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Abstract: This article presents an optimal design of a two-degree-of-freedom (2-DoF) controller that 

will lead to zero asymptotic steady-state tracking error. The reference inputs are chosen from the set 

of steps, ramps, and other persistent signals used currently. The main idea is to transform the tracking 

2-DoF problem into an equivalent state-space feedback-control synthesis one. Where, an internal 

model of the reference input is introduced. Then, through the linear quadratic regulator (LQR) 

technique, the desired performance objectives are addressed by minimizing a quadratic cost function. 

Finally, the computed state-feedback optimal gains are linked to the polynomials used within the 2-

DoF formalism. The fundamental aspect of the design is that it only utilizes the measurable information 

of the plant provided by its inputs and outputs and takes advantage of efficient state-space numerical 

algorithms. The proposed method is applied to a coupled-tank system, the results achieved confirm 

the effectiveness of the approach. 

 

∗Corresponding author. 

E-mail address: pteppa@unimet.edu.ve (P. Teppa-Garran). 

Peer Review under the responsibility of Universidad Nacional Autónoma de México. 
 
http://dx.doi.org/10.1016/j.jart.2017.02.005 
1665-6423/© 2017 Universidad Nacional Autónoma de México, Instituto de Ciencias Aplicadas y Tecnología. 
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). 

https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
mailto:pteppa@unimet.edu.ve
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/
https://www.unam.mx/
https://www.icat.unam.mx/
https://www.unam.mx/


 
 

 

P. Teppa-Garran et al. / Journal of Applied Research and Technology 560-570 

 

Vol. 21, No. 4, August 2023    561 

 

1. Introduction 
 

Two fundamental problems arise in the design of control 

systems. Reference tracking and disturbance attenuation. It is 

widely known that both problems are produced by the 

corresponding closed-loop transfer functions (sensitivity and 

complementary sensitivity) (Safonov et al., 1981). While 

disturbance attenuation is exclusively a feedback problem, 

the tracking problem, which is associated with an open-loop 

property, can be solved by using a suitable precompensator. 

Therefore, the tracking problem is conveniently managed 

within the two-degree-of-freedom (2-DoF) control 

configuration. In a classical feedback control scheme, the 

control signal is obtained through the difference between the 

reference and the current output. Since there is only one input 

to the controller, this classical control structure is also called a 

one-degree-of-freedom (1-DoF) controller. Although 1-DoF 

controllers have many nice structural properties (Davison, 

1976), a compromise must be reached to solve simultaneously 

the tracking and disturbance attenuation problems. On the 

other hand, a controller has 2-DoF, when the reference signal 

and the plant output can be processed independently to 

obtain the control signal. The advantages of using a 2-DoF 

control system are well known: the closed-loop properties can 

be configured independently of the reference tracking transfer 

function (Grimble, 1994). This possibility results from the 

separation between the response to the reference signal and 

the feedback transfer function.  

Among the first contributions of the 2-DoF theory, it is worth 

mentioning (Horowitz, 1963; Vidyasagar, 1985). Since then, it 

can be found many published research results on the design of 

2-DoF controllers. Hoyle et al. (1991) and Limebeer et al. (1993) 

developed a 2-DoF extension of the ℋ∞ loop-shaping  

design method created by McFarlane and Glover (1992) to 

enhance the model-matching properties of the closed-loop. 

Shaked and De Souza (1995) worked in a game theory ℋ∞ 

strategy to solve the tracking problem of a known in advance 

(non-causal) or measured online (causal) reference signal. 

Prempain and Bergeon (1998) utilized Youla parametrization 

and defined a design method consisting in two steps. In the 

first step of the procedure, a model-matching approach is 

used to set the desired nominal tracking objectives, while a 𝜇-

synthesis technique is implemented to achieve the robust 

performance objectives in the second step. Kim and Tsao 

(2002) address the tracking of near-periodic-time-varying 

signals to propose a unified method to design simultaneously 

previewed feedforward, feedback, and repetitive control. Liu 

et al. (2007) developed a 2-DoF control scheme for decoupling 

multiple-input-multiple-output processes in the presence of 

time delays. Hanif (2013) consider an active damping 

technique by introducing a 2-DoF PID control structure in grid 

connected photovoltaic systems. Mateo and Sugimoto (2015) 

formulated a method to tune a prefilter and the feedforward 

controller of the 2-DoF configuration. Vargas et al. (2016) 

present a practical design of longitudinal stability and control 

augmentation system (SCAS) using a 2-DoF control scheme. 

Zhang and Xia (2017) used a 2-DoF control approach for non-

minimum phase systems with time delay. Ahmad (2018) 

achieves precise reference tracking performance from a 

piezoelectric positioning stage proposing a 2-DoF robust 

digital controller. Zaky et al. (2018) present a 2-DoF and 

variable structure control schemes for induction motor drives. 

Teppa-Garrán and Vásquez (2020) utilize a feedforward 

anticipation control of a desired reference signal whose 

temporal derivatives are known to conduct the control of a 

rotary flexible joint. Finally, Vavilala and Thirumavalavan 

(2021) consider the tuning of the 2-DoF FOIMC based on the 

Smith predictor.  

The problem of optimization of the 2-DoF structure has not 

received wide attention. Nevertheless, some interesting works 

can be mentioned. The initial contributions of Limebeer et al. 

(1993) and Grimble (1994), where the problem is formulated 

into a general framework. The approach of Hoover et al. (2004) 

which propose a simple single-input-single-output 2-DoF 

pole-placement design method that provides ℓ2-optimal 

tracking of a given reference signal and Vilanova (2008), where 

the problem of optimal design of the reference controller have 

been addressed by the optimization of a linear quadratic 

Gaussian type cost function. Always within the framework of 2-

DoF formulation, some applications using advanced 

optimization algorithms have been treated, but in the context 

of PID controller synthesis (Kim, 2002; 2004; Sigiura, 1996; 

Zhan et al., 2002). 

This paper deals with the problem of optimal design of a 2-

DoF controller that will lead to zero asymptotic steady-state 

tracking error. The reference inputs can include steps, ramps, 

and other persistent signals used currently. The main idea is 

to translate the tracking 2-DoF problem into a state-space- 

feedback control synthesis one (Garcia, Tarbouriech & Turner, 

2011). Where, an internal model of the reference input is 

introduced (Francis & Wonham, 1976). Then, through the LQR 

method the desired performance objectives are addressed by 

minimizing a quadratic cost function (Anderson & Moore, 

2007; Lewis & Syrmos, 1995). Finally, the state-feedback 

optimal gains are linked to the polynomials used within the 2-

DoF formalism. A fundamental aspect of the method is that it 

only utilizes the measurable information of the plant provided 

by its inputs and outputs.  

The article is organized as follows. Section 2 considers the 

problem formulation. Section 3 provides the main result of the 

work, where it is stablished a connection between the 2-DoF 

system and the state-feedback control synthesis problem. 

Finally, Section 4 shows the effectiveness of the method by 

considering its application to a coupled-tank system.  
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Notation: Capital bold typeface letters denote matrices 

and small bold typeface letters denote vectors. �̇� =

𝑑𝑎 𝑑𝑡⁄ , �̈�(𝑡) = 𝑑2𝑎 𝑑𝑡2,⁄ 𝑎(𝑖)(𝑡) = 𝑑𝑖𝑎 𝑑𝑡𝑖⁄ , ℝ is the set of 

real numbers and 𝑨𝑇 = 𝑡𝑟𝑎𝑛𝑠𝑝𝑜𝑠𝑒 𝑜𝑓 𝑨. 

 

2. Problem formulation 
 

Consider a plant described by  

 

𝐷(𝑝)𝑦(𝑡) = 𝑁(𝑝)𝑢(𝑡) (1) 

 

where 𝑦(𝑡) ∈ ℝ is the plant output and 𝑢(𝑡) ∈ ℝ the plant 

input. 𝑁(𝑝) and 𝐷(𝑝) are polynomials and 𝑝 is equal to the 

time differential operator 𝑑 𝑑𝑡⁄  or the Laplace complex 

variable 𝑠. Polynomials 𝐷(𝑝) and 𝑁(𝑝) are defined by 

 

𝐷(𝑝) = 𝑝𝑛 +∑ 𝑎𝑖𝑝
𝑖

𝑛−1

𝑖=0
, 𝑁(𝑝) =∑ 𝑏𝑖𝑝

𝑖
𝑚

𝑖=0
 (2) 

 
with 𝑎𝑖 ∈ ℝ and 𝑏𝑗 ∈ ℝ for all 𝑖 = 0,… , 𝑛 − 1 and 𝑗 =

0,… ,𝑚. The order of the system is defined as the degree of 

𝐷(𝑝). We also suppose that the system is controllable. In this 

case, polynomials 𝐷(𝑝) and 𝑁(𝑝), must be coprime (Antsaklis 

& Michel, 2006). 

A general 2-DoF controller (Landeau & Gianluca, 2006) can 

be described by 

 

𝐿(𝑠)𝑢(𝑠) = 𝑇(𝑠)𝑦𝑟(𝑠) − 𝑅(𝑠)𝑦(𝑠) (3) 

 

where 𝑦𝑟(𝑡) ∈ ℝ is the input reference and the 

polynomials 𝐿(𝑠), 𝑇(𝑠) and 𝑅(𝑠) are written as 

 

𝐿(𝑠) =∑𝑙𝑖𝑠
𝑖

𝑛𝐿

𝑖=0

 

𝑇(𝑠) =∑𝑡𝑖𝑠
𝑖

𝑛𝑇

𝑖=0

 

𝑅(𝑠) =∑𝑟𝑖𝑠
𝑖

𝑛𝑅

𝑖=0

 

  

(4) 

 

the controller can be thought as a combination of a 

feedback having the transfer function 𝐺𝑓𝑏(𝑠) =

𝑅(𝑠) 𝐿(𝑠)⁄   and a feedforward with transfer 

function 𝐺𝑓𝑓(𝑠) = 𝑇(𝑠) 𝐿(𝑠)⁄ . 

A block diagram of the control system is shown in Fig. 1 and 

an implementation of the controller that highlights the 

polynomials in (4) is included in Fig. 2.  

 

 
 

Figure 1. General 2-DoF control system structure. 
 

The general problem under study can be formulated as 

follows: 

Problem 1: Given the plant (1), find polynomials 𝐿(𝑠), 𝑇(𝑠) 

and 𝑅(𝑠) in (3) to compute the control input 𝑢(𝑡) so that the 

controlled output 𝑦(𝑡) tracks asymptotically a predefined 

reference input 𝑦𝑟(𝑡) in the 2-DoF control system of Fig. 2. 

In the next section, the preceding tracking problem will be 

solved within a state-space formulation using an optimal LQR 

approach. 

 

 
 

Figure 2. Polynomials in 2-DoF control system. 
 

3. Proposed method 
 

In this section, we consider the problem of designing a 2-DoF 

controller that provides asymptotic tracking of a predefined 

reference input with zero steady-state error. The reference 

inputs include steps, ramps and other persistent signals 

currently used. The main idea is to translate the tracking 2-DoF 

problem into a state-space- feedback control synthesis one. 

 

3.1. Plant and state-space model connection 
Using the input – output information of the plant, it is defined 

the state vector 

 

𝒙(𝑡) =

[
 
 
 
 
 

𝑦(𝑡)
⋮

𝑦(𝑛−1)(𝑡)
𝑢(𝑡)
⋮

𝑢(𝑛𝑢−1)(𝑡)]
 
 
 
 
 

∈ ℝ𝑁 (𝑁 = 𝑛 + 𝑛𝑢) 

 

Associated with system (1), we define the following state-

space system model: 
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�̇�(𝑡) = 𝑨𝒙(𝑡) + 𝑩𝑢(𝑛𝑢)(𝑡) 

= [
𝑨𝟏𝟏 𝑨𝟏𝟐
0 𝑨𝟐𝟐

] 𝒙(𝑡) + [
𝟎
1
] 𝑢(𝑛𝑢)(𝑡), 𝑛𝑢 ≥ 𝑚 

 
𝑦(𝑡) = 𝑪𝒙(𝑡) = [1 𝟎]𝑥(𝑡) 

 

(5) 

the partitioned matrices 𝑨𝟏𝟏, 𝑨𝟏𝟐 and 𝑨𝟐𝟐 are defined as 

 

𝑨𝟏𝟏 =

[
 
 
 
 
0 1 0 0 … 0
0 0 1 0 … 0
⋮ ⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 0 … 1
−𝑎0 −𝑎1 −𝑎2 −𝑎3 … −𝑎𝑛−1]

 
 
 
 

 

 

𝑨𝟏𝟐 =

[
 
 
 
 
0 … 0 0 … 0
0 … 0 0 … 0
⋮ … ⋮ ⋮ … ⋮
0 … 0 0 … 0
𝑏0 … 𝑏𝑚 0 … 0]

 
 
 
 

 

 

𝑨𝟐𝟐 =

[
 
 
 
 
0 1 0 … 0
0 0 1 … 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 … 1
0 0 0 … 0]

 
 
 
 

 

 

see the appendix for an example of the connection 

between Equations (1) and (5). The only condition on 𝑛𝑢 is 

𝑛𝑢 ≥ 𝑚. From a practical point of view, some care must be 

taken to obtain proper and then realizable compensators. One 

condition which ensures that proper compensator will be 

obtained is 𝑛𝑐 ≥ 𝑛 − 1 which corresponds to the minimal 

order observer in the case of a single output system (Antsaklis 

& Michel, 2006). 

 

3.2. Controllability 
For this work, it is important to assure the controllability of the 

equivalent state-space model. 

Theorem 1: If System (1) is controllable, then System (5) is 

controllable, if and only if all the roots of polynomial 𝑁(𝑠)  in 

(2) are different of zero. 

Proof: A step-by-step procedure shows that the transfer 

function of System (5) gives 𝐺(𝑠) = 𝑁(𝑠) 𝑠𝑛𝑢𝐷(𝑠)⁄ .  If System 

(1) is controllable, polynomials 𝑁(𝑠) and 𝐷(𝑠) are coprime. 

Then, if all the roots of 𝑁(𝑠) are different of zero, it follows that 

𝑁 (𝑠) and 𝑠𝑛𝑢𝐷(𝑠) are coprime implying the controllability of 

System (5) and completing the proof. 

 

3.3. Optimal tracking of a step reference 
A fundamental result of the control theory is that zero-state 

tracking errors are achieved by considering in the control 

policy a suitable model of the dynamic structure of the 

reference signal (Francis & Wonham, 1976). Let the tracking 

error 𝑒(𝑡)  be equal to 

 

𝑒(𝑡) = 𝑦𝑟(𝑡) − 𝑦(𝑡) (6) 

 

taking the derivative of (6) and using the output equation 

of the state-space Model (5) yields 

 

�̇�(𝑡) = 0 − �̇�(𝑡) = −𝑪�̇�(𝑡) (7) 

 

now, taking the derivative of the state Equation (5) gives 

 

�̈�(𝑡) = 𝑨�̇�(𝑡) + 𝑩𝑢(𝑛𝑢+1)(𝑡) (8) 

 

Equations (7) and (8) can be combined as 

 

�̇�(𝑡) = 𝑨𝒂𝒛(𝑡) + 𝑩𝑎𝑢0(𝑡) (9) 

 

where the augmented state vector is 𝒛(𝒕) =
[𝒆(𝒕) �̇�(𝒕)]𝑻 and the input is taken as 𝒖𝟎(𝒕) = 𝒖

(𝒏𝒖+𝟏)(𝒕) 

which results in the following matrices 𝑨𝒂 and 𝑩𝒂  

 

𝑨𝒂 = [
0 −𝑪
0 𝑨

] , 𝑩𝒂 = [
0
𝑩
] 

 

to have a LQR formulation of the tracking problem, the 

following quadratic cost is considered 

 

𝐽 = ∫ [𝒛(𝑡)𝑇𝑸𝒛(𝑡) + 𝜌𝑢0(𝑡)
2]

∞

0

𝑑𝑡 (10) 

 

where 𝑸 is a positive semi-definite matrix which has an 

impact on the closed-loop transient response and parameter 

𝜌 > 0 can be used to tune the amplitude of the control signal. 

It is well known (Anderson & Moore, 2007; Lewis & Syrmos, 

1995) that the state feedback control 

 

𝑢0(𝑡) = −𝑲𝒛(𝑡) (11) 

 

minimizes (10) and stabilizes System (9) with the vector 𝑲 

equal to 

 

𝑲 = −𝜌−1𝑩𝒂
𝑇𝑷 (12) 

 

here 𝑷 is the symmetric positive definite solution of the 

continuous algebraic Riccati equation given by 

 

𝑨𝒂
𝑇𝑷+ 𝑷𝑨𝒂 − 𝜌

−1𝑷𝑩𝒂𝑩𝒂
𝑇𝑷 + 𝑸 = 0 (13) 

 

since, it can be easily verified that the System (9) with 

matrices 𝑨,𝑩 and 𝑪 from (5) is controllable. We can find 

constant 𝐾1 and vector gain 𝑲𝟐 in (11) (here vector 𝑲 has been 

partitioned according to the dimensions of the components of 

vector 𝒛) such that the system (9) is stable, and the quadratic 
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cost (10) is minimized. After performing time-integration in 

(11), the control signal 𝑢(𝑛𝑢)(𝑡) in (5) yields 

 

𝑢(𝑛𝑢)(𝑡) = −𝐾1∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 − 𝑲𝟐𝒙(𝑡) (14) 

 

next, Equation (14) is developed to find the relation 

between the gains 𝐾1 and 𝑲𝟐 with the polynomials 𝐿(𝑠), 𝑇(𝑠) 

and 𝑅(𝑠) in (3). Using the state-vector 𝒙(𝑡) from (5) gives 

 

𝑢(𝑛𝑢)(𝑡) = −𝐾1∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 − 𝑲𝟐

[
 
 
 
 
 

𝑦(𝑡)
⋮

𝑦(𝑛−1)(𝑡)
𝑢(𝑡)
⋮

𝑢(𝑛𝑢−1)(𝑡)]
 
 
 
 
 

 

 

the vector gain 𝐾2 is partitioned as [𝑲𝟐𝒚 𝑲𝟐𝒖] 

 

𝑢(𝑛𝑢) = −𝐾1∫ 𝑒(𝜏)
𝑡

0

𝑑𝜏 − [𝑟0 … 𝑟𝑛−1⏟        
𝑲𝟐𝒚

] [
𝑦(𝑡)
⋮

𝑦(𝑛−1)(𝑡)
] 

 

−[𝑙0 … 𝑙𝑛𝑢−1⏟        
𝑲𝟐𝒖

] [
𝑢(𝑡)
⋮

𝑢(𝑛𝑢−1)(𝑡)
] 

 

taking the Laplace transform of the above equation yields 

the 2-DoF controller defined in (3), where the 

polynomials 𝐿(𝑠), 𝑇(𝑠) and 𝑅(𝑠) can be identified as 

 
𝐿(𝑠) = 𝑙0 + 𝑙1𝑠 +⋯+ 𝑙𝑛𝑢−1 + 𝑠

𝑛𝑢  

 
𝑇(𝑠) = −𝐾1 𝑠⁄  

 
𝑅(𝑠) = −𝐾1 𝑠⁄ + 𝑟0 + 𝑟1𝑠 +⋯+ 𝑟𝑛−1𝑠

𝑛−1 

(15) 

 

these results are summarized in the following theorem. 

 

Theorem 2: Given the Plant (1), the control signal 𝑢(𝑡) in 

(3) for the 2-DoF control system of Fig. 2 can be computed 

through the polynomials (15) to provide asymptotic tracking 

for any step reference input 𝑦𝑟(𝑡) and minimization of the 

quadratic cost (10). 

 

3.4. Optimal tracking of a ramp reference 
It is easy to show that for a ramp reference input 𝑦𝑟(𝑡), the 

augmented state vector in (9) takes the form 

 
𝒛(𝑡) = [𝑒(𝑡) �̇�(𝑡) �̈�(𝑡)]𝑇  

 

and the control signal is 𝑢0(𝑡) = 𝑢
(𝑛𝑢+2)(𝑡). Resulting the 

matrices 𝑨𝒂 and 𝑩𝒂  

𝑨𝒂 = [
0 1 0
0 0 −𝑪
0 0 𝑨

] , 𝑩𝒂 = [
0
0
𝑩
] 

 

after taking the integration two times in the control signal  

𝑢0(𝑡) yields 

 

𝑢(𝑛𝑢)(𝑡) = −𝐾1∬ 𝑒(𝜏)
𝑡

0

𝑑𝑡 − 𝐾2∫ 𝑒(𝜏)
𝑡

0

𝑑𝑡

− 𝑲𝟑𝑥(𝑡) 

(16) 

 

the gain vector 𝑲𝟑 is partitioned as [𝑲𝟑𝒚 𝑲𝟑𝒖] to obtain 

 

𝑢(𝑛𝑢)(𝑡) = −𝐾1∬ 𝑒(𝜏)
𝑡

0

𝑑𝑡 − 𝐾2∫ 𝑒(𝜏)
𝑡

0

𝑑𝑡 

 

−[𝑟0 … 𝑟𝑛−1⏟        
𝑲𝟑𝒚

] [
𝑦(𝑡)
⋮

𝑦(𝑛−1)(𝑡)
]

− [𝑙0 … 𝑙𝑛𝑢−1⏟        
𝑲𝟑𝒖

] [
𝑢(𝑡)
⋮

𝑢(𝑛𝑢−1)(𝑡)
] 

 

after applying the Laplace transform to the above 

equation, the polynomials 𝐿(𝑠), 𝑇(𝑠) and 𝑅(𝑠) of the 2-DoF 

structure of Fig. 2 are identified as 

 
𝐿(𝑠) = 𝑙0 + 𝑙1𝑠 +⋯+ 𝑙𝑛𝑢−1 + 𝑠

𝑛𝑢  

𝑇(𝑠) = −𝐾1 𝑠
2⁄ −𝐾2 𝑠⁄  

𝑅(𝑠) = −𝐾1 𝑠
2⁄ −𝐾2 𝑠⁄ + 𝑟0 + 𝑟1𝑠 + ⋯
+ 𝑟𝑛−1𝑠

𝑛−1 

(17) 

 

the internal model principle is easily extended to other 

reference inputs by following the same general procedure 

outlined for the step and ramp inputs. 

 

4. Results 
 

In this section, the proposed method is applied to a coupled-

tank system. 

 

4.1. Coupled tank system 
The coupled tank system is given in Fig. 3. The setup 

experiment also includes a 1.3 MHz Intel Pentium 4 computer 

and interface to LabVIEW via the data acquisition card of 

national instrument DAQ-USB-6008. It consists of 8 inputs and 

2 analog outputs and 12 digital input/output ports. The 

sampling period was set to a value of 50 ms. The apparatus is 

used in the control laboratory at the Simón Bolívar University 

in Venezuela. It comprises a single pump with two tanks. Each 

tank is instrumented with a pressure sensor to measure the 

water level. The pump drives the water from the bottom basin 

up to the top of the system. Depending on how the outflow 
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valves are configured, the water then flows to the top tank, 

bottom tank, or both. One configuration is shown in Fig. 4, 

where the output of the pump is connected to the first tank. 

The nonlinear state space model (Apkarian, 2013; Grygiel, 2016) 

is given in (18), here the state vector is equal to the tank’s levels, 

the control signal corresponds to the input voltage applied to 

the pump and the output is selected as the second tank level. 

 

�̇�(𝑡) =

[
 
 
 
−𝐶1
𝐴1

√𝑥1(𝑡) 0

𝐶1
𝐴2
√𝑥1(𝑡)

−𝐶2
𝐴2

√𝑥2(𝑡)]
 
 
 

𝒙(𝑡)

+ [
𝐾𝑝 𝐴1⁄

0
] 𝑢(𝑡) 

 
𝑦(𝑡) = [0 1]𝒙(𝑡) 

(18) 

 

With 𝐶1 = 𝐴𝑑1√2𝑔, 𝐶2 = 𝐴𝑑2√2𝑔, 𝐴1 and 𝐴2 denote the 

cross-sectional area of the tanks 1 and 2, respectively. 𝐴𝑑1, 𝐴𝑑2 

give the cross-sectional areas of the corresponding orifices, 𝑔 

is the gravitational constant on Earth and 𝐾𝑝 is the pump flow 

constant. The nonlinear model is linearizing in the operating 

point [�̃�1, �̃�2]
𝑇resulting in the equations 

 

�̇� =

[
 
 
 
 
−𝐶1

2𝐴1√�̃�1
0

𝐶1

2𝐴2√�̃�1

−𝐶2

2𝐴2√�̃�2]
 
 
 
 

𝒙 + [
𝐾𝑝 𝐴1⁄

0
] 𝑢 

 
𝑦 = [0 1]𝒙 

(19) 

 

the description and numerical values of the physical 

parameters for the tank system are given in Table 1. 

 

 
 

Figure 3. Coupled tank system. 

 
 

Figure 4. Standard configuration  

of the coupled tank system. 

 

By employing the numerical values from Table 1. It is 

possible to perform the following calculations 

 
𝐴1 = 𝐴2 = 𝜋(4.445 2⁄ )2 = 15.53 cm2 
𝐴𝑑1 =  𝜋(0.635 2⁄ )2 = 0.317 cm2 
𝐴𝑑2 =  𝜋(0.476 2⁄ )2 = 0.178 cm2 
�̃�1 = �̃�2 = 15 cm 

 

replacing the previous values in (19) gives the linear model 

differential equation of the coupled tank system as 

 
𝑑2

𝑑𝑡2
𝑦(𝑡) + 0.18

𝑑

𝑑𝑡
𝑦(𝑡) + 0.008𝑦(𝑡)

= 0.03𝑢(𝑡) 
(20) 

 
Table 1. Physical parameters of the coupled tank system. 

 
Description Value Unit 

Pump flow constant 4 cm3/s/V 

Out 1 Orifice Diameter 0.635 cm 

Out 2 Orifice Diameter 0.476 cm 

Tanks Diameter 4.445 cm 

Tanks Height 30 cm 

Gravitational constant on 

Earth 
981 cm s2⁄  

Maximum flow 100 cm3 s⁄  

Pump peak voltage 22 V 

 

4.2. Two-degree-of freedom control system design for 

tracking a step reference input 
Defining the state vector as 𝑥(𝑡) =
[𝑦(𝑡) �̇�(𝑡) 𝑢(𝑡) �̇�(𝑡)]𝑇  in (5), the coupled tank system 

model (20) takes the form 
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�̇� = [

0 1 0 0
−0.008 −0.18 0.03 0
0 0 0 1
0 0 0 0

] 𝑥 + [

0
0
0
1

] �̈� 

 
𝑦 = [1 0 0 0]𝑥 

(21) 

 

here, we have 𝑛 = 2 and it is fixed 𝑛𝑢 = 2. For a step 

reference input, the augmented Model (9) has matrices 

 

𝑨𝒂 =

[
 
 
 
 
0 −1 0 0 0
0 0 1 0 0
0 −0.008 −0.18 0.03 0
0 0 0 0 1
0 0 0 0 0]

 
 
 
 

 

 
𝑩𝒂 = [0 0 0 0 1]𝑇  

(22) 

 

using 𝑸 = 𝑰𝟓 and 𝜌 = 1 in the quadratic cost (10) 

produces the gain 𝑲 = [𝐾1 𝑲𝟐] in (14) as 

 

𝑲 = [
−1⏟
𝐾1

7.78⏟
𝑟0

21.57⏟  
𝑟1

1.90⏟
𝑙0

2.19⏟
𝑙1
] 

 

Remark 1: Gain 𝑲 has been computed using instruction 

𝑙𝑞𝑟 of MATLAB. 

From vector 𝑲, it is possible to recovery the polynomials 

𝐿(𝑠), 𝑇(𝑠) and 𝑅(𝑠) for the 2-DoF control structure. This 

appears in Fig. 5 for the coupled tank system.  

 
𝐿(𝑠) = 𝑙0 + 𝑙1𝑠 + 𝑙2𝑠

2 = 1.90 + 2.19𝑠 + 𝑠2 
 

𝑇(𝑠) = −𝐾1 𝑠⁄ = 1 𝑠⁄  
 
𝑅(𝑠) = −𝐾1 𝑠⁄ + 𝑟0 + 𝑟1𝑠 = 1 𝑠⁄ + 7.78 + 21.57𝑠 

 

 
 

Figure 5. 2-DoF control structure for the  

coupled tank system. 

 

Figure 6 exhibits the tracking ability of the 2-DoF control 

system structure. Three step changes are considered, and the 

controller always reacts satisfactorily. Figure 7 shows  the pump 

 

 

 

voltage control signal, which values are always within the 

voltage technological limits. 

 

 
 

Figure 6. Second tank closed-loop liquid level response of the 2-DoF 

control system for the tracking problem of a step reference input. 

 

4.3. Disturbance rejection 
The disturbance attenuation of the design is now studied 

through the following experiment. The system starts in the 

standard configuration of Fig. 2, but at 𝑡 = 100 s switches to 

that of Fig. 8, where the pump output feeds both Tank 1 and 

Tank 2. At 𝑡 = 200 s, it returns to the initial interconnection of 

Fig. 2. This experiment allows to model a trapezoidal 

perturbation that operates in the interval [100;  200] s, 

causing a decrease in the inlet flow to Tank 1 and the 

appearance of a direct flow in Tank 2.  

Figure 9 allows appreciating the adequate disturbance 

rejection achieved with the design method. At the instants of 

time, where the trapezoidal disturbance starts and ends, the 

2-DoF controller reacts by returning the controlled output to 

the reference level. Figure 10 allows watching the control 

signal evolving within the limits of the tank pump. 

 

 
 

Figure 7. Control signal for step reference input tracking. 
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Figure 8. The connection scheme of the coupled 

 tanks system to create a disturbance 

 that decrease the inlet to Tank 1. 

 

4.4. Two-degree-of freedom control system design for 

tracking a ramp reference input 
 

For a ramp reference input, the augmented Model (9) has 

matrices 

 

𝑨𝒂 =

[
 
 
 
 
 
0 1 0 0 0 0
0 0 −1 0 0 0
0 0 0 1 0 0
0 0 −0.008 −0.188 0.03 0
0 0 0 0 0 1
0 0 0 0 0 0]

 
 
 
 
 

 

 
𝑩𝒂 = [0 0 0 0 0 1]𝑇  

(23) 

 

using 𝑸 = 𝑰𝟔 and 𝜌 = 1 in the quadratic cost (10) 

produces the gain 𝑲 = [𝐾1 𝐾2 𝑲𝟑] in (16) as 

 

𝑲 = [
−𝟏⏟
𝑲𝟏

−𝟖. 𝟎𝟓⏟    
𝑲𝟐

𝟑𝟏. 𝟎𝟗⏟  
𝒓𝟎

𝟓𝟖. 𝟓𝟓⏟  
𝒓𝟏

𝟑. 𝟎𝟐⏟  
𝒍𝟎

𝟐. 𝟔𝟓⏟  
𝒍𝟏
] 

 

the polynomials 𝐿(𝑠), 𝑇(𝑠) and 𝑅(𝑠) are identified as 

 
𝐿(𝑠) = 𝑙0 + 𝑙1𝑠 + 𝑠

2 = 3.02 + 2.65𝑠 
 

𝑇(𝑠) = −𝐾1 𝑠
2⁄ −𝐾2 𝑠⁄ =

1

𝑠2
+
8.05

𝑠
 

 
𝑅(𝑠) = −𝐾1 𝑠

2⁄ −𝐾2 𝑠⁄ + 𝑟0 + 𝑟1𝑠

=
1

𝑠2
+
8.05

𝑠
+ 31.09 + 58.55𝑠 

 

 
 

Figure 9. Second tank closed-loop liquid level response 

 for disturbance rejection. 

 

The reference input applied to the coupled tank system is 

shown in Fig. 11, here a combination of ramps with different 

slopes and step changes are considering. The comparison 

between the reference input and the controlled output is 

displayed in Fig. 12, while the evolution of the control signal is 

found in Fig. 13. 
 

 
 

Figure 10. Coupled-tank-system control signal for trapezoidal 

disturbance rejection. 

 

 
 

Figure 11. Ramp reference input to validate 

 the 2- DoF controller design. 
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Figure 12. Second tank closed-loop liquid level response  

for ramp reference tracking. 

 

 
 

Figure 13. Coupled-tank-system control signal  

for ramp reference tracking. 

 

Conclusions 
 

In this work, it has been proposed a method to design an 

optimal 2-DoF control system that provides zero asymptotic 

steady-state tracking error to a predefined reference input. 

The reference inputs include steps, ramps, and other 

persistent signals used currently. The plant is described by an 

input-output model and then it is translated into an 

equivalent state-space model which state vector depends 

exclusively on the measurable information of the original 

system. It is established that the controllability of the state 

space model implies the controllability of the original system. 

This allows using the efficient machinery of state-feedback-

controller-synthesis and then, connect the results of the state-

space synthesis with the polynomials of the 2-DoF controller. 

The internal model principle is employed to augment the 

equivalent state-space model depending on the reference 

input considered.  
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Appendix  
 

It is developed as an example to show the connection between 

Equations (1) and (5). Let be a system described by Equation (1) as 

 

𝑎0𝑦(𝑡) + 𝑎1�̇�(𝑡) + 𝑎2�̈�(𝑡) + 𝑎3𝑦(𝑡) + 𝑎4𝑦
(4)(𝑡)

+ 𝑎5𝑦
(5)(𝑡) + 𝑦(6)(𝑡)

= 𝑏0𝑢(𝑡) + 𝑏1�̇�(𝑡) + 𝑏2�̈�(𝑡) 
 

choosing 𝑛𝑢 = 4 ≥ 2 = 𝑚. The state vector in (5) is given by 
𝒙 = [𝑦 �̇� �̈� 𝑦 𝑦(4) 𝑦(5) 𝑢 �̇� �̈� �⃛�]𝑇  
therefore 

 
𝑥1 = 𝑦
𝑥2 = �̇�
𝑥3 = �̈�
𝑥4 = 𝑦

𝑥5 = 𝑦
(4)

 

𝑥6 = 𝑦
(5)

𝑥7 = 𝑢
𝑥8 = �̇�
𝑥9 = �̈�
𝑥10 = �⃛�

 

 

taking the derivative of the above equations yields  

 
�̇�1 = 𝑥2
�̇�2 = 𝑥3
�̇�3 = 𝑥4
�̇�4 = 𝑥5
�̇�5 = 𝑥6

�̇�6 = 𝑦
(6) = −𝑎0𝑥1 − 𝑎1𝑥2 − 𝑎2𝑥3 − 𝑎3𝑥4 − 𝑎5𝑥6

+𝑏0𝑥7 + 𝑏1𝑥8 + 𝑏2𝑥9
�̇�7 = 𝑥8
�̇�8 = 𝑥9
�̇�9 = 𝑥10
�̇�10 = 𝑢

(4)

 

 

which can be written in compact form as 

 

 
 
where it is simple to identify the matrices 𝑨𝟏𝟏, 𝑨𝟏𝟐, 𝑨𝟐𝟐, 𝑩 and 

𝑪 of Equation (5). 

 

 

 

 

 

 

 

[
 
 
 
 
 
 
 
 
 
 
�̇�1

�̇�2

�̇�3

�̇�4

�̇�5

�̇�6

�̇�7

�̇�8

�̇�9

�̇�10]
 
 
 
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

0 1 0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
−𝑎0 −𝑎1 −𝑎2 −𝑎3 −𝑎4 −𝑎5 𝑏0 𝑏0 𝑏2 0

0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0]

 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
 
 
𝑥1
𝑥2
𝑥3
𝑥4
𝑥5
𝑥6
𝑥7
𝑥8
𝑥9
𝑥10]

 
 
 
 
 
 
 
 
 

+

[
 
 
 
 
 
 
 
 
 
0
0
0
0
0
0
0
0
0
1]
 
 
 
 
 
 
 
 
 

𝑢(4) 
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