standard member,
which ensures withstand the boundary conditions.

In the first case study, the purpose of showing four different
options for connections is to emphasize that even though the
presented algorithm generates a unique solution for a speci-
fic structure, the problem of automatically generating con-
nections has not been solved yet.

Figure 11. Different options for joints in the final design.
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< 1600 mm >

(ANR

Topological Optimized

Design Domain

1000 mm

Structure

Skeletonization

Design Domain

Skeleton-Structure before
Minimum Length
Modification

[NA

Final Skeleton-Structure

Table 3. Case Study: Michell's structure.

Adaptation for manufacturing of topologically optimized
structures can be a very difficult issue for a person, because
it strongly depends on that person’s experience. The method
presented in this work eliminates that dependence, which
means a very convenient tool for structural design. In this
sense, an optimized structure can preserve its optimality after
manufacturing.
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