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Abstract: This paper offers a novel hybrid control approach for solving the formation problem for a 
group of cooperative quadrotors unmanned aerial vehicles (UAVs). Two-loop controller layout 
techniques are presented: one is a backstepping-based PID controller as a higher-controller in 
external-loop to manage the proportional position orders and create body-axis rate orders for the 
internal loop. Second, it is an adaptive neuro fuzzy inference system (ANFIS). Controller acts as a lower-
controller in the internal-loop to generate desired angular rotations for every quadrotor, separately. 
The introduced hybrid controller is applied to overcome the formation aviation downside that keeps 
track of the leader-follower approach. The main contribution in this work lays in solving the formation 
problem for a team of cooperative quadrotors through hybrid backstepping and ANFIS controller in a 
free and loaded obstacle environment. A complete model of six-degree of freedom for a group of 
cooperative UAVs is used in the MATLAB Simulink to perform various simulations to validate the hybrid 
proposed controller. Simulation results for a team of cooperative UAVs show the success of the 
proposed approach in solving the formation configuration problem for the UAV team members. 
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1. Introduction 
 

Unmanned air vehicle (UAV) which is further known as 
unmanned aircraft system (UAS) has reached a unique grades 
of evolution in military and civilian implementations (Ashry, 
2019; Hou et al., 2017). UAVs are capable of executing hazard 
missions with zero risk for human pilots (Madani & Benallegue, 
2006) and distinguished with their ease of deployment, high-
motility, and low maintenance value (Shakhatreh et al., 2018). 
These characteristics open the door to researchers for new 
ranges in aerospace fields, where it allows using UAS in several 
assignments like forest meteorology (Gallay et al., 2016), 
environmental observance (Alfeo et al., 2018), temperature 
variation (Liu et al., 2018), ice rivers dynamics (Ryan et al., 2017), 
volcanic activities (Mori et al., 2016; Nakano et al., 2014), 
atmospheric sampling (Greatwood et al., 2017; Techy et al., 
2010), border inspection patrol (Gupte et al., 2012; Ghazbi et al., 
2016), traffic regulation (Elloumi et al., 2018), discrimination 
and surveillance vehicles (Finn & Wright, 2012; Li et al., 2008), 
seeking-and-relief operations (Shakernia et al., 1999).  

UAVs are classified into different types according to their 
structure, one of the most demanded UAV structure nowadays 
is the rotor vertical take-off and landing (VTOL) craft referred to 
as quadrotor (Ghazbi et al., 2016). It can be sorted as a rotating 
wing VTOL airliner due to its ability for vertical takeoff and 
landing, flight forward, and hover at a desired location 
(Martinez, 2007). Compared with other types of UAVs, and by its 
singular features, quadrotor took the advantage to print its 
distinctive stamp in aircraft systems (Raymer, 2006; Zhang et al., 
2014). Quadrotor is characterized by its ease of design, control 
simplicity, high maneuverability, small size, convenient payload 
capacity, silent operations, and high maneuver elasticity (Gupte 
et al., 2012; Kivrak, 2006; Li et al., 2015). These attributes enable 
using quadrotors in vital applications such as seeking-and-relief 
tasks in difficult and dangerous areas beside rapid intervention 
assignments (Gharibi et al., 2016; Ghazbi et al., 2016). The 
researchers were motivated to develop quadrotors control 
systems with the attraction of its simplicity. The simple shape of 
four mounted rotors symmetrically on equal perpendicular axis 
allow the designers to control quadrotor by adjusting the speed 
of each rotor (Ghazbi et al., 2016; Rahman et al., 2016). Both 
attitude channels and linear velocity can be controlled through 
rotor speed (Bouabdallah & Siegwart, 2007). This control 
approach is successfully applied in utilizing small quadrotors worked 
using electric motors. In this case, the mechanical complexity of the 
rotor is decreased (Özbek et al., 2015), and different control 
techniques can be applied on the electric motors for semi-
autonomous and full autonomous flight (Zulu & John, 2016).  

Due to modern tasks complexity and expansion nature of 
most targeted fields, the researchers start to use cooperative 
multiple quadrotors in performing most of the new missions.  

This is known as swarm system (Jia et al., 2018). The swarm 
system is inspired initially by observing biological 
phenomena. Observation results confirmed the fact that 
competence and performance can be enhanced, if biological 
creatures work together in a group (Zhu et al., 2016). Multiple 
quadrotor swarm VTOL systems consist of at least couple of 
simple autonomous quadrotors working together to 
accomplish specific demanded mission (Ekawati et al., 2016). 
This swarm of multiple cooperative quadrotors can work 
composing a certain geometric shape called formation (Wu et 
al., 2017; Yang, Ji  et al., 2017). The formation architectures are 
divide into a pre-designed formation and adaptively 
architectures (Oh et al., 2017). According to the type of the 
formation, the cooperation between the team members is 
realized depending on the behavior of each quadrotor which 
takes into its consideration the behavior of the other group 
members in both free and in obstacle-loaded air domain 
(Farinelli et al., 2004). This interaction, communication, and 
exchange information are essential to achieve an overall 
group operation (Zhang & Mehrjerdi, 2013). 

Swarming algorithms were inspired by the natural 
phenomena of animal cooperative aggregate motions 
(Reynolds, 1987).  

Swarming or grouping behaviors can be openly seen in 
droves of birds, colonies of ants, schools of fish, and flocks of 
animals (Okubo, 1986; Parrish et al., 2002). Swarming becomes 
a field of interest for the researchers in the field of cooperative 
UAVs (Ashry et al., 2008). Swarming algorithms are varied 
between classical algorithms and intelligence algorithms 
(Yang, Wang et al., 2017). For instant, simple classical 
intelligence swarming algorithms were used to solve the 
swarming problem in affected by the behavior of ants where 
an optimized solution was introduced to solve the swarming 
problem (Colorni et al., 1991; Eberhart & Kennedy, 1995).  

In the last decade, several advanced intelligent swarming 
approaches were presented to tackle the swarming problem 
(Abbass, 2001; Eusuff & Lansey, 2003; Karaboga, 2005; Pan, 
2011; Sun et al., 2014; Wu et al., 2013; Yang, 2010a; 2010b; 2012; 
Yang & Deb, 2009). Several control techniques were used to 
solve the swarming problem for a cooperative UAVs team. One 
of the new valuable control approaches in the field of UAVs is 
the combination of backstepping and ANFIS controllers. This 
combination has been executed in the control of numerous 
sorts of non-linear systems. In (Khari et al., 2015), a generalized 
backstepping approach combined with an ANFIS approach 
was applied to control a nonlinear Lorenz chaotic system.  This 
introduced approach guarantees that the generalized 
backstepping approach achieves its optimal parameter using 
ANFIS. In Asad et al. (2017), an MEMS gyroscope was controlled 
by a backstepping sliding approach based on type-2 fuzzy 
controller.  
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Moreover, the altitude stabilization of a hypersonic missile 
was controlled using a combination of backstepping and 
ANFIS controllers (Allahverdy & Fakharian, 2019).  

On one hand, the backstepping approach was used in the 
analysis of the missile altitude dynamics. On the other hand, 
the ANFIS approach was applied to calculate the uncertainty 
model parameters. In  (Azar et al., 2020), the stabilization of a 
dynamic framework of port-Hamiltonian systems is controlled 
by a combination of backstepping and ANFIS controllers. Also, 
ANFIS was utilized to estimate the ordinary backstepping 
sliding mode control law to enhance the performance of a 
non-linear system in (Tavoosi, 2020). 

Most backstepping control strategies are utilized as an upper 
hand controller (Fethalla et al., 2017; Rego et al., 2016; Vallejo-
Alarcón et al., 2015). Backstepping controller is an effective 
control strategy for extremely nonlinear frameworks (Basri et al., 
2015; Lee et al., 2017; Liu et al., 2015; Mutawe et al., 2021).  

The rapid convergence rate, the stability, the capability to 
manage nonlinear frameworks using recursive operation of 
Lyapunov function, the robustness regardless presence of 
uncertainties, and the simplicity are the benefits of 
backstepping controller (Madani & Benallegue, 2006).  

Similarly, ANFIS controller is a moderate artificial 
intelligent control technique. It integrated the power of fuzzy 
logic (FL) approaches parallel processing and intelligent 
learning capacities of expert artificial neural networks (ANN). 
In its essence, ANFIS incorporates the benefits of the ANN and 
FL, and erases the drawbacks of the ANN and FL as well 
(Premkumar & Manikandan, 2018).  

In this paper, the benefits of backstepping and ANFIS are 
combined in the proposed approach which leads to improve 
the overall performance and robustness in the presence of 
disturbances and noise.  

The main contribution of this paper lays in solving the 
problem of cooperative UAVs formation using a cascaded 
backstepping and ANFIS controller. This hybrid controller 
combines the backstepping-based PID controller with the 
ANFIS controller.  

A proposed aggregate controller depending on the 
position controller is introduced to regulate the translational 
dynamics of cooperative UAV group to pursue the pre-planned 
formation path.  Moreover, an attitude controller is designed 
to keep stability of the inner rotational dynamics.  

This paper is organized as follows: 
Section 2 introduces briefly the underlying quadrotor 

mathematical paradigm, and the hybrid controller design is 
demonstrated in Section 3. In Section 4, the simulation results for 
a group of cooperative quadrotors following a desired trajectory 
path using the designed hybrid controller are presented. The 
stability analysis of the proposed controller is discussed in 
Section 5, while in Section 6 a discussion about the underlying 

hybrid controller results is introduced. Finally, conclusion and 
future work are introduced in section 7. 
 
2. Quadrotor schematic model 

 
The underlying quadrotors are distinguished by a uniformed 
schematic. Each quadrotor consists of four rotors mounted at 
proportional distance from the center point and the rotors are 
set to provide necessary effort to all sort of quadrotor 
movements.  

The quadrotor controller is accomplished by changing the 
speed of every rotor of the fourfold rotors (Mahfouz et al., 
2018). A voltage applied on every motor cause a net torque 
being utilized on the rotor shaft producing a thrust force iT  

for thi quadrotor and thj rotor, where 1,2,3,4.j = Once 

the rotor blade is spinning, there is a proportional speed 
difference among the rotor sharp edge and air during rotating 
clockwise and anti-clockwise causing a net moment around 
the roll hub. Further speed also creates a power drag on the 
rotor which is opposed to travel orientation iD , the thrust is 

realized through aerodynamic coefficients TiC as in (1) 

(Azzam & Wang, 2010):  
 

2 21
2i Ti i i i iT C A Rρ= Ω                                                          (1) 

 
where 𝜌𝜌𝑖𝑖  is the air density, iA represents the area of the 

blade, iΩ performs the propeller's angular velocity, and 𝑅𝑅𝑖𝑖  
states the radius of the blade.  

A group of fourfold control inputs parameters iη are 

acquired like a function of normalized singular thrust and 
torques as in equations (2-4).  

At hovering and semi hovering states when nonlinear 
components can be neglected as in (Mahfouz et al., 2019), the 
thrust and forces are corresponding to the square of 
propellers' spinning speed. The thrust and drag forces can be 
calculated by Azzam and Wang (2010),  Mahfouz et al. (2013): 

 
2

i T iT β= Ω                                                                                     (2) 

 
2

i D iD β= Ω                                                                                    (3) 

 
where Tβ , and Dβ are constants. The thrust, rolling, 

pitching, and yawing moments are obtained in (4) (Mahfouz et 
al., 2013): 
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4
2

1
1

2 2
2 1 3

2 2
3 2 4

2 2 2 2
4 2 4 1 3

( )
( )
( )

i Ti ji
j

i Ti i i

i Ti i i

i Di i i i i

η β

η β
η β
η β

=


= Ω

 = Ω −Ω
 = Ω −Ω

= Ω +Ω −Ω −Ω

∑

                             (4) 

 
In modeling strategy of the VTOL quadrotor, the rotational 

transmutations aren't performed within the identical 
formation to relocate from the earth to the body coordinate.  

Naturally, the ultimate efficient technique performs the 
resultant rotation of the earth to the body transmutation over 
the thrust side. Assume a steady-earth coordinate E and a 
steady-body coordinate B . Utilizing Euler angles 
specifications; the air-coordinate direction in space is defined 
by a rotation matrix R . So, for the body to the earth 
transmutation, R is counted in (5) (Ashry, 2014; Mahfouz et al., 
2013): 

 

i i i i i i i i i i i i

xyzi i i i i i

i i i i i i i i i i i i

s s s c c s s c c s s c
R c s c c s

c s s s c c s c s s c c

θ φ ψ ψ θ φ θ ψ θ ψ θ φ
φ ψ ψ φ φ

θ ψ φ θ ψ θ φ ψ θ ψ θ φ

+ − 
 = − 
 − + 

         (5) 

 
where: , ,i i iφ θ ψ  roll, pitch, and yaw angles for the thi

quadrotor, respectively; sin, cos.s c≡ ≡  
The evolution of a convenient attitude controller for the 

quadrotor targeted a precise active model to be progressed. 
Newton laws were chosen to estimate the quadrotor 
dynamics for the simplicity of the control goals.  

The Newtonian approach is a definitive proper option for 
designing robust frameworks in 6-degree-of-freedom (Bang et 
al., 2004). The Newtonian hypothesis exercised in order to 
produce a robust framework in 6DOF are well represented in 
(Hamel et al., 2002; Tayebi & McGilvray, 2006).  

Assuming the dynamics of a robust framework underneath 
forces b

iF , and moments b
iτ . These parameters are used at 

the middle point of mass and stated in the steady-body 
coordinate. It is represented in Newton-Euler approach as 
follows (Mahfouz et al., 2019; Murray et al., 1994): 

 
b b b b

i i i i i i
b b b b
i i i i i i

F m v m v
I I

ω

τ ω ω ω

 = + ×


= + ×




                                                (6) 

 
 
 
 

where m represents the quadrotor overall body mass, b
iv

performs the speed vector in the steady-body coordinate, b
iω

states the angular velocity at the steady-body coordinate, and 

iI symbolizes the body moment of inertia matrix.  

The quadrotor equations of motions are introduced in (7) 
(Bouabdallah, 2007; Bouabdallah & Siegwart, 2007; Mahfouz, 
2015; Wierema, 2008): 

 

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

4 4
1

2 4
1 1

4 4
1

1 3
1 1

4

2 4
1

1

1

1

j
xxi i i i yyi zzi ri i ri i i i i yji mxji

j j

j
yyi i i i zzi xxi ri i ri i i i i xji myji

j j

j
zzi i i i xxi yyi ri ri ji i x i x i

j

I I I J l T T h H R

I I I J l T T h H R

I I I J Q l H H

φ θ ψ θ

θ φψ φ

ψ φ θ

+

= =

+

= =

=

= − + Ω + − + − + −

= − + Ω + − + + −

= − + Ω + − + −

∑ ∑

∑ ∑

∑

  

  

  ( )

( )

( )

( )

1 3

4

1

4 4
1
2

1 1

4 4
1
2

1 1

i

i y i y i

i i i i ji
j

i i i i i i i ji xji xi ci i i i
j n

i i i i i i i ji yji yi ci i i i
j j

l H H

m z m g c c T

m x c s c s s T H C A x x

m y s s c c s T H C A y y

φ ψ

ψ θ φ ψ φ ρ

ψ θ φ ψ φ ρ

=

= =

= =








 + − +


 = −


 = + − −



= − − −


∑

∑ ∑

∑ ∑



  

  

     (7) 

 
where , ,xxi yyi zziI I I  are body moment of inertia matrices, 

𝑄𝑄𝑗𝑗𝑖𝑖 is a drag moment, riJ  is rotor moment of inertia, 𝐻𝐻𝑥𝑥𝑗𝑗𝑖𝑖 and 
𝐻𝐻𝑦𝑦𝑗𝑗𝑖𝑖 are hub forces. 

The proposed hybrid controller consists of position, 
attitude and altitude controllers.  

The position and altitude controllers adjust the motion 
dynamics in order to track the pre-designed path for the UAV 
team.  

The attitude controller keeps and executes the stability of 
the inner rotational dynamics.   

The introduced control approach in this paper is 
composed of a two-loop controller layout technique.      The 
outer control loop is a backstepping-based PID controller to 
trail proportional position orders and create body-axis rate 
orders for the internal loop. 

The inner control loop is an ANFIS controller to generate 
desired angular rotations for every quadrotor separately, as 
seen in Figure 1.  

One should notice that backstepping-based PID approach 
is utilized for position and altitude control, while ANFIS 
approach is used for attitude control.  
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Figure 1. Hybrid controller of backstepping and ANFIS.  
  
The quadrotor control framework is organized in four 

unique controllers as outlined in Figure 2. VTOL controller 
yields the required elevation dz to altitude controller that is 

based on altitude sensor data to produce the required overall 
thrust dT . 

Position controller gets quadrotor current location 

( ),x y  and required thrust force. It yields required roll dφ , 

and pitch dθ , however, required yaw dψ gets through the 

client directly. 
The desired motor speed is produced by the controller 

after the attitude control is adjusted.  
 

 
 

Figure 2. The control architecture of quadrotor. 
 
3. Hybrid control design 

 
3.1. Backstepping-based PID approach 

 
The backstepping-based PID controller is introduced in 
(Mahfouz et al., 2018). The backstepping control strategy is 
proposed to achieve the desired altitude and vertical location 
behavior as a higher-controller in the external-loop. For thi
quadrotor, the error in relation in the translation location is the 
difference between the current and the desired path, and can 
be defined as: 
 

i i die z z= −                                                                   (8) 

 

the first backstepping control error will then be: 
 

1 1 2i i i i ig k e k e dt= + ∫                                                          (9) 

 
where 1ik and 2ik  are positive parameters of tuning. 

Considering Lyapunov theorem, a positive definite and 
time derivative negative semidefinite function 𝑉𝑉1𝑖𝑖  is proposed 
as: 

 
21

1 12i iV g=                                                                                    (10) 

 
differentiating (10) will give:  
 

1 1 1 1 1 2

1 1 1 2

( )
( )

i i i i i i i i

i i i i di i i

V g g g k e k e
g k z k z k e

= = +
= − +

  

 
                                (11) 

 
where iz is assumed as a virtual control. The proposed 

virtual control ( )diz  can be defined as: 

 

2 1 1

1 1

( ) i i i
di di i

i i

k c gz z e
k k

= − −                                            (12) 

 
where ( )diz is negative and 1ic is positive in order to raise 

altitude tracking velocity. 
The error in relation to the virtual control iz which 

represent the rate of the altitude can be defined as: 
 

2

2 1 1

1 1

( )i i di

i i i
i di i

i i

g z z
k c gz z e
k k

= −

= − + +

 

 
                                            (13) 

 
the rate of the error ie  is defined as: 

 

i i die z z= −                                                                                 (14) 

 
substituting (14) in (13): 
 

2 1 1
2

1 1

i i i
i i i

i i

k c gg e e
k k

= + +                                                             (15) 

 

so, 2 1 2 1 1
1

1 ( )i i i i i i i
i

g k e k e c g
k

= + +                                        (16) 
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differentiating (9) will give: 
 

1 1 2i i i i ig k e k e= +                                                                   (17) 

 
substituting (17) in (16) will give: 
 

2 1 1 1
1

1 ( )i i i i
i

g g c g
k

= +                                                       (18) 

 
assuming the 1st Lyapunov positive definite 2iV  with time 

derivative negative semidefinite as in (19):  
 

2 21
2 1 22 ( )i i iV g g= +                                                                  (19) 

 
differentiating (18) will give: 
 

2 1 1 2 2i i i i iV g g g g= +                                                             (20) 

 
substituting 1ig and 2ig in (20): 

 

2 1 2 2
1 1

1 1
2 2

1
1 2

1 1 1 1 2

cos cos

i i i
i i i i

i i
i i

i
i i i i i i di

i

i i i i i i i

c k kk e c e
k k

V g
Uk k e dt g z
m

g c k e c k e dt

θ φ

    
+ + +    

    =
 
+ − + − 
  
 − + 

∫

∫







     (21) 

 
2

2 1 1 1
1

2

[ ]

( ) ( ) ( )

i
i i i i

i

i i i i i i

cV g c g
k

c e A e B e dt

= − +

= − − − ∫

 



                        (22) 

 
where  
 

2 2
1 2

1

i i
i i i

i

c kA c c
k

 
= + 
 

, 1 2 2

1

i i i
i

i

c c kB
k

 
=  
 

                     (23) 

 

where 2ic , iA , and iB are positive parameters. 

Equation (20) is negative when the required control is 
formulated as: 

2 1 2 2 2
1 1 2

1 1
1

2
1 2

1

1 2 2
1 2

1

cos cos

i i i i
i i i i

i ii
i

i i i
i i i

i

i i i
i i i i di

i

c k c kk c c e
k kmU

kc c e
k

c c kk k e dt g z
k

θ φ

  
− + + +  
 =   − + +   

 
− + + +  
  

∫





     (24) 

in accordance with backstepping approach, the altitude 

control and the position control ( )1 , ,i xi yiU u u  is assumed 

as: 
 

1 7 7 8 7 7 8 8
1 3

9 9 10 9 9 10 10
1

11 11 12 11 11 12 12
1

( ( ) )
cos cos

( ( ) )

( ( ) )

i
i i i i i i i i i

i i

i
xi i i i i i i i

i

i
yi i i i i i i i

i

mU g g g g g
x x

mu g g g g
U
mu g g g g
U

α α α

α α α

α α α

= + − + −

= − + −

= − + −

      (25) 

 
3.2. Adaptive neuro-fuzzy inference system approach 
FL and synthetic ANN are normal complementary stuff in 
constructing hybrid intelligent systems (Werbos, 1992). ANN 
can be considered as a low-level computational framework 
which acts well when interacting with raw data (Muslimi et al., 
2006). On the other hand, FL treats with logic on a higher-level, 
utilizing linguistic data obtained from range experts (Gupta). 

However, fuzzy systems cannot adapt themselves in new 
surroundings and haven't the learning capability which 
characterized the ANN approach (Yong & Tuan, 2006). The 
incorporation of FL and ANN enable combining the decision 
making capabilities of FL with learning capabilities of ANN 
(Kumari & Sunita, 2013).  Consequently, the results of the FL 
and ANN incorporation sum up their superiorities and scale 
back the constraints of each system. The incorporation of FL 
and ANN was introduced primarily by Jang (1993).  

Generally, the neuro-fuzzy intelligent systems can be 
utilized cooperatively, concurrently, or as a hybrid system. In 
the cooperative technique, the learning capabilities of the 
ANN are used to construct the base foundation in the fuzzy 
membership functions from the training data, then the fuzzy 
part works separately. In the concurrent technique, the FL and 
ANN work in such a parallel way and facilitate one another to 
identify the required parameters. In the hybrid technique, the 
architectures of both FL and ANN are almost the same which 
facilitates applying the learning algorithms of the ANN to the 
FL (Ferdaus et al., 2018).      

The ANFIS structure is constructed on two main pillar 
parameter sets: premise and consequent parameters. 
Training approach of ANFIS controller can be achieved by 
determining those couple set of parameters using 
optimization technique (Karaboga & Kaya, 2019). ANFIS 
utilizes the input-output existing data pairs throughout 
training phase. The fuzzy IF-THEN rules foundation are 
obtained and linked to each other constructing the hybrid 
neuro-fuzzy approach (Al-Fetyani et al., 2021). 

A simple paradigm of the neuro-fuzzy framework of couple 
of inputs, and one output based on Takagi-Sugeno model is 
demonstrated in Figure 3. 
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Figure 3. ANFIS paradigm architecture. 
 
Familiar rule sets of couple of fuzzy IF-THEN rules in the 

ANFIS architecture. 
First rule: if x and y represent 1A and 1B respectively, so 

 

1 1 1 1i if p x q y r= + +                                                              (26) 

 
second rule: if x and y represent 2A and 2B

respectively, so 
 

2 2 2 2i if p x q y r= + +                                                           (27) 

 
assuming, for layer m and thn nodes the output is ,m nO . 

 
Layer 1: is the fuzzification layer.  
Every node is an adaptive one during this layer. The 

outcome function for thn node is: 

 

1, ( )n n iO A xµ= for 1,2n = .                                             (28) 

 

1, ( )n n iO B yµ= for 3,4n = .                                            (29) 

 
The parameters that completely identify the membership 

degree functions ( )nA xµ and ( )nB yµ to be bell shaped 

are called antecedent parameters, like  
 

2

1( )

1
n

n i b

i n

n

A x
x c

a

µ =
 − +
 
 

                                  (30) 

 

where{ }, ,n n na b c is a set of parameters. 

Those parameters are called premise parameters as well in 
this layer. 

Layer 2: is the ruler layer.  
Every node is a steady one stampedΠ  during this layer. It 

works as a multiplier for the incoming signals, like 
 

2, ( ) ( )n n n i n iO A x B yω µ µ= = ∗                                 (31) 

 

where nω is the second layer's output. 

Output of every node outlines believability of this rule.    
Layer 3: is the normalization layer. 
Every node is a steady one stampedΝ during this layer. 

The firing strength ratio of the rules is calculated by the thn
nodes, like  

 

3,
1 2

n
n nO ωϖ

ω ω
= =

+
for 1,2n = .                                    (32) 

 

where nϖ is the third layer's output. 

The outcomes of this layer are classified as normalized 
firing forces. 

Layer 4: is the defuzzification layer. 
Every node is an adaptive one during this layer. The 

outcome of this layer for thn node is: 
 

4, ( )n n n n n i n i nO f p x q y rϖ ϖ= = + +                       (33) 

 

where{ }, ,n n np q r is a set of parameters.  

Those parameters are called Consequent parameters as 
well in this layer. 

Layer 5: is the summation layer. 
The one and only node is a steady one during this layer. It 

calculates the summation of the aggregate incoming signals. 
 

5, 1 1 2 2
n nn

n n n
n nn

f
O f f f

ω
ϖ ϖ ϖ

ω
= = = +∑∑ ∑

          (34) 

 
In the presence of the premise parameters as a given, 

ANFIS results can be re-written as a linear aggregation of 
consequent parameters, like 

 

1 1 2 2
5,

1 2 1 2

1 2
1 2 1 1 2 2

1 2 1 2

n nn
n n n

n nn

f f fO f

f f f f

ω ω ωϖ
ω ω ω ω ω

ω ω ϖ ϖ
ω ω ω ω

= = = +
+ +

= + = +
+ +

∑∑ ∑
    (35) 
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from (26) and (27): 
 

( ) ( )

1 2

1 1 1 2 2 2

n n n n
n n

f p x q y r f f

p x q y r p x q y r

 = + + = + 
 

= + + + + +

∑ ∑
                   (36) 

 
substituting (36) in (35): 
 

( ) ( )
( ) ( ) ( )
( ) ( ) ( )

5, 1 1 1 1 2 2 2 2

1 1 1 1 1 1

2 2 2 2 2 2 .

nO p x q y r p x q y r

x p y q r

x p y q r R

ϖ ϖ

ϖ ϖ ϖ

ϖ ϖ ϖ θ

= + + + + +

= + +

+ + + =

    (37) 

 

where { }1 1 1 2 2 2, , , , ,p q r p q r is a set of consequent 

parameters.  
 

Assume { }1 1 1 2 2 2, , , , ,p q r p q rθ =                                    (38) 

 

 getting an R from (5). So, optimal evaluationθ


can be 
obtained by Least Square (LS) technique by estimating the 

minimum meaning of
2.R fθ − . As a result: 

 

( ) 1T TA A A fθ
−

=


                                                                (39) 

 

evaluated output f


can be obtained by: 
 

.f A θ=
 

                                                                                       (40) 
 
so, premise and consequent parameters can be computed 

by meaning value of the root-mean square error (RMSE) by: 
 

( )2

1
/t

k kk
RMSE f f t

=
= −∑


                                   (41) 

 
intermixture of back propagation (BP) criteria and LS 

technique can regulate premise and consequent parameters 
of the ANFIS.  

This intermixture is used as a hybrid learning technique. In 
the intermixture principle, there are forward-way and invert-
way (Navarro & Akhi-Elarab, 2013).  

 

In forward-way, the output of the fourth layer is calculated; 
LS technique is then utilized to determine consequent 
parameters.  

In the invert-way section, error signals manipulate invert 
transmission, and premise parameters are updated using PB 
criteria.  

Throughout forward-way, the output value 5,nO can be 

obtained for set of adopted incoming values of training data 

by resolving the consequent parameters{ }, ,n n np q r during 

the learning process.  
Due to principles of LS technique, the expected error 

values of the training data are computed through the output 
value 5,iO calculation process.  

Due to most gradient techniques, this error will be 
inversely restored and precise the premise parameters.  

Throughout the precision process of these parameters, 
adjustment of membership function diagrams is unceasingly 
recognized, anticipating achieving the aim of getting least 
output error throughout iteration process.  

Every learning procedure to ANFIS structure contains 
premise parameter learning stage and consequent parameter 
learning stage (Liu & Zhou, 2017). 

Flow chart of intelligence formation algorithm is clarified 
in Figure 4. 
 

 
 

Figure 4. Flow chart of formation algorithm. 
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4. Simulation results 
 

A simulation atmosphere is settled under "SIMULINK-
MATLAB” to approve the offered control strategy. The 
simulation is built on the entire non-linear model of a group of 
three quadrotors introduced by Equation (7). Each quadrotor 
in the underlying system contains two stages of controllers. 
The backstepping controller represents the higher controller 
where it controls the altitude and the position. The ANFIS 
controller represents the lower controller where it receives the 
altitude and the position from the backstepping to acquire the 
attitude controller to turn over the angels to execute the 
desired altitude and position. Also, it transmits the proper 
control signal for the propellers to accomplish the whole 
designed mission respecting the desired separating distance 
and desired velocity.   

The designed ANFIS controller is composed of 16 
membership functions and 16 fuzzy rules as shown in Figure 5. 

 

 

 
 

Figure 5. ANFIS topology. 
 
The ANFIS paradigm is created using MATLAB's ANFIS GUI 

editor. The grid partition method generates optimized rules. 
The ANFIS paradigm architecture has the subsequent 
information as shown in Table 1.  

 
Table 1. Subsequent information of ANFIS model architecture. 

 
 

Type 
Number 

Nodes 53 
Power (kW) 48 
linear parameters 24 
Total parameters 72 
Training data pairs 525 
Checking data pairs 525 
Fuzzy rules 16 

 

The neural network uses the hybrid technique to minimize 
the error by optimizing the parameters and the membership 
functions. 

This hybrid backstepping-ANFIS controller is studied 
earlier with a backstepping- backstepping controller for the 
selfsame framework in (Mahfouz et al., 2018). For training 
approach, the input/output data sets of various points of 
operation are exercised.  

The obtained data sets are divided equally; half of them is 
used for training, while the others are used for checking. 
Hybrid optimization technique generates the FIS structure 
based on obtained data sets. For the training approach, ANFIS 
finishes training at epoch two with zero tolerance.  

For roll control channel, the error input is ranged from -
0.3123 to +0.0156, the error derivative is ranged from -0.889 to 
+0.05057, and the output for roll moment is ranged from -6.844 
to +0.9527. For pitch control channel, the error input ranges 
from -0.003404 to +0.4045, the error derivative is ranged from -
0.6946 to +0.15, and the output for pitch moment is ranged 
from -24.11 to +3.344. Finally, for yaw control channel, the 
error input is ranged from -0.3 to +0.04915, the error derivative 
is ranged from -3.306 to +1.044, and the output for yaw 
moment is ranged from -67.58 to +199.6.  

The ANFIS topology consists of four hidden layers having 
two inputs, one output, four premise parameters for each 
input, and sixteen membership functions that create sixteen 
rules in each ANFIS topology. Path trajectory is designed to 
test the ability of the underlying hybrid controller to pursue the 
path trajectory reserving the desired formation configuration 
of the group members of the cooperative quadrotors. The 
group is composed of three quadrotors. Every quadrotor 
began from various points of operation. 

- Assumption 1 
All the cooperative quadrotors under-study are rigids and 

have the same mathematical model. 
- Assumption 2 
The group of cooperative quadrotors under-study consists 

of three quadrotors in a triangular formation. Each follower 
quadrotor keeps a separating distance 5 m in the 𝑋𝑋 and 𝑌𝑌 axis 
with respect to the leader, and a distance 10 m in the 𝑌𝑌 axis 
between each other. 

- Assumption 3 
 All the altitude of the three cooperative quadrotors is 

constant.   
The validation of the proposed controller is presented 

through the simulation results recorded in couple of scenarios 
in the presence and absence of stationary and moving 
obstacles. 

- Scenario 1 
In this scenario, a group of three cooperative quadrotors 

tracks a reference path along the X-axis in a triangular shape  
 



 
 

 

Mohamed Mahfouz et al. / Journal of Applied Research and Technology 665-687 

 

Vol. 21, No. 4, August 2023    674 
 

in a free obstacle environment. The initial position of the 
quadrotors are as follows: leader = (0,0), Follower 1 = (7,5) and 
Follower 2 = (-7,-7). The path of the group in the 𝑋𝑋-direction is 
demonstrated in Figure 6, where the followers’ quadrotors 
respect the separating distance with respect to the leader in 
order to pursue a pre-planned trajectory. Moreover, Figure 7 
demonstrates the velocity component in the 𝑋𝑋-axis for each 
member of the group respecting the constrain velocity   

2 ( / )xV m s≤  and the pitch control for all the team 

members is demonstrated in Figure 8.  
 

 
 

Figure 6. Trajectory of a group of cooperative 
 quadrotors. Along X-axis. 

 

 
 

Figure 7. The velocity components for the  
cooperative quadrotors in X-axis. 

 

 
 

Figure 8. Pitch control for the three 
 cooperative quadrotors. 

 
The trajectory of the three cooperative quadrotors along 

the Y- axis is shown in Figure 9. The two followers succeeded 
in achieving the desired separating distance (10 m) between 
each other and the desired separating distance (5 m) with 
respect to the leader quadrotor. Moreover, Figure 10 

demonstrates the velocity component in the 𝑌𝑌-axis of each 
member of the group respecting the constrain   

2 ( / )yV m s≤  and the roll control for all the group 

members is demonstrated in Figure 11. 
 

 
Figure 9. Trajectory of a group of cooperative  

quadrotors along Y-axis. 
 

 
Figure 10. Velocity components for the cooperative  

quadrotors in Y-axis. 
 

 
Figure 11. Roll control for the cooperative quadrotors. 

 
The position of the quadrotors along the Z- axis is 

represented in Figure 12. Figure 13 represents the velocity 
components of the three quadrotors along the Z-axis. Finally, 
the yaw control for the three cooperative quadrotors is 
demonstrated in Figure 14.  

 

 
Figure 12. Trajectory followed by a group 
 of cooperative quadrotors along Z-axis. 

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-10

-5

0

5

10

15

20

X 
Pa

th
 [m

]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Vx
 [m

/s
]

 Leader

 Follower 1

 Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Pi
tc

h 
[ra

d]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-10

-5

0

5

10

15

20

Y 
Pa

th
 [m

]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-2

-1

0

1

2

3

Vy
 [m

/s
]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

R
ol

l [
ra

d]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.5

0

0.5

1

1.5

2

Z 
Pa

th
 [m

]

Leader

Follower 1

Follower 2



 
 

 

Mohamed Mahfouz et al. / Journal of Applied Research and Technology 665-687 

 

Vol. 21, No. 4, August 2023    675 
 

 
 

Figure 13. Velocity components in Z - axis. 
 

 
Figure 14. Yaw controls the three cooperative quadrotors. 

 
- Scenario 2 
In this scenario, the proposed controller is evaluated to solve 
the formation problem for a group of cooperative quadrotors 
in static/dynamic obstacles-loaded environment.  
A couple of obstacles avoidance techniques are applied to 
guarantee the safety of all members of the group during 
tracking a reference desired trajectory in presence of 
stationary and moving obstacles in an obstacle-loaded 
dynamic environment. 
Stationary obstacle avoidance approach was developed in 
(Mahfouz et al., 2018; Mahfouz et al., 2019), while moving obstacle 
avoidance approach was introduced in (Mahfouz, Hafez, Ashry & 
Elnashar, 2020; Mahfouz, Hafez, Azzam, et al., 2020). 
Stationary obstacles 
In order to demonstrate the underlying controller's ability to 
pursue the required route in an obstacle-filled environment, 
obstacles are designed as a rectangle shape. It is assumed that 
the quadrotors altitudes constant for simplification. Then it 
would reduce the difficulty of tracking the trajectory to a 2D 
problem. Two security zones are designed for complete flight 
safety reasons, by a 20m-radius safety zone and a 10m-
detaching range identifying protected zone among every 
follower and the leader UAV (Mahjri et al., 2015). These safety 
zones are activated when an obstacle is captured on the 
border of the safety zones. This causes an interruption for 
tracking the trajectory making a half circle maneuver to bypass 
the captured obstacle, and then resuming tracking the original 
trajectory. As sh the obstacle avoidance algorithm 
represented in this work guarantees the safety of all members 

of the fleet. In Figure 15, the leader of a team of cooperative 
quadrotors senses the presence of a stationary obstacle. The 
team reconfigures from a triangular formation into a line 
formation with a separation safety distance of 10 m between 
every successive quadrotor. 

 

 
 

Figure 15. The trajectory of the group of cooperative quadrotors in 
the presence of a stationary obstacle in XY-axis. 

 
The designed obstacle avoidance technique in motion 

planning offered in this paper is a simple mathematical 
solution; this technique calculated the dimensions and the 
vertices of the captured obstacles to prevent collision. 

Assume minObΧ  and maxObΧ symbolizes the minimum 

and maximum dimensions of the obstacle edges in x -axis. 

Similarly, minObϒ  and maxOϒ  symbolizes the minimum and 

maximum dimensions of the obstacle edges in y -axis as 
shown in Figure 16. 

 

 
 

Figure 16. A mathematical solution for obstacle avoidance. 
 

Assume ( , )c cx y the midpoint of the captured obstacle, 

this point can be acquired by equations (42, 43): 
 

min max( ) / 2c Ob ObΧ = Χ + Χ                                              (42) 
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min max( ) / 2c Ob Obϒ = ϒ + ϒ                                                (43) 

the radius cR of the circumscribed circle can be calculated 

by equation (44): 
 

2 2
max min max min0.5* ( ) ( )c Ob Ob Ob ObR = Χ −Χ + ϒ − ϒ          (44) 

 
the new trajectory can be generated by solving the drawn 

path mathematically through the mapping produced path 

from the series of ( , )Χ ϒ points to a new series of ( , )n nΧ ϒ

points after gathering a safety distance dδ  as in Equations 

(45) and (46). 
 

( )* /n c c c dR δΧ = Χ + Χ −Χ                                        (45) 

 

( )* /n c c c dR δϒ = ϒ + ϒ − ϒ                                           (46) 

 
The new generated trajectory enables the group of the 

UAVs to avoid collision with the captured obstacle. The 
designed controller succeeded in controlling each unmanned 
quadrotor in the troop in a decentralized manner 
guaranteeing the reserving of the desired geometric formation 
in XYZ-plane is shown in Figure 17. 

Figure 18 represents the separation distance between the 
leader and the Follower 1 and the separation distance 
between Follower 1 and Follower 2. 

The proposed control approach was compared with a 
backstepping-backstepping controller. Figure 19 and Figure 
20 demonstrate the trajectories of cooperative quadrotors in 
the presence of a single stationary obstacle in XY-axis and XYZ- 
plane, respectively. The two control approaches succeeded in 
guaranteeing the safety of all the members of the group. 

 

 
 

Figure 17. The trajectory of the group of cooperative 
quadrotors in the presence of a stationary obstacle in XYZ-plane. 

 

 
Figure 18. the separation distance between the leader  

and the Follower 1 and the separation distance between 
 Follower 1 and Follower 2 in X-axis. 

 

 
Figure 19. Trajectories of cooperative quadrotors in the presence of 

a stationary obstacle in XY-axis. 

 

 
Figure 20. Trajectories of cooperative quadrotors in the presence of 

a stationary obstacle in XYZ-plane. 
 
Dynamic obstacles 
In this subsection, the proposed hybrid control approach 

will be applied on three cooperative quadrotors in the 
presence of dynamic obstacles as shown in Figure 21.   

The first obstacle is moving along the desired trajectory 
with a lower speed while the second obstacle is moving in an 
opposite direction to collide with the group. 

The proposed control approach was compared with a 
backstepping – backstepping approach. Figure 22 and Figure 
23 demonstrate the trajectories of cooperative quadrotors in 
the presence of a couple dynamic obstacles in XY-axis and XZ-
axis, respectively. 
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The path of the group cooperative quadrotors in the 
presence of couple dynamic obstacles in XYZ- plane is 
introduced in Figure 24. 

 

 
 

Figure 21. A couple of UAVs acting as moving obstacles 
 intersecting the trajectory of the cooperative quadrotors. 

 

 
 

Figure 22. Trajectories of cooperative quadrotors in the 
 presence of couple of moving obstacles in XY-axis. 

 
Figure 23 demonstrates the ANFIS controller versus 

backstepping controller in the presence of a couple of moving 
obstacles in XYZ-plane. 

 

 
 

Figure 23. Trajectories of cooperative quadrotors in the 
 presence of couple of moving obstacles in XZ-axis. 

 
Finally, all the simulation results presented in Scenario 1  

 
 
 
 

and Scenario 2 show that the proposed hybrid controller 
achieves a good track to pre-planned trajectories in the 
presence and absence of both stationary and moving 
obstacles. 

 
 

 
 

Figure 24. The path of three cooperative quadrotors in the presence 
of couple of moving obstacles in XYZ-plane. 

 
5. Stability analysis of hybrid controller 

 
For ease of control, the accurate perfect quadrotor model is 
reduced by decreasing the outer forces and torques to take on 
the real-time restrictions of the incorporated control cycle 
(Wierema, 2008).  

In this manner, the 12-states and 6-DOF framework i of  
the quadrotor can be reworded in state-space definition 

( , )i i iX f X η=  taking into account the inputs parameters 

iη and the state parameters iX of the framework as 

(Bouabdallah & Siegwart, 2007): 
 

[ , , , , , , , , , , , ]Ti i i i i i i i i i i i iX z z x x y yφ φ θ θ ψ ψ=            (47) 

 
assuming the following: 
 

1 7

2 1 8 7

3 9

4 3 10 9

5 11

6 5 12 11

i i i i

i i i i i i

i i i i

i i i i i i

i i i i

i i i i i i

x x z
x x x x z
x x x
x x x x x
x x y
x x x x y

φ
φ

θ
θ

ψ
ψ

= =
= = = =
= =
= = = =
= =
= = = =

  

  

  

                       (48) 

 

[ ]1 2 3 4
T

i i i i iη η η η η=                                            (49) 

 
by combining Equation (4) with Equations (47) and (49). 

The reduced quadrotor model is presented in (50): 
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were  
 

1 2

3 4

5 1

2 3

( ) / /
( ) / /
( ) / /

/ 1/

i yi zi xi i ri xi

i zi xi yi i ri yi

i xi yi zi i i xi

i i yi i zi

a I I I a J I
a I I I a J I
a I I I b l I
b l I b I

= − = −


= − =
 = − =
 = =

         (51) 

 
from (50), the quadrotor rotation rate can be defined as: 
 

2 1 4 6 2 4 1 2

4 3 2 6 4 2 2 3

6 5 2 4 3 4

i i i i i i ri i i

i i i i i i ri i i

i i i i i i
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η

+ Ω +   
   = + Ω +   
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(52) 
 
Equations (4) and (52) empower configuring the quadrotor 

attitude control. Neglecting the gyroscopic parameters in (52): 
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                                         (53) 

 
supposing * * *

2 3 4,i i iandη η η to obtain a linear 

framework where: 
 

( )
( )
( )

*
2 2 2 4 6 2

*
3 3 2 4 6 3

*
4 4 2 4 6 4

, ,
, ,
, ,

i i i i i i

i i i i i i

i i i i i i

f x x x
f x x x
f x x x

η η
η η
η η

 = +
 = +
 = +

                            (54) 

 
the nonlinear feedback for linearization can be acquired 

by: 

1

2

3

1
2 2 4 6 2 2 1 4 6

1
3 2 4 6 3 4 3 2 6

1
4 2 4 6 4 6 5 2 4

( , , ) ( )

( , , ) ( )

( , , ) ( )

i

i

i

i i i i i i i i ib

i i i i i i i i ib

i i i i i i i i ib

f x x x x a x x

f x x x x a x x

f x x x x a x x

β

β

β

 = −
 = −
 = −

     (55) 

 
utilizing (49) leads to transform (47) into linear and 

decoupled framework as: 
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                                               (56) 

 
considering * * *

2 3 4 0i i iU U U= = =  and the assumed 

points of operation 2 4 6 0i i ix x x= = = ; the generated 

linearized closed-loop framework is constant with or without 
the gyroscopic parameters in (51).  

Various methods discuss the stability of complex systems 
such as Routh–Hurwitz method, Bode diagram, Nyquist 
diagram, root-locus method, the      Nichols chart, and 
Lyapunov stability criterions (Shinners, 1998). The Lyapunov 
stability offers precise solutions close to the point of 
equilibrium of non-linear system. Exponential stability in 
Lyapunov guarantees a low decay rate which show an 
estimation of how rapidly the solutions converge (Fichera, 
2013; Totoki et al., 2009). Because of that Lyapunov stability 
criterions have been chosen to analyze and confirm the 
stability of the offered hybrid controller.  

To prove the stability, the Lyapunov function
 ( )2 4 6, ,i i i iV x x x  for the attitude controller ciG  and 

positive designated about the point of operation (Wu, 2009): 
 

4 4 4
2 4 6 2 4 6( , , ) 0.25( )i i i i i i iV x x x x x x= + +              (57) 

 
the initial derivative of the Lyapunov function iV  is 

resolved by exercising (52), (54), and (55). In addition, if  

1 3i ia a= − and 5 0ia = , a standard quadrotor cross 

configuration with xi yiI I=  is gained. So, iV can be 

reached by: 
 

2 2 4 4 6 6
2 2 2

2 2 3 4 4 6

i i i i i i i

i i i i i i

V x x x x x x
K x K x K x

= + +
= + +

   
                              (58) 
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it is obvious that iV is free from gyroscopic parameters as 

well. iV is negative if 2 3 4, , 0i i iK K K < . The points of 

operation concerning the linearized order of feedback are 
therefore asymptotically stable. 

To check the stability of the proposed hybrid controller, an 
equal uniformed pulse disturbance is applied in different 
intervals of times to each quadrotor in the group as 
demonstrated in Figure 25. 

 

 
 

Figure 25. Impulse disturbance. 
 

Like Scenario 1 in Section IV, a group of three cooperative 
quadrotors moves along the X-axis with a desired separation 
distance in a free obstacle environment forming a triangular 
formation.  

The sudden disturbances shown in Figure 25 are applied to 
the members of the group. Figure 26 demonstrates the path 
trajectory for the group of the cooperative quadrotors 
following a desired path along the X-axis. The result shows the 
ability of the hybrid controller to reject the applied 
disturbance. 

 

 
 

Figure 26. Trajectory of a group of cooperative  
quadrotors along X-axis under the effect of sudden 

 disturbances. 
 
The velocity components along the X-axis of the three 

quadrotors and their pitch control are demonstrated in Figure 
27 and Figure 28 respectively. The results show that the hybrid 
controller succeeded in rejecting the effect of the sudden 
disturbances and guarantees the desired velocity.  

Similarly, Figure 29, Figure 30, and Figure 31 demonstrate 
the trajectories of the three cooperative quadrotors along Y-

axis, their velocity components and their roll control, 
respectively.  

The results validate the success of the introduced hybrid 
control approach to reject the effect of the impulse and 
guarantee the desired separating distance and velocity.  

 

 
 

Figure 27. Velocity components along X –axis under the 
 effect of sudden disturbances. 

 

 
 

Figure 28. Pitch control for the cooperative quadrotors 
 under the effect of sudden disturbances. 

 

 
 

Figure 29. Trajectory of a group of cooperative  
quadrotors along Y-axis under the effect of sudden  

disturbances. 
 

 
 

Figure 30. Velocity components along Y –axis under the  
effect of sudden disturbances. 

0 5 10 15 20 25 30 35 40 45 500

1

2

3

4

5

6

7

Time [s]

A
m

pl
itu

de
 [m

]

 

 

Disturbance

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-10

-5

0

5

10

15

20

X 
Pa

th
 [m

]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-2

-1

0

1

2

Vx
 [m

/s
]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-0.4

-0.2

0

0.2

0.4

0.6

Pi
tc

h 
[r

ad
]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-10

-5

0

5

10

15

20

Y 
Pa

th
 [m

]

Leader

Follower 1

Follower 2

0 5 10 15 20 25 30 35 40 45 50

Time [s]

-2

-1

0

1

2

3

Vy
 [m

/s
]

Leader

Follower 1

Follower 2



 
 

 

Mohamed Mahfouz et al. / Journal of Applied Research and Technology 665-687 

 

Vol. 21, No. 4, August 2023    680 
 

 
Figure 31. Roll control for the cooperative quadrotors 

 under the effect of sudden disturbances. 
 
However, the altitude of the three cooperative quadrotors 

is constant, sudden disturbance was applied to investigate 
their effects on the quadrotors. Figure 32, Figure 33, and Figure 
34 demonstrate the trajectories of the three cooperative 
quadrotors along Z-axis, their velocity components and their 
yaw control, respectively.  The results show the capacity of the 
hybrid controller to dismiss the applied disturbance. 

 

 
 

Figure 32. Trajectory of a group of cooperative 
 quadrotors along Z-axis under the effect of sudden disturbances. 

 

 
 

Figure 33. Velocity components along Z – axis under the 
effect of sudden disturbances. 

 

 
 

Figure 34. Yaw control for the cooperative quadrotors under the 
effect of sudden disturbances. 

In order to validate the proposed controller, the controller 
introduced in this paper is compared with a backstepping-
backstepping controller developed earlier for the same 
underlying system (Mahfouz et al., 2018). The trajectory of the 
leader quadrotor along the X-axis is shown in Figure 35 where 
both controllers under study succeeded to reject the effect of 
the applied sudden disturbances. 

 

 
 

Figure 35. Path tracked by the leader quadrotor 
 along the X –axis by ANFIS and backstepping 

 under the effect of a disturbance. 
 

Figure 36, and Figure 37 demonstrate the velocity and the 
pitch control of the leader in the presence of disturbances, 
respectively.  

The ANFIS controller can reject the effect of the 
disturbance more than the backstepping controller. 

 

 
 

Figure 36. Velocity component of the leader along the X 
 –axis by ANFIS and backstepping under the effect of a  

disturbance. 
 

 
 

Figure 37. Pitch control for the leader quadrotor by 
 ANFIS and backstepping controllers under the effect of a 

disturbance. 
 
Similarly, Figure 38, Figure 39, and Figure 40 demonstrate 

the trajectory of the leader quadrotor along Y-axis, its velocity 
component and its roll control, respectively.  
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The results validate the success of the introduced hybrid 
control to reject the sudden disturbances over the 
backstepping controller. 

 

 
 

Figure 38. Path tracked by the leader quadrotor along Y  
-axis by ANFIS and backstepping under the effect of a  

disturbance. 
 

 
 

Figure 39. Velocity component of the leader along the Y 
 –axis by ANFIS and backstepping under the effect of a  

disturbance. 
 

 
 

Figure 40. Roll control for the leader quadrotor by ANFIS  
and backstepping controllers under the effect of a  

disturbance. 
 

Finally, Figure 41, Figure 42, and Figure 43 demonstrate the 
trajectory of the leader quadrotor along Z-axis, its velocity 
component and its yaw control, respectively.  The results show 
the capacity of the ANFIS controller to dismiss the applied 
disturbances over the backstepping controller. 
By investigating the results appear in the previously sketched 
figures, the proposed hybrid backstepping-ANFIS controller 
achieves good tracking of the reference in different scenarios. 
The comparison between the proposed hybrid controller and 
backstepping controller shows the superiority of the hybrid 

controller over the backstepping controller especially in 
stability analysis. 

 

 
 

Figure 41. Path tracked by the leader quadrotor along Z -axis by 
ANFIS and backstepping under the effect of a disturbances. 

 

 
 

Figure 42. Velocity component along Z-axis position by ANFIS and 
backstepping controllers under the effect of disturbances. 

 

 
 

Figure 43. Yaw control for the leader quadrotor by ANFIS and 
backstepping controllers under the effect of disturbances. 

 
6. Conclusion 
 
In this paper, a cascaded backstepping and ANFIS controllers 
were designed as a robust hybrid controller for solving the 
formation problem for a group of cooperative quadrotors in 
free and loaded obstacle environment. The ANFIS controller 
was designed as a lower controller, while the backstepping 
controller is designed for the whole group as a higher 
controller. The outcomes acquired from the flight simulations 
show that the offered hybrid controller is fit for controlling a 
group of cooperative quadrotors for altitude and attitude set-
points. 

The yield information of the backstepping controlled 
framework is utilized as learning and checking information for  
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the ANFIS layout. The outcomes acquired utilizing ANFIS, as a 
nonlinear controller, are differentiated with the backstepping 
based-PID controller outcomes. The simulation outcomes 
show a stable flight is accomplished using the offered hybrid 
controller.  

The stability of the controllers is observed at various points 
of operation by applying sudden disturbance pulses to the 
group members. The ANFIS controller as a low controller in the 
offered hybrid controller is superior to the backstepping 
controller. 

The main contribution in this work lays in solving the 
formation problem for a team of cooperative quadrotors 
through hybrid backstepping and ANFIS controller in a free 
and loaded obstacle environment. 

Future work will be applying the hybrid controller 
validated in this work on cooperative quadrotors in real time. 
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