

Journal of Applied Research and Technology

www.jart.icat.unam.mx

Journal of Applied Research and Technology 21 (2023) 338-351

Original

Event-driven architecture and REST architectural style:

An exploratory study on modularity

L. Lazzari* K. Farias

Applied Computing Graduate Program (PPGCA), University of Vale do Rio dos Sinos (Unisinos),

Rio Grande do Sul, São Leopoldo, Brazil

Received 09 02 2021; accepted 04 19 2022

Available 06 30 2023

Keywords: Event-driven architecture, EDA; modularity, empirical study, Kafka: REST

Abstract: Event-driven architecture has been widely adopted in the software industry, emerging as an
alternative to the development of enterprise applications based on the REST architectural style.
However, little is known about the effects of event-driven architecture on modularity while enterprise
applications evolve. Consequently, practitioners end up adopting it without any empirical evidence
about its impacts on essential indicators, including separation of concerns, coupling, cohesion,
complexity, and size. This article, therefore, reports an exploratory study comparing event-driven

architecture and REST style in terms of modularity. A realistic application was developed using an
event-driven architecture and REST through five evolution scenarios. In each scenario, a feature was
added. The generated versions were compared using ten metrics. The initial results suggest that the
event-driven architecture improved the separation of concerns, but was outperformed considering the
metrics of coupling, cohesion, complexity, and size. The findings are encouraging and can be seen as
the first step in a more ambitious agenda to empirically evaluate the benefits of event-driven
architecture against the REST architectural style.

∗Corresponding author.

E-mail address: luanlazzari@hotmail.com (L. Lazzari).

Peer Review under the responsibility of Universidad Nacional Autónoma de México.

http://dx.doi.org/10.1016/j.jart.2017.02.005
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

https://www.icat.unam.mx/
mailto:luanlazzari@hotmail.com
https://www.unam.mx/

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 339

1. Introduction

Event-driven architecture (EDA) emerges as a promising

architecture for the development of distributed systems, with

promising gains in modularization, scalability, and

concurrency (Cao et al., 2020; Fiege et al., 2002). For this
reason, platforms have emerged to support the event-driven

architecture, usually proposing a series of components that

communicate through events. Kafka1 is an example of these

platforms. It composes services not by chains of commands

and queries, but by event flows (Stopford, 2018). This allows

each component to perform its tasks independently, as they

are triggered by events that represent some business fact or
important domain for the application (Tragatschnig & Zdun,

2015). Thus, there is a separation between the execution of

services (components) and the communication between

them, it becomes easier to perform interactions between

heterogeneous components in complex systems (Rahmani et

al., 2021). The literature argues that this separation provides

greater flexibility to evolve and enhances the scalability of
applications (Cao et al., 2020; Fiege et al., 2002; Schipor et al.,

2019). On the other hand, in request/response-based

applications, data is obtained from different sources, for

example, via HTTP requests, which can generate possible

congestion (Fiege et al., 2002).

The current literature (Cao et al., 2020; Stopford, 2018)
points out that event-driven architecture promotes loose

coupling — essential for the modularization of application

services — but can increase design complexity and system

understanding (Fiege et al., 2002). Among the traditional

architectures for implementing service-oriented systems, the

REST architectural style stands out (Fielding, 2000). Studies in

literature (Laigner et al., 2020) point out the possible benefits
of event-driven architecture. Laigner et al. (2020) report an

empirical study in which the adoption of EDA was found to

improve maintenance and fault isolation in a system that was

refactored after years of evolving giving rise to large, complex

codes and obsolete, requiring a costly maintenance process.

EDA is often adopted in applications for handling a high

volume of data in continuous streams (Fertier et al., 2020;
Rahmani et al., 2021). The literature on event-driven

architecture advocates that designing applications strongly

based on events favors the modularization of functionality as

well as facilitating maintenance activities and service

evolution of applications (Cao et al., 2020). In this sense,

designing software adopting EDA may imply a more
systematic way to promote a better modularization of

software. It is conjectured that the use of EDA will generate

applications with greater separation of concerns and

cohesion, as well as less coupling, complexity, and size.

However, there is little evidence to confirm whether this

expectation is confirmed or not. Today, the literature lacks

exploratory studies that investigate the effects of EDA on

aspects of software modularity. Furthermore, it is not known

whether these effects are better or worse than those caused

by traditional architecture. Consequently, developers end up
adopting EDA without any empirical evidence about its effects

on the modularity of software.

In this article, we present an exploratory empirical study that

compares the event-driven architecture and REST architectural

style in terms of software modularity. This is an initial study

through which we seek to comparatively understand the effects

of EDA in different facets of modularization, including
separation of concerns, cohesion, coupling, complexity, and

size. The effects of EDA are investigated through a case study

with 5 evolution scenarios, in which functionalities are added to

an application developed using EDA and the REST architectural

style. The generated versions were compared using 10 metrics.

The results reported are the first to report the potential

advantages of the event-driven architecture in terms of software
modularity. In this sense, this article can be seen as the first step

in a more ambitious agenda to assess the benefits of event-

driven architecture empirically. Initial results suggest that the

event-driven architecture improved the separation of concerns,

but was overcome considering the metrics of coupling,

cohesion, complexity, and size. Such results can benefit
software developers and architects in choosing the architecture

to be adopted, as well as researchers by providing initial

findings that point to future research directions.

The study is divided according to the following structure.

Section 2 introduces the main concepts for understanding the

proposed study. Section 3 addresses related works, exploring

the selection process used and comparing them with the
present one. Section 4 describes the methodology for

developing the study. Section 5 brings the results obtained.

Finally, Section 6 draws some conclusions and future work.

2. Background

2.1. Modularization of interests
Modularization is considered essential in the design of

modern software (Sant’Anna, 2008). It is defined by the IEEE as

the degree to which a system program is composed of discrete

components, such that a change in one component has
minimal impact on others (Sant’Anna, 2008). While interest is

any important property or area of interest of a system that we

want to address in a modular way (Sant’Anna, 2008).

Therefore, a software interest can be a feature, business rule,

non-functional requirement, an architectural pattern, or

design pattern (Sant’Anna, 2008).

1 Kafka: https://www.confluent.io/

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 340

Software with a high degree of modularization brings

several benefits such as comprehension, extensibility,

adaptability, and reuse, among others (Parnas, 1972).

Consequently, modularization can be applied in various

stages of design, ranging from the architecture specification to

the detailing of the design and (Sant’Anna, 2008) code
abstraction levels. The main objective of the software

architecture is to define which components the system should

consist of, how these components will communicate with

each other, and how they should be deployed to fulfill the

requirements (Falatiuk et al., 2019). Therefore, the architecture

of software plays an important role in the formulation and

development of software (Gardazi & Shahid, 2009).
However, architectural decomposition is still a major

bottleneck for the design process of software according to

Sant’Anna (2008), mainly due to the need for simultaneous

modularization of a series of broad-scope issues.

Consequently, the inadequate modularization of interests can

generate complexity in the design of the software. The

evaluation of different architectures requires techniques to
quantitatively measure (Sant’Anna, 2008), so software metrics

are powerful indicators of modularization in the design of

software (Sant’Anna, 2008). Therefore, the community has

consistently used notions of module coupling, cohesion, and

interface size to measure modularization (Sant’Anna, 2008).

Therefore, in this study, a set of metrics addressed in Section
4.2 was defined.

2.2. Event-driven architecture
In event-based architecture, components only publish data

without knowing the other components or who will consume

and react to the data, promoting the separation of

computation and event publishing from any subsequent

processing (Fiege et al., 2002). Furthermore, their

communication is asynchronous in the producer/consumer
model, and both are independent of each other (Falatiuk et al.,

2019). Consequently, promoting loose coupling between

components is why event-driven architecture has become

predominant in large-scale distributed applications (Fiege et

al., 2002).

The messaging system allows the building of loosely
coupled services, as it moves the raw data to a highly coupled

location (the producer) and places it in a loosely coupled

location (the consumer) (Stopford, 2018). Therefore, any

operations that need to be performed on this data are not

done by the producer, but by each consumer (Stopford, 2018).

That is, services can easily be added to the system in plug and

play (pluggable) mode, where they connect to event streams
and run when their criteria are met (Stopford, 2018). It not only

promotes loose coupling but also manages to store events

and data, dispensing with the use of a database, and keeping

events “close” to the services (Stopford, 2018). In addition, all

events are stored in the order they arrived, allowing events to

be played back in order. As a result, the performance of event-

based applications is also better, ensuring stability and high

performance for high data flow (Stopford, 2018).

2.3. REST architectural style
Among the traditional architectural styles, the REST style

stands out in the synchronous request/response model
(Fielding, 2000). In the synchronous model, the client makes a

request and waits for the response, while it is being processed

by the responsible service, so it is widely used in distributed

applications (Zhou et al., 2014). Unlike event-driven

architecture, adding new services in traditional architecture

generally implies introducing a new method and calling the

services (Stopford, 2018). However, traditional architecture
has some considerable advantages such as simplicity to

implement data (or state) residing in one place and

centralized control (Stopford, 2018). Thus, in this study, the

main point of comparison between REST and EDA will be

modularization.

3. Related works

The selection of related works was carried out following two

steps: (1) search in digital repositories, such as Google Scholar

and Scopus (Elsevier) for articles related to EDA, REST, or
empirical studies on modularization; and (2) filter of selected

articles considering the alignment of such works with the

objective of the work and the formulated research questions

(Section 4.1). After selecting the works, they were analyzed

(Section 3.1) and compared (Section 3.2) to identify research

opportunities.

3.1. Analysis of related works
Laigner et al. (2020). This study explores the changes from a
legacy big data system (BDS) to an event-driven architecture

based on microservices. Such BDS is located at the Tecgraf

Institute of PUC-Rio, which provides solutions for industrial

partners. One of the solutions developed for a client in the oil

and gas sector in 2008, concerns a BDS that monitors moving

objects and proactively detects events that generate risks to
the operation, such as deviations from the route of vehicles.

Motivated by the difficult process of maintaining the system

and the advent of a new partner, a complete rewrite of the

legacy BDS was designed for the current big data

technologies. In conclusion, support for microservices for

easier maintenance and fault isolation was seen as a benefit.

However, the complex data flow generated by the number of
microservices, as well as a myriad of technologies, has

drawbacks.

Schipor et al. (2019). It introduces Euphoria, which is a new

software in event-driven architecture, aimed at intelligent

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 341

environments. Composed of a considerable range of

heterogeneous devices, each with its operating system,

communication protocols, and form of interaction, among

others. Such environments have some design criteria such as

modularity, scalability, and asynchronicity to produce,

process, and transmit messages and events. Therefore,
Euphoria was designed by adopting various techniques and

quality properties following the (SQuaRE) ISO/IEC 25000

standards. In addition, a technical evaluation was conducted

on the capabilities of Euphoria, message size, different

devices, and environment complexity (number of devices)

were quantified. Its result was satisfactory, achieving a low

response time even in an environment composed of many
producers and consumers.

Falatiuk et al. (2019). They present a qualitative study,

describing the main architectural concepts and selection of

technologies for implementing a document management

system, the e-archive. For this, the event-driven architecture,

based on microservices, was chosen according to the

requirements raised. Therefore, the advantages found were
horizontal scalability, modularization, loss of coupling between

components, ease of modification, and manipulation of large

amounts of data. However, it requires more knowledge of cloud

architecture patterns and DevOps culture to ensure scalability

and proper monitoring. Thus, the design proves to be quite

costly to start with but offers cheaper future maintenance,
modifications, and updates as the system evolves.

Alaasam et al. (2019). It proposes a case study on the

feasibility of using the Apache Kafka Stream API (Kafka stream

DSL) in the development of Digital Twin. A real-time data

stream processing system capable of monitoring, controlling,

and predicting states from data collected from various

sensors. In it, a parametric study of latency and response time
was performed, considering fault tolerance, scalability, and

ease of implementation. In conclusion, Kafka proved to be

adequate for the proposed system, providing good state

management and acceptable latency. However, a loss in

efficiency was noticed, while there is a lot of data traffic

between the intermediate topics.

Figueiredo et al. (2008). It presents a quantitative study,
comparing aspect-oriented (AO) and object-oriented (OO)

programming on two Software Product Lines (SPLs), to

evaluate various aspects of the design stability, considering

metrics such as Separation of Concerns (SoC), coupling, and

cohesion. The SPLs were implemented using AO and OO for

comparison purposes, seeking to understand the benefits of
AO in software quality issues. The article reports the benefits

of an aspect-oriented architecture of SPLs.

Garcia et al. (2006). They present a quantitative study,

comparing Java and AspectJ implementations of the Gang-of-

Four (GoF) design patterns. For this purpose, object-oriented

programming (OO) and aspect-oriented programming (AOP)

were used. To compare applications, using metrics to

measure the coupling of objects and the SoC, but also

cohesion and size. Considering the characteristics of the

implementations in each pattern. After each change, the

metrics were collected, always comparing them with the

previous version, before the changes. Finally, it reports on
which point AOP stood out positively and negatively

compared to OO.

Fiege et al. (2002). It presents a qualitative study on the

modular design and implementation of an event system,

capable of supporting event scopes and mappings. Among the

concepts, the role of the producer and consumer, forms of

communication between them, and triggers between events

are specified. Some benefits can be mentioned, e.g., system

modularization, loose coupling, abstraction, and information
hiding. In addition to the components that make up an event-

driven architecture, such as the subscribe/unsubscribe of

events, necessary to guarantee message distribution. As well

as the central point responsible for managing parts of the

system, such as passing a trigger to one or more events.

3.2. Comparative analysis of works
Comparison Criteria. Five comparison criteria (CC) were

defined to identify the similarities and differences between the

proposed work and the selected articles. This comparison

seeks to help identify research opportunities using objective

rather than subjective criteria. The criteria are described below:

• Empirical Study (CC1): studies that performed

experimental studies, especially through case studies,
experiments, or observations for data collection in the

field.

• Modularization Analysis (CC2): studies that

performed quantitative or qualitative analysis on software

modularization.

• Event-driven architecture (CC3): studies that address

concepts or apply event-driven architecture.

• Microservice architecture (CC4): studies that used
microservices and/or REST.

• Application context (CC5): studies that explore

applications in the industry context.

Research opportunities. Table 1 presents the comparison

of the selected studies, highlighting the similarities and

differences between them. It is observed that only the

proposed work meets all defined comparison criteria. In this
sense, two research opportunities were identified: (1) the

absence of exploratory empirical studies that report empirical

evidence on event-driven architecture and REST, in the

context of industrial applications; and (2) the lack of studies

that comparatively explore the impact of application

modularization, using event-driven architecture and the REST
style. The next section presents a research methodology to

explore these identified opportunities.

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 342

Table 1. Comparative analysis of selected

 related works.

Related Work
Comparison Criteria

CC1 CC2 CC3 CC4 CC5

Proposed work

Laigner et al. (2020)

Schipor et al. (2019)
Falatiuk et al. (2019)
Alaasam et al. (2019)
Figueiredo et al.

(2008)

Garcia et al. (2006)
Fiege et al. (2002)
Legend:

 Attends Does not attend

4. Methodology

This section describes the methodology followed to carry out
the empirical study. Section 4.1 presents the objective of the

study and the research question investigated. Section 4.2

describes the metrics used. Section 4.3 details the

experimental process followed, describing the study phases

and the activities performed. Section 4.4 brings the data

analysis procedures. Section 4.5 describes the chosen target
application, detailing its functionalities and characteristics.

Section 4.6 details the target application evolution scenarios.

Finally, Section 4.7 reveals details regarding the

implementation of the analyzed applications.

4.1. Objective and research question
This study aims to compare the event-driven architecture and

the REST architectural style in terms of software modularity. We

seek to investigate the effects on five different variables

involved with modularity (Figueiredo et al., 2008): separation of

concerns (SoC), coupling, complexity, cohesion, and size.

These effects are investigated in a case study of a target
application, which uses EDA and implements another with the

same functionalities using the MVC architecture, representing

the REST. The two implementations generated were necessary

to make the comparison possible. The objective of this study is

formulated based on the GQM (Wohlin et al., 2012) model as

follows:

Analyze architectural styles

with the purpose of investigating its effects

in relation to the software modularity

from the perspective of developers

in the context of the evolution of a realistic application.
In particular, the study explores the effects of event-driven

architecture on the modularity of software during the

evolution of software through the addition of new features. In

this sense, a research question (QP) was formulated:

• QP: Does event-driven architecture promote a greater

modularization when compared to the REST architectural

style?
Parnas (1972) points out that, if the modularization of an

application is high, some benefits will be obtained, such as

greater ease of change, greater adaptability, and code

understanding. In addition, modularization can provide

module separation, allowing for parallel development,

reduced development time, and better change impact

management (Almentero et al., 2014). Parnas (1972) reinforces
that a module can be defined as a set of design decisions

independent of other modules and the interaction between

modules must be entirely through their interfaces (Parnas,

1972) — thus promoting the separation of interests and

delegating isolated functions to each module. Therefore, the

precise separation of the application’s interests leads to

modularization, allowing its use in different contexts. In
addition, modularization allows the developer to focus on one

module at a time, making it easier to understand, and then

combine them all and understand the application (Almentero

et al., 2014). Event-driven architecture (Schipor et al., 2019;

Stopford, 2018) tries to contemplate such benefits cited,

highlighting the importance of carrying out an empirical study
to verify the benefits of this new architectural style.

4.2. Metrics
Table 2 presents the metrics used to quantify the five

modularity variables, including separation of concerns (SoC),

coupling, cohesion, complexity, and size. Such metrics were
used because previous empirical studies (Figueiredo et al.,

2008; Garcia et al., 2006) have already shown their validity in

investigations on software modularity.

Separation of concerns. In this study, this set of metrics

seeks to measure the degree of modularization of the

functionalities implemented using the event-driven architectu-

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 343

re and the REST style. The SoC will use three metrics: (i)

components (or classes) based on Concern Diffusion over

components (CDC), (ii) operations (or functions) based on

Concern Diffusion over operations (CDO), and (iii) lines of code

based on the Concern Diffusion over Lines of Code (CDLOC)

(Figueiredo et al., 2008; Garcia et al., 2006). These metrics help
reveal the degree of spread and intertwining of the features

implemented in the modules of the target application. The

smaller the number of modules needed to implement a

functionality, the smaller its degree of scattering. Moreover, the

greater the number of features in each module, the greater the

degree of intertwining between them. The SoC metrics were

quantified manually (Figueiredo et al., 2008; Garcia et al., 2006)
through the manual “shading” of the code that identifies which

parts of the source code contribute to the implementation of a

certain functionality (Figueiredo et al., 2008).

Coupling. It seeks to quantify, through two metrics

Dep_Out and Dep_In, how much the elements of the design

(packages, class, and methods) are coupled. The greater the

degree of dependence between them, the more elements
tend to suffer from unwanted propagation of modifications.

Dep_In quantifies the number of classes outside a package

that depends on the classes inside that package. Dep_Out

quantifies the number of classes within a package that

depends on classes outside that package.

Complexity and cohesion. Complexity measures the
degree of connectivity between elements per package. Thus,

for its calculation, the values of the project packages were

added. Nevertheless, cohesion measures the degree to which

elements are logically related or “belong to each other”.

Consequently, the greater the connectivity between the

elements, the greater the cohesion. Like complexity, its values

are per package, in this case the values were added and
divided by the number of packages. Thus, much that both

metrics are somewhat related to size.

Size. Measure the length of the project and application

code. Size metrics span different perspectives of the size of the

application (Garcia et al., 2006). The set of metrics for size is

composed of three metrics: (I) lines of code (LOC), (II) number

of attributes (NumAttr) and (III) operations (NumOps). In
general, a larger size implies greater complexity (Garcia et al.,

2006). LOC counts the lines of code needed in each change,

disregarding blank lines or comments, NumAttr captures the

number of attributes in each change and NumOps counts the

number of operations/functions.

Table 2. Set of metrics used in the study

 (source (Garcia et al., 2006)).

Variable Metric Description

Separation

of concerns
(SoC)

Concern
Diffusion over

components
(CDC)

It counts the number of

classes whose main purpose
is to contribute to the

scenario implementation and
the number of classes that

access them.

Concern

Diffusion over

components
(CDC)

Counts the number of
methods whose purpose is to

contribute to the scenario

implementation and the
number of methods that

access them.

Concern
Diffusion over

operations
(CDO)

Counts the number of
transition points for scenario

implementation in the lines of
code. Transition points are

points in the code where

there is a "change of
concern".

Coupling

Coupling

between
components

(Dep_Out)

Number of dependencies
where the module is a client.

Coupling

between
components

(Dep_In)

Number of dependencies

where the module is a
supplier.

Cohesion
Relational
cohesion (H)

Measures the average number
of internal relationships per

class/interface. It is calculated
as the ratio of R+1 to the

number of classes and

interfaces per package.

Complexity
Number of
relationships (R)

Measures the number of
relationships between classes

and interfaces per package.

Size

Lines of code
(LOC)

It counts the lines of code
whose purpose is to

contribute to the

implementation of the
scenario.

Number of
attributes

(NumAttr)

Counts the number of

attributes whose purpose is
to contribute to the

implementation of the
scenario.

Weighted
operations per

component
(NumOps)

Counts the number of

operations whose objective is

to contribute to the
implementation of the

scenario.

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 344

4.3. Experimental process
Figure 1 presents the experimental process adopted, which is

formed by three stages, including (1) identification of the

target application, (2) implementation and data collection,

and (3) analysis of results. Each step is discussed below. It is

based on previous empirical studies reported in the current

literature (Farias et al., 2014; Farias et al., 2015; Farias, 2016).

Step 1: Identification of target application. The first step
focused on finding a target application, using the event-driven

architecture. In this sense, the application described by

Stopford (2018) was identified as the target application

(described in Section 4.5). This application was developed

using best practices, it is a robust application that uses

technologies widely spread by industry, such as Apache Kafka.

Its source code is available on Github2.
Step 2: Implementation and data collection. The

functionalities of the target application were identified and

organized in evolution scenarios (described in Section 4.6), in

such a way as to allow the implementation of a similar

application using the REST architectural style. Note that the

features of the target application are well documented
(Stopford, 2018). The set of metrics described in Section 4.2

was defined from similar works (Figueiredo et al., 2008; Garcia

et al., 2006) and OO concepts. After identifying the features

and defining the set of metrics, the application was

implemented using the Spring Boot MVC framework and

Spring Web. In the implementation, the features were

implemented in the application (Ab), resulting in a new version
(Ac). Inevitably, as they are different architectures, certain

differences and refactoring are expected to align applications

with their evolution. The second stage was completed after

the implementation of the target application using the REST

standard.

Step 3: Analysis of results. After the scenarios are

implemented, the metrics are collected. For this, we use the
SDMetrics3 tool, which provides support for the collection of

most metrics. Using as input the last version developed (Ac),

the quantitative data are obtained. From the collected

metrics, it was possible to make comparisons between the

applications, allowing us to observe their changes. Thus, to aid

the analysis, tables will be used to visually identify changes, in
addition to classifying the elements by a metric and

highlighting the elements by percentages.

Figure 1. Experimental process.

4.4. Analysis procedure
Line graphs are used to provide an overview of the data
collected in the measurement process. These graphs allow us

to analyze the impact of the event-driven architecture on the

modularization metrics used (Table 2). Each chart focuses on

the data collected on a specific metric. The X-axis specifies

evolution scenarios, while the Y-axis presents collected values

for a specific metric. To bring an analysis of data distribution,

statistical methods were used, including standard deviation,
median, and mean. In addition, the difference between the

averages was accounted for. The quantitative data analysis

will be through the metrics collected by the SDMetrics tool,

which automatically counts the metrics Dep_Out, Dep_In, H,

R, NumAttr, and NumOps. The separation of concerns metrics

(CDC, CDO, and CDLOC) was manually accounted for.

2 https://github.com/confluentinc/kafka-streams-examples/tree/6.0.0-
post/src/main/java/io/confluent/examples /streams/microservices
3https://www.sdmetrics.com/

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 345

4.5. Application
Figure 2 presents a schematic illustration of the target

application, which is an order management system composed

of several components. The target application used was

obtained from an example provided by Confluent (Stopford,

2018). Therefore, the main reasons for their choice were the

careful detailing of the application in (Stopford, 2018), the

availability of the application, and the adoption of good
implementation practices. It can be considered a complex

application due to the resources used. The architecture

discussed is EDA in conjunction with microservices, in an

implementation using the Java language. Kafka is the

middleware responsible for managing the application, such as

data storage, entity mapping, production, and consumption

of events. On the Confluent website, details of the resources
used, and the responsibilities of each component are

presented, in addition to making the source code of the

implementation available in the Github repository4.

Figure 2. Schematic illustration of the application used

(adapted from (Stopford, 2018)).

4.6. Scenarios of evolution
Table 3 presents the considered functionalities. In total, five

scenarios were identified, each containing functionalities

related to the target application. Each scenario incorporates a

new functionality from the previous version. The order service

represents the entry point, a REST interface provides the POST

and GET (Stopford, 2018) methods. When performing a POST,

it will create an event in the application, which will be
consumed by three other validation services: (I) order data

validation, (II) fraud identification, and (III) stock reservation.

The order will be validated in parallel, issuing pass or fail based

on the success of each (Stopford, 2018) validation. As the

validations occur in parallel, the result of each one is sent by

its topic, separated from the others (Stopford, 2018). Finally,

the results are aggregated into the order service where orders

are moved to the state of pass or fail, based on the result

combination (Stopford, 2017).

For the user to query any order from GET, a queryable

materialized view was created in the order service (“Orders
view” in Figure 2), using a state store in each instance of the

service, so that any request can be historically requested

(Stopford, 2018). The validations are divided into:

(1) Order data: checks the basic elements, such as quantity

and price of the order itself.

(2) Fraud identification: tracks the total value of each

customer’s orders in a one-hour window, alerting if the
limit that configures a fraud is reached.

(3) Stock reservation: checks if there are units available to

fulfill the order, if possible, will reserve the requested

quantity for the time necessary until the payment is

completed.

The extraction of features took place analyzing the target

application, because as mentioned above, it was obtained
ready-made. Thus, when reading the application description,

the main entry point was observed, responsible for receiving

requests and persisting in the database. After persisting the

request, three validations work on it to be granted or refused.

Finally, after passing on validations, an e-mail will be sent to

the customer informing them of the status of the order.
Therefore, the functionalities comprise the perceived

functionalities.

Table 3. Description of evolution scenarios.

Scenario Description Operation

C1 Order service Addition

C2 Order validation Addition

C3 Fraud identification Addition

C4 Stock reserve Addition

C5 Sending e-mail to the

customer

Addition

4.7. Implementations
The implementations were developed by one of the authors,
who works as a software developer. The author’s experience is

in traditional applications of the REST style. Therefore, for the

development of the event-driven application, qualification

through courses and tutorials was necessary. In which the

installation, launch of services, basic concepts, as well as their

main features were discussed. The versioning of

implementations was aided by Git in the GitHub service. This
made it possible to separate each implemented scenario into a

tag, a resource where we defined checkpoints on the scenarios.

 4 https://github.com/confluentinc /kafka-streams-examples/tree/6.0.0-

post/src/main/java/io/confluent/examples/streams/microservices

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 346

The implementation of the event-driven application

followed the existing code. Being added only what was

necessary to achieve the functionality goal, because of that

test, for example, were discarded. For the execution of this

application, scripts were also implemented, due to the

difficulty found in executing the services and initializing the
storage structures, however the metrics were not applied to

them. As the application follows the concept of microservices,

each functionality is separate, a fact that facilitated the

implementation. A certain pattern was noticed in most

scenarios, where it was necessary to "register" the Topic of the

functionality in a utils, create the types in Avro, and then add

the class that supports the functionality. Despite the
application being ready, there was some effort to understand

its functioning and even the application’s execution, as it was

made possible by scripts.

The implementation in the MVC architecture, which

represents the REST style, was fully implemented by the

author. To aid in the implementation, the Spring Boot MVC

framework was adopted, considering its popularity. As this is a
traditional application, a database (SQL) for storage Postgres

was used. This application was developed to perform the

same features as the other, following what a traditional

application would do and in the simplest way possible. In this

one, several differences with the event-driven architecture are

observed, such as validations, implemented in separate
classes, but they need calls to the service that receives the

requests, a behavior that seeks to be avoided when seeking

separation of concerns. Compared to the event-driven

version, less effort was perceived even if it was implemented

from scratch, perhaps this is explained by the author’s

experience and familiarity with traditional architecture.

5. Results

This section presents the results collected after the execution of

the methodology defined in Section 4. Figure 3, Figure 4 and

Figure 5 present the results obtained from the implementations.

Table 4 and Table 5 bring statistical indicators about the results,

including the standard deviation, median, mean and the
difference between the means.

5.1. Separation of concerns and coupling
Table 4 shows the results of the effects of event-driven

architecture (EDA) on the separation of concerns through the

perspective of three metrics: CDC, CDO and CDLOC. EDA

presented lower results compared to REST style, considering

the CDC and CDLOC metrics. This can be seen through the
differences between the computed means -40.74% and -

48.72%, respectively. This result indicates that fewer classes

(CDC) are affected in each evolution scenario, as the services

are independent but share auxiliary classes (utils). Smaller

numbers are also observed in the amount of interest

transitions under the lines (CDLOC). This means that EDA

promoted a better modularization of concerns considering

components and lines of code. In Figure 3, it is observed that

both metrics presented lower values for EDA. However, the

EDA presented superior results for the CDO metric, having a
difference between the means of 28.81%. The CDO median, in

turn, did not show any difference. In most scenarios more

operations (or functions) were needed to implement the

service of each scenario in the EDA. In Table 4, it is observed

that only in scenario 4, the MVC presented a higher value.

Therefore, this result influenced the CDO metric.

Table 4. Results obtained in SoC and coupling.

Variab

le
Metric Style SD

Md
n

Avg.
Differenc

e

SoC

CDC
EDA 1.72 3 3.2

-40.74%
REST 2.50 4 5.4

CDO
EDA

13.1

1
10 15.2

+28.81%

REST 9.02 10 11.8

CDLO

C

EDA 2.19 4 4
-48.71%

REST 2.56 8 7.8

Coupli

ng

Dep_O

ut

EDA 3.83 4 5.4
+237.5%

REST 0.80 1 1.6

Dep_I

n

EDA 3.83 4 5.4
+575%

REST 0.75 1 0.8

Considering the coupling variables of Table 4, it is observed that

the REST presents less coupling than the event-driven
architecture. Both Dep_out and Dep_in metrics show

differences between the computed averages of 237.50% and

575%, respectively. When analyzing Figure 4, it is clear that from

the first scenario, EDA presents higher values. In fact, not only

less coupling in REST, but also less variation in each scenario.

The best separation of concerns is in line with the feature of
microservices (Falatiuk et al., 2019; Laigner et al., 2020), where

each service is independent. This promotes greater

modularization of the application, which benefits in scenarios

where there are changes in the behavior or evolution of the

application, such as the addition of new features (Sant’Anna,

2008). Furthermore, it is beneficial to the performance of the

(Subramanian et al., 2007) project. However, service
independence requires additional structure, resulting in more

functions, attributes, and auxiliary classes. The tighter coupling in

the event-driven architecture can be explained by the need for

indispensable auxiliary classes to avoid code duplication, since

the functions serve different contexts. Without such classes, there

would be more code in the services, increasing complexity.

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 347

Figure 3. Results collected considering the CDC, CDO, CDLOC and H metrics

Figure 4. Results collected considering the metrics Dep_In, Dep_Out and R.

Observed results 1: The means of separation of concerns of

the event-driven architecture in the CDC and CDLOC metrics

showed differences of -40.74% and -48.72%, respectively, in

addition to lower values in all versions. This highlights the

better separation of concerns compared to REST. However,

the coupling means represented by the Dep_out and

Dep_in metrics show differences of +237.50% and +575%,

respectively. This shows that dependencies, both internal

and external, are greater in the event-driven architecture.

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 348

5.2. Complexity, cohesion and size
Table 5 provides the results of the effects of event-driven

architecture (EDA) in relation to complexity, cohesion, and size

across evolutionary scenarios. The results show that EDA

obtained higher results compared to REST, observing the

complexity and cohesion variables computed through the H

and R metrics, respectively. The numbers obtained show that

the differences between the computed means of the H and R
metrics were 26.48% and 572.09%, respectively. Although the

results of relational cohesion (H) have favored EDA, complexity

must be a factor to be evaluated.

Table 5. Results obtained in cohesion,

complexity and size.

Variable Metric Style SD
Md
n

Avg.
Differenc

e

Cohesio

n
H

EDA 0.04 1.20 1.20

+26.48% RES
T

0.02 0.96 0.95

Comple
xity

R

EDA 11.43 56 57.8
+572.09

%
RES

T
5.46 6 8.6

Size

LOC

EDA 116.1
7

174 233

+76.52%
RES

T
93.11 100 132

NumA
ttr

EDA 4.83 8 9.2

+70.37% RES

T
3.50 4 5.4

NumO

ps

EDA 13.50 10 15.4

+14.93% RES
T

8.73 11 13.4

Analyzing the results from the perspective of the size

variable, they indicate that the event-driven architecture
achieved higher results compared to REST. This finding was

quantified using the LOC, NumAttr, and NumOps metrics, the

differences between the means of these metrics were 76.52%,

70.37% and 14.93% respectively. On the other hand, analyzing

Figure 5, it is observed that the REST in the third scenario

presents a considerable increase in the NumOps metric.
After implementation, such results were expected, as the

number of lines and operations in the event-driven

architecture were quite high, especially in the first scenarios.

This can be explained by the fact that in REST a smaller

number of elements (classes) are needed to build the

application. On the other hand, in the event-driven architecture,

it was observed the need to create several auxiliary classes of
services (utils), as well as functions and attributes for

configurations of each service, both in its initialization and

operation. Consequently, this need is reflected in higher values

on complexity and cohesion — which are linked to increasing

application size without proper management, for example,

between the number of relationships between classes and

interfaces per package. In short, larger applications also tend to

be more complex, and other studies have also found greater

complexity in the event-driven architecture (Falatiuk et al., 2019;

Laigner et al., 2020).

5.3. Discussion
Event-driven architecture has had good results in separating

concerns. On the other hand, when analyzing the results

obtained by the set of defined metrics, it was noticed that the

REST obtained better results in general. The better separation

of concerns allows for a better modularization of functionality,
highly recommended when looking to have independent

services that avoid concatenation of modifications when they

are changed (Sant’Anna, 2008). The results obtained are

discussed considering three important characteristics of the

event-driven architecture: coordination-free by design,

database inside out and stream processing.

Coordination-free by design. Controlling data consistency
on systems where data is sent to many different services is a

challenge. This implies many copies of the same data in

different services, which can cause collisions and

inconsistencies if they were writable. A solution to this is to

adopt the single writer principle. For example, the order service

can control how an order evolves over time (Stopford, 2018).
Consequently, each functionality subscribes to the strongly

ordered flow, observing from its own temporal point of view.

This creates an important degree of decoupling in the

system while services are disconnected. Thus, by centralizing

the single writer, it creates a “tunnel” of consistency,

validations and other writers through a single stream. As one

of the characteristics of the architecture is to move data (or
events) while operating on it (Fiege et al., 2002), in Kafka

through Kafka Streams and KSQL — central points for

processing data in client programs. This composition can be

seen in the event-driven application. As the requests are

processed by the order service, they immediately trigger the

validations that occur in the order. In each validation, the

processed event does not suffer changes, because, when
passing through the validation, a new event will be created

emitting the valid or invalid status. Finally, sending e-mail to

the client consumes the new events emitted by the

validations. So, the better separation of concerns presented

by the event-driven architecture, justified by the design that

prioritizes the decoupling of services.
Database inside out. Consists of the idea that a database is

composed of a series of components — confirmation, log,

query engine, indexes and cache. Instead of putting all these

concerns together in a black box technology, like a traditional

database, we can separate using stream processing tools and

these parts exist in different places, joined by log (Stopford,

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 349

2018). The platform plays the role of confirmation log, the

Streams are used to create indexes or views, and these views

behave as a form of continuously updated cache.

Therefore, the structure described above is beneficial to

event-driven architecture, especially in (Stopford, 2018)

performance optimization. On the other hand, it also leads to
higher costs as, as observed in the event-driven application,

the available configurations contribute to the increase in

application size. For example, in the main order processing

service, there is the configuration of producer and Streams, to

support the processing of events, these configurations require

attributes and functions directly in the service class.

Compared to the REST, which does not need similar
configurations, it would notice a considerably larger

application from a size perspective thanks to several

configurations of the event-driven architecture.

Stream processing. Messaging systems have been used for a

long time to exchange events between systems, but only

recently have they started to be used in the storage layer. This

creates an interesting architectural style. Because, as
mentioned earlier, the structure of a database can be descom-

posed using stream processing (streaming) (Stopford, 2018).

Initiating streaming platforms, such as Kafka, which processes

the flow of events, store the events in log structure and trigger a

cascade of services subscribed to topics. This allows

applications and services to embed logic directly into event

flows. In addition to making available the database processing
resources in the application layer, through an API. Based on a

DSL (domain-specific language), which provides a declarative-

style interface where streams can be joined, filtered, grouped, or

aggregated by (Stopford, 2018). Also, it provides functional

styling mechanisms such as map, flat Map, transform, peek,

among others (Stopford, 2018). However, the results indicate

that data processing in event-driven architecture generates
more lines of code, attributes and functions. Taking as an

example the second, third, and fourth scenario, where the

added features focus on simple SQL queries at REST, on the

other hand, in the event-driven architecture, it requires a

considerably greater effort, between consuming the events of

some topic, applying the logic and creating an event, there are

several validation settings and more steps in the consumption
of each topic, reflected in the metrics.

Figure 5. Results collected considering LOC, NumAttr and NumOps metrics.

Observed results 2: The averages of cohesion, complexity and size favored the

REST, highlighting the metrics R, LOC and NumAttr with differences of

+572.09%, +76.52% and +70.37%, respectively. Gains above 50% were

motivated by the need for auxiliary classes and functions/attributes to enable

the functioning of each service in the event-driven architecture. On the other

hand, the average cohesion (H) favored the event-driven architecture by

26.48%, showing an increase in the average number of internal relationships

per class/interface.

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 350

5.4. Limitations
The study has some limitations that need to be considered.

Only one application was considered in the study, with only

scenarios for adding new features. Other applications were

found, however, they were not considered due to some

restrictions, such as small size, they were not open source,

they did not adopt good implementation practices, and they

do not have documentation. As argued in the study, event-
driven applications show a high complexity, which is also

present in development, due to its perceived learning curve.

This being one of the reasons why the study only explores one

application, developing one, in addition to being unfeasible,

could hinder the evaluation of the results. Such difficulty can

be understood by the great difference compared to

conventional architectures. As explored, the event-driven
architecture has no database, events are triggers and a data

flow must be built (Stopford, 2018).

6. Conclusions and Future Work

Event-driven architecture has been adopted in the industry

and some technologies have been proposed to make them
viable, such as Kafka. As an alternative to REST for the

implementation of service-oriented systems. This work

reported an initial empirical study with the purpose of

comparing the event-driven architecture and the REST

architectural style, represented by the MVC architecture —

through the perspective of separation of concerns, coupling,

cohesion, complexity and size — to through 5 scenarios for the
evolution of an application.

The event-driven architecture, represented by Kafka,

showed good results regarding the separation of concerns. On

the other hand, the other metrics did not show better results

than REST. Therefore, the application that uses the event-

driven architecture, based on microservices, presents a better

separation of concerns than the REST application. By
providing a better modularity of interest, some characteristics

can be affected. Therefore, when adopting event-driven

architecture, it is necessary to analyze these advantages and

disadvantages pointed out in this study. As future works, it is

intended to carry out: (1) increase the number of accounted

metrics, aiming to increase the perspective of analysis; (2)
consider more applications to replicate the study carried out;

and (3) collect more data to enable rigorous statistical

analysis. This work can be seen as a first step towards a more

robust agenda of experimental studies related to the effects of

event-driven architectures on the modularity of software.

Conflict of interest

The authors have no conflict of interest to declare.

Funding

This work was partially supported by the Conselho Nacional
de Desenvolvimento Científico e Tecnológico (CNPq) under

Grant 314248/2021-8.

References

Alaasam, A. B., Radchenko, G., & Tchernykh, A. (2019). Stateful

stream processing for digital twins: Microservice-based kafka

stream dsl. In 2019 International Multi-Conference on

Engineering, Computer and Information Sciences
(SIBIRCON) (pp. 0804-0809). IEEE.

https://doi.org/10.1109/SIBIRCON48586.2019.8958367

Almentero, E., do Prado, J. C. S., & Lucena, C. (2014). Towards
software modularization from requirements. In Proceedings of

the 29th Annual ACM Symposium on Applied Computing,

pages 1007–1012.

https://doi.org/10.1145/2554850.2555060

Cao, H., Yang, X., & Deng, R. (2020). Ontology-based holonic

event-driven architecture for autonomous networked

manufacturing systems. IEEE Transactions on Automation

Science and Engineering, 18(1), 205–215.

https://doi.org/10.1109/TASE.2020.3025784

Falatiuk, H., Shirokopetleva, M., & Dudar, Z. (2019).

Investigation of architecture and technology stack for e-

archive system. In 2019 IEEE International Scientific-Practical

Conference Problems of Infocommunications, Science and

Technology (PIC S&T), pages 229–235. IEEE.

https://doi.org/10.1109/PICST47496.2019.9061407

Farias, K., Garcia, A., & Lucena, C. (2014). Effects of stability on

model composition effort: an exploratory study. Software &

Systems Modeling, 13(4), 1473-1494.
https://doi.org/10.1007/s10270-012-0308-2

Farias, K., Garcia, A., Whittle, J., von Flach Garcia Chavez, C., &

Lucena, C. (2015). Evaluating the effort of composing design

models: a controlled experiment. Software & Systems
Modeling, 14(4), 1349-1365.

https://doi.org/10.1007/s10270-014-0408-2

https://doi.org/10.1109/SIBIRCON48586.2019.8958367
https://doi.org/10.1145/2554850.2555060
https://doi.org/10.1109/TASE.2020.3025784
https://doi.org/10.1109/PICST47496.2019.9061407
https://doi.org/10.1007/s10270-012-0308-2
https://doi.org/10.1007/s10270-014-0408-2

L. Lazzari, K. Farias / Journal of Applied Research and Technology 338-351

Vol. 21, No. 3, June 2023 351

Farias, K. (2016). Empirical evaluation of effort on composing

design models. arXiv preprint arXiv:1610.09012.

https://doi.org/10.48550/arXiv.1610.09012

Fertier, A., Montarnal, A., Barthe-Delanoë, A.-M., Truptil, S., &

Bénaben, F. (2020). Real-time data exploitation supported by
model-and event-driven architecture to enhance situation

awareness, application to crisis management. Enterprise

Information Systems, 14(6):769–796.

https://doi.org/10.1080/17517575.2019.1691268

Fiege, L., Mühl, G., & Gärtner, F. C. (2002). Modular event-based

systems. The Knowledge Engineering Review, 17(4). 359–388.
https://doi.org/10.1017/S0269888903000559

Fielding, R. T. (2000). Architectural styles and the design of

network-based software architectures. University of California,

Irvine.

Figueiredo, E., Cacho, N., Sant'Anna, C., Monteiro, M., Kulesza,
U., Garcia, A., ... & Dantas, F. (2008). Evolving software product

lines with aspects: an empirical study on design stability.

In Proceedings of the 30th international conference on Software

engineering (pp. 261-270).

https://doi.org/10.1145/1368088.1368124

Garcia, A., Sant'Anna, C., Figueiredo, E., Kulesza, U., Lucena, C.,

& von Staa, A. (2006). Modularizing design patterns with

aspects: a quantitative study. In Transactions on Aspect-

Oriented Software Development I (pp. 36-74).

Gardazi, S. U., & Shahid, A. A. (2009). Survey of software

architecture description and usage in software industry of
Pakistan. In 2009 international conference on emerging

technologies (pp. 395-402). IEEE.

https://doi.org/10.1109/ICET.2009.5353137

Laigner, R., Kalinowski, M., Diniz, P., Barros, L., Cassino, C.,

Lemos, M., ... & Zhou, Y. (2020). From a monolithic big data

system to a microservices event-driven architecture. In 2020
46th Euromicro Conference on Software Engineering and

Advanced Applications (SEAA) (pp. 213-220). IEEE.

https://doi.org/10.1109/SEAA51224.2020.00045

Parnas, D.L. (1972). On the Criteria to Be Used in Decomposing

Systems into Modules. In: Broy, M., Denert, E. (eds) Pioneers and
Their Contributions to Software Engineering. Springer, Berlin,

Heidelberg. https://doi.org/10.1007/978-3-642-48354-7_20

Rahmani, A. M., Babaei, Z., & Souri, A. (2021). Event-driven iot

architecture for data analysis of reliable healthcare

applications using complex event processing. Cluster

Computing, 24(2),1347–1360.

https://doi.org/10.1007/s10586-020-03189-w

Sant’Anna, C. N. (2008). On the modularity of aspect-oriented

design: A concern-driven measurement approach. Pontif.

Universidade Catol. Rio Jan. Comput. Sci. Dep. Rio Jan. PhD

Thesis.

Schipor, O. A., Vatavu, R. D., & Vanderdonckt, J. (2019). Euphoria:

A Scalable, event-driven architecture for designing interactions
across heterogeneous devices in smart

environments. Information and Software Technology, 109, 43-59.

https://doi.org/10.1016/j.infsof.2019.01.006

Stopford, B. (2018). Designing Event-Driven Systems. O’Reilly

Media, Incorporated.

https://hessar.ir/content/pdf/Designing_Event_Driven_Syste
ms.pdf

Subramanian, G. H., Jiang, J. J., & Klein, G. (2007). Software

quality and IS project performance improvements from

software development process maturity and is

implementation strategies. Journal of Systems and Software,
80(4),616–627.

https://doi.org/10.1016/j.jss.2006.06.014

Tragatschnig, S., & Zdun, U. (2015). Modeling change patterns

for impact and conflict analysis in event-driven architectures.

In 2015 IEEE 24th International Conference on Enabling

Technologies: Infrastructure for Collaborative Enterprises (pp.
44-46). IEEE.

https://doi.org/10.1109/WETICE.2015.13

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., and

Wesslén, A. (2012). Experimentation in software engineering.

Springer Science & Business Media.

Zhou, W., Li, L., Luo, M., & Chou, W. (2014). REST API design

patterns for SDN northbound API. In 2014 28th international

conference on advanced information networking and

applications workshops (pp. 358-365). IEEE.

https://doi.org/10.1109/WAINA.2014.153

https://doi.org/10.48550/arXiv.1610.09012
https://doi.org/10.1080/17517575.2019.1691268
https://doi.org/10.1017/S0269888903000559
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://www.ics.uci.edu/~fielding/pubs/dissertation/fielding_dissertation.pdf
https://doi.org/10.1145/1368088.1368124
https://users.dcc.uchile.cl/~etanter/courses/cc71p/2008/papers/DP/garcia-taosd2006.pdf
https://users.dcc.uchile.cl/~etanter/courses/cc71p/2008/papers/DP/garcia-taosd2006.pdf
https://users.dcc.uchile.cl/~etanter/courses/cc71p/2008/papers/DP/garcia-taosd2006.pdf
https://doi.org/10.1109/ICET.2009.5353137
https://doi.org/10.1109/SEAA51224.2020.00045
https://doi.org/10.1007/978-3-642-48354-7_20
https://doi.org/10.1007/s10586-020-03189-w
https://www2.dbd.puc-rio.br/pergamum/tesesabertas/0410867_08_pretextual.pdf
https://www2.dbd.puc-rio.br/pergamum/tesesabertas/0410867_08_pretextual.pdf
https://www2.dbd.puc-rio.br/pergamum/tesesabertas/0410867_08_pretextual.pdf
https://www2.dbd.puc-rio.br/pergamum/tesesabertas/0410867_08_pretextual.pdf
https://doi.org/10.1016/j.infsof.2019.01.006
https://hessar.ir/content/pdf/Designing_Event_Driven_Systems.pdf
https://hessar.ir/content/pdf/Designing_Event_Driven_Systems.pdf
https://doi.org/10.1016/j.jss.2006.06.014
https://doi.org/10.1109/WETICE.2015.13
https://link.springer.com/book/10.1007/978-3-642-29044-2
https://link.springer.com/book/10.1007/978-3-642-29044-2
https://doi.org/10.1109/WAINA.2014.153

