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RESUMEN

Para medir la intensidad de la endogamia que se produce en poblaciones finitas de especies alógamas en que el apareamiento
aleatorio no incluye la autofecundación [como en el caso de algunas especies de ornato del género Primula y del tomate de cáscara
(Physalis ixocarpa Brot.)] ya existe una fórmula. Ésta se derivó en términos probabilísticos, bajo el supuesto de que desde el ciclo
1 el paso de una generación a la siguiente se basa en que de cada ciclo o generación se toma una muestra al azar de n individuos
cuya semilla dará lugar a n familias de m medios hermanos cada una que constituirán el ciclo siguiente, como suele suceder en la
selección masal. Dado que para m = 1 dicha fórmula no se reduce a ninguna  de las fórmulas conocidas para este caso, se hizo una
investigación teórica en términos probabilísticos para explicar la causa de esta discrepancia y dar satisfacción a la necesidad de
disponer de un coeficiente de endogamia (CE) exacto para la población objeto de estudio. Se encontró que cuando el ciclo cero se
forma por mn individuos no endogámicos ni emparentados, para los ciclos o generaciones 0, 1 y 2 los CEs fueron F

0
 = 0, F

1
 = 0 y F

2

= 1/(2mn), respectivamente, y para t = 3,4,5,… el CE exacto fue F
t 
= (1 + F

t-2
) /(2mn) + (m-1)(1 + F

t-3
 + 6F

t-2
) /(8mn) + (n-1) F

t-2 
/n, que

sí se reduce a la fórmula exacta cuando se hace m = 1. Además, para el caso en que el ciclo cero está formado por n familias de m
medios hermanos no endogámicos se derivó una fórmula que a partir del ciclo uno produce CEs mayores que  los correspondientes
del caso anterior.

PALABRAS CLAVE ADICIONALES: Coeficiente de coancestría, población ideal, identidad por descendencia, familia de medios
hermanos, respuesta a la selección.

INBREEDING COEFFICIENT
OF A SELF STERILE POPULATION

WITH SAMPLING OF FAMILIES

ABSTRACT

To measure the inbreeding intensity produced in finite populations of alogamous species that undergo random mating without
selfing [as in the case of some ornamental species of the Primula genus and husk tomato (Physalis ixocarpa Brot.)], a formula for
the inbreeding coefficient (IC) has been derived in probabilistic terms under the assumption that in the studied population each cycle
was formed by n families of m half sibs each. Each family is formed by the seed of a set of n random individuals from the previous
generation, as occurs in mass selection. Since for m = 1 this formula is not reduced to any known formula for this case, theoretical
research in probabilistic terms was undertaken to explain the cause of this discrepancy and to identify or derive an exact IC for the
case under study. It was found that when cycle zero is formed by mn noninbred and unrelated individuals, for cycles 0, 1, and 2 the
exact ICs were  F

0
 = 0, F

1
 = 0, and  F

2
 = 1/(2mn), respectively, and for t = 3,4,5, … the exact IC was  F

t
 = (1+F

t-2
) /(2mn) + (m-1)(1+F

t-

3
 + 6F

t-2
) /(8mn) + (n-1)F

t-2
 /n. For the case where cycle zero is formed by n families of m noninbred half sibs each, the IC formula, as

of cycle one produces higher IC values than those produced by the previous case.

ADDITIONAL KEY WORDS: coancestry coefficient, ideal population, identity by descent, half-sib family, response to selection.
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INTRODUCCIÓN

Es bien sabido que los tamaños finitos de las
poblaciones que se manejan para efectos de mejoramiento
genético son fuentes de endogamia que en el caso de los
cultivos de especies alógamas pueden estar relacionados
inversamente con la respuesta a la selección (e.g.,
Robertson, 1960; Márquez-Sánchez, 1998). Entre las
especies cuyo estudio teórico se hace mediante el modelo
de una población finita que se reproduce por apareamiento
aleatorio hay unas que incluyen la autofecundación [como
el maíz (Zea mays L.)], y otras que son autoestériles [como
el tomate de cáscara (Physalis ixocarpa Brot.) y algunas
especies de ornato del género Primula]. Cuando sí ocurre la
autofecundación,  los estudios teóricos relativos a la
endogamia y otros temas relacionados con ella se han
realizado con base en el modelo de población ideal (v.g.,
Wright, 1922; Crow y Kimura, 1970; Falconer, 1987) que a
su vez se sustenta en  principios probabilísticos.

Para las poblaciones cuyos individuos se reproducen
por apareamiento aleatorio sin autofecundación se han hecho
estudios teóricos para derivar sus coeficientes de
endogamia. Crow y Kimura (1970) muestran una fórmula
general para el coeficiente de endogamia de la generación t
en términos de los coeficientes de endogamia de las dos
generaciones anteriores. Sahagún (2006) derivó
directamente los coeficientes de endogamia de los dos
primeros ciclos. Estos dos estudios  tienen en común al
menos dos características: a) fueron hechos en términos
probabilísticos aplicados al modelo de población ideal sin
autofecundación, y b) no consideran que en la realidad la
muestra de individuos de cuyo apareamiento al azar se
generará el ciclo siguiente, en casos como el tomate de
cáscara y el maíz, está formada por varias familias de medios
hermanos. Ignorar este parentesco intrafamiliar puede
producir coeficientes de endogamia que subestiman el
verdadero valor endogámico de estas poblaciones.

Márquez-Sánchez (1998) derivó una fórmula para el
coeficiente de endogamia de una población que se repro-
duce por apareamiento aleatorio sin autofecundación y el
paso de un ciclo al siguiente se hace mediante este tipo de
apareamiento entre los individuos de n familias de m medios
hermanos maternos cada una. Sin embargo, la fórmula que
derivó este autor cuando se hace m = 1 no se reduce a la
fórmula de Crow y Kimura (1970) para la población ideal en
que se suprime la autofecundación, fórmula a la que, de
haber congruencia entre ambas, se debe reducir la fórmula
del CE de la población estudiada por Márquez-Sánchez
(1998) cuando m = 1. Ante este escenario se emprendió
esta investigación teórica con el fin de esclarecer esta
inconsistencia y de identificar o derivar la fórmula exacta
del coeficiente de endogamia esperado cuando cada ciclo
está formado por n familias de m medios hermanos cada
una y el apareamiento aleatorio no incluye la
autofecundación.

MÉTODOS Y MARCO TEÓRICO

El estudio de la endogamia se ha hecho con varios
enfoques. Wright (1922) se refirió a ella como la correlación
de los gametos que se unen para formar el cigote; este
enfoque, sin embargo, parece estar confinado al modelo de
dos alelos por locus. Por su parte, Barret et al. (2004) han
hecho estudios de la endogamia de poblaciones naturales
de una especie silvestre con potencial de ornato (Narcissus
longispathus) con base en técnicas de electroforesis, lo que
demanda equipo y personal especializados. El enfoque
probabilístico, en cambio, no tiene los problemas anteriores
y permite alcanzar los objetivos de este trabajo; por ello fue
el que se adoptó, particularmente en el contexto de los
coeficientes de endogamia, coancestría y población ideal.

El modelo de población en que se basó este estudio
fue similar al de la población ideal descrito por Falconer
(1989). La ideal es una población conceptual formada por
un conjunto de tamaño infinito de individuos no endogámicos
ni emparentados; el ciclo 1 lo forma el apareamiento
aleatorio, que incluye la autofecundación, de los N individuos
obtenidos al azar de la población base. Similarmente, del
ciclo 1 se toma una muestra aleatoria de N individuos de
cuyo apareamiento aleatorio surge el ciclo 2, y así
sucesivamente. El modelo que se utilizó en este estudio
difiere del modelo de población ideal en que en el
apareamiento aleatorio no incluye la autofecundación, que
sí es incluida en la población ideal; y el paso de una
generación a la siguiente se hace mediante el apareamiento
aleatorio (sin autofecundación) de los mn individuos que
resultan de m semillas de cada uno de los individuos de una
muestra al azar de tamaño n obtenida en la generación
antecedente. El punto de partida o ciclo cero fue visualizado
de dos maneras: a) una muestra de la población base
formada por mn individuos no endogámicos ni emparentados
[como lo hizo Márquez-Sánchez (1998)] que, para efectos
de consistencia con la notación de ciclos más avanzados,
se clasificaron en n grupos de m individuos cada uno, y b)
como la muestra del caso anterior excepto que está formada
por n familias no emparentadas de m medios hermanos no
endogámicos cada una. En ambos casos, el ciclo uno se
consideró como la población que resulta de m semillas de
cada uno de n individuos tomados al azar de entre los mn
individuos del ciclo cero que previamente fueron sometidos
a apareamiento aleatorio (sin autofecundación).
Similarmente, después del apareamiento aleatorio sin
autofecundación de los mn individuos,  se toma una muestra
de tamaño n que en el ciclo dos será una población formada
por n familias de m medios hermanos cada una. Los ciclos
siguientes se forman de la misma manera.

El genotipo p-ésimo (p = 1,2,…, m) del grupo o familia
i (i = 1,2,…, n) del ciclo cero (C

0
) fue representado como A

pi1

A
pi2

. El arreglo genotípico (Kempthorne, 1969) del C
0
, por lo

tanto, fue representado en la forma ( )[ ] pi2
1p 1i

pi1AA1/ ∑∑
= =

m n
mn .
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El arreglo gamético que produce el C
0
 debe ser

( )[ ]∑ ∑ ∑
= = =

m n
mn

1p 1i

2

1k
pikA21/  (tanto el de machos como el de

hembras). La ausencia de autofecundación en la
reproducción por apareamiento aleatorio del C

0
 producirá el

ciclo uno (C
1
) cuyo arreglo genotípico esperado es

( )[ ]{ }∑∑∑ ∑ ∑∑−

≠
p q i

qjpi
j k l

qjlpikAA141/ mnmn . No obstante la

restricción de que el genotipo de ningún individuo del C
1

puede estar formado por dos genes que provienen de un
mismo individuo del C

0
 (expresada como pi≠qj) el arreglo

gamético esperado del C
1
 es ( )[ ]∑ ∑ ∑

= = =

m n
mn

1p 1i

2

1k
pikA21/ . Este

arreglo gamético esperado es así debido a que como se
han considerado ausentes la migración, mutación y selec-
ción, no debe esperarse pérdida de genes ni cambio de sus
frecuencias. El ciclo dos (C

2
) y demás ciclos se generan de

una manera similar a la que se describió para el C
1
.

RESULTADOS Y DISCUSIÓN

El C
0 
es un conjunto de individuos no endogámicos ni

emparentados

De acuerdo con los conceptos y métodos descritos
en el apartado anterior, los ciclos 0 y 1 deben tener
coeficientes de endogamia iguales a cero; es decir, F

0
 = 0 y

F
1
 = 0. Con respecto al ciclo dos (C

2
), es de esperarse que

contenga individuos producidos por el apareamiento de
medios hermanos del C

1
 que así contribuirán al coeficiente

de endogamia del C
2
 (F

2
). Éste es equivalente al coeficiente

de coancestría del C
1
 debido a que la reproducción se hace

mediante apareamiento aleatorio. Si en el C
1
 se hace un

muestreo al azar de dos individuos y de un locus cualquiera
de cada uno de éstos se elige un gen al azar, la única
posibilidad de que ambos genes sean idénticos por
descendencia es que ambos sean copia de genes de un
mismo progenitor del C

0
. Para un individuo del C

0
 cuyo

genotipo es A
pi1 

A
pi2

, el muestreo con reemplazo de dos genes
puede producir con una probabilidad de ¼ en cada caso, los
genotipos A

pi1 
A

pi1
, A

pi1 
A

pi2
,A

pi2 
A

pi1
 y A

pi2 
A

pi2
 de manera que la

contribución al coeficiente de endogamia del C
2
 de este

progenitor  particular  es

( )[ ] ( ) ( ) ( )[ ]pi2pi2pi2pi1pi1pi1
2

AAPAA2PAAPmn1/ ≡+≡+≡ 

( )[ ] ( )[ ] ( )[ ] ( )[ ]/2F1mn1//412F1mn1/ 0
2

0
2

+=++=   . Como F
0

= 0 y hay mn progenitores con igual capacidad de
participación en el F

2
, resulta que

( )[ ]( )
( )mn

mnmn

21/

/2F11/F 0
2

2

=

+=
                    (1)

El ciclo 3 (C
3
) se forma a partir del apareamiento

aleatorio, sin autofecundación, del ciclo 2 y el subsecuente
muestreo al azar de n individuos cuya semilla producirá las
n familias de m medios hermanos cada una. El coeficiente
de coancestría del C

2
 [coeficiente de endogamia del ciclo 3

(F
3
)] es la probabilidad de identidad por descendencia de

los dos genes tomados al azar de sendos individuos del C
2
,

también elegidos al azar. Con respecto al origen de estos
dos genes, las tres únicas posibilidades es que provengan
de: 1) un mismo individuo del C

1
; 2) sendos medios hermanos

de una familia del C
1
, y 3) sendos individuos del C

1
 que

pertenecen a familias diferentes de medios hermanos. Las
frecuencias de ocurrencia de estos tres eventos mutuamente
excluyentes son: (mn)–1, (m–1)(mn)–1 y (n–1)n -1,
respectivamente. Además, respecto a la probabilidad de que
los dos genes en cuestión sean idénticos por descendencia:
1) para el caso en que ambos genes provienen de un mismo
individuo del C

1
, por analogía con lo que al respecto se

encontró en la derivación de F
2
, esta probabilidad es (1+F

1
)/

2 = ½; 2) si los dos genes provienen de sendos medios
hermanos del ciclo 1 (C

1
), con respecto al ciclo cero (C

0
)

pueden provenir, con probabilidad de ¼, del progenitor común,
y con una probabilidad de identidad por descendencia de
(1+F

0
)/2; y con probabilidad de ¾ de dos progenitores

diferentes del C
0
 que concurrieron aleatoriamente a su

apareamiento, de manera que la probabilidad total de
identidad por descendencia en este caso es (¼)(1+F

0
)/2 +

(¾)F
1
 = (1+F

0
+6F

1
)/8, y 3) si los dos genes muestreados

provienen de sendos individuos aleatorios de dos familias
de medios hermanos del C

1
 la probabilidad de que los genes

sean idénticos por descendencia debe ser F
2
. De acuerdo

con las frecuencias de ocurrencia de los eventos en 1), 2) y
3) y las probabilidades de identidad por descendencia en
estos tres casos, el coeficiente de endogamia del ciclo 3
(F

3
) debe expresarse como:

[ ] ( ) ( ) ( ) [ ] nn
mn

m
mn /F16FF1

8

1
2/F1F 21013  −+++

−
++=   (2)

De acuerdo con los resultados también ya derivados,
F

0
 = 0, F

1
 = 0 y F

2
 = 1/(2mn) (Ec. 1), la Ec. 2 puede escribirse

más concisamente como:

( ) ( ) ( ) ( ) ( )2
3 2/18/121/F mnnmnmmn −+−+=       (3)

Para el ciclo 4 (C
4
), por extensión del razonamiento

utilizado para derivar F
3
 (Ec. 2) debe resultar que:

[ ] ( ) ( ) ( ) [ ] nn
mn

m
mn /F16FF1

8

1
2/F1F 32124  −+++

−
++=   (4)

Con la consideración de que F
1
 = 0, de la Ec. 4 se

encuentra que:
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[ ] ( ) ( ) ( ) [ ] nn
mn

m
mn /F16F1

8

1
2/F1F 3224  −++

−
++=    (5)

Generalizando, para la generación t = 3,4,5,6,… el
coeficiente de endogamia del C

t
 (F

t
) debe ser expresable

como

( ) ( ) ( )
1-t2-t3-t

2t
t F

1
6FF1

8

1

2

F1
F

n

n

mn

m

mn

−
+++

−
+

+
= −

   (6)

Nótese, para m = 1,

( )
1t

2t
t F

1

2

F1
F −

− −
+

+
=

n

n

n
                    (7)

La Ec. 7 es la que muestran Crow y Kimura (1970)
para una población que difiere de la población ideal que de-
scribe Falconer (1989) sólo porque en la primera la
autofecundación no ocurre. Sin embargo, la fórmula que
derivó Márquez-Sánchez (1998) para la población a la que
corresponde la Ec. 6 aquí derivada, difiere de ésta y para el
caso en que m = 1 se reduce a la expresión

[ ] ( )[ ]12/FF21F 3t1tt +++= −− nn                 (8)

La Ec. 8, sin embargo, difiere de la que aquí se derivó
para el mismo caso (Ec. 7). Por ejemplo, una diferencia
entre estas dos ecuaciones es que sólo una, la Ec. 7, incluye
F

t-2
, no obstante que la inclusión de este término es correcta

pues corresponde a la coancestría, no nula, entre individuos
del ciclo t-1 que tienen un progenitor en común en el ciclo t-
2. También es notable que para m = 1 la Ec. 8 implica que
para n = 1, F

t
 = [1 + 2F

t-1 
+ F

t-3
] / 4; sin embargo, en este

caso, (n = 1 y m = 1), no existirían C
1
, C

2
, C

3
,…, puesto que

con sólo un individuo la única vía reproductiva sería la
autofecundación, que en este caso no es posible. Estas
dos consideraciones son evidencias de la falta de exactitud
de la ecuación que derivó Márquez-Sánchez (1998) para el
coeficiente de endogamia de la población que es objeto de
estudio en este trabajo.

La derivación que se hizo de la Ec. 7 permite determinar
que, como F

0
 = F

1
 = 0, con m = 1, F

2
 = 1/(2n), resultado que

también se deriva directamente de lo hecho en este estudio
(Ec. 1) y que deja otra lección: la fórmula que derivó Sahagún
(2006) para este caso específico tampoco es exacta ya que
ahí se consigna que F

2
 = [4n - 5] /{2 [4n (n-1) -1]}.

El ciclo cero es un conjunto de familias de individuos
no endogámicos

Al parecer, resulta muy realista considerar que el punto
de partida en un programa de selección masal sea la semilla
de cada uno de varios individuos. Si el C

0
 está formado por

n familias no emparentadas de medios hermanos no

endogámicos, el C
0
 tendrá un coeficiente de endogamia (F

0,F
)

igual a cero; i.e., F
0,F

 = 0. Sin embargo, el ciclo 1, originado
por el apareamiento aleatorio del C

0
 y la subsecuente toma

de una muestra al azar de n individuos, cada uno con m
semillas, debe tener un coeficiente de endogamia (F

1,F
) mayor

que cero debido a que ocurre apareamiento entre medios
hermanos con una frecuencia de (m-1) /(mn). La probabilidad
de que un apareamiento de este tipo produzca un individuo
cuyo genotipo esté formado por dos genes idénticos por
descendencia, por analogía y adecuación de la derivación
de la Ec. 2, debe ser (1/8) (1 + F

-1,F 
+ 6F

0,F
). Como en este

caso F
-1,F

 = F
0,F

 = 0, la probabilidad en cuestión es igual a
(1/8). De acuerdo con estos resultados, F

1,F 
= (m–1) /(8mn).

Con respecto al ciclo 2 (C
2
), formado por los mn

elementos que produce la muestra aleatoria de n individuos
del C

1
, con m semillas cada uno, su coeficiente de

endogamia (F
2,F

) se determinará como el coeficiente de
coancestría del C

1
. A éste sólo contribuyen la identidad por

descendencia de dos genes muestreados de sendos
individuos del C

1
 debida a que: a) los genes provienen de un

mismo progenitor del C
0
, y b) los genes provienen de dos

medios hermanos del C
0
. Las probabilidades de identidad

por descendencia de genes en estos dos eventos son (1+F
0,F

)
/2 = 1/2 y (1+F

-1,F
) /8=1/8, respectivamente. Como las

frecuencias de estos dos eventos son 1/(mn) y (m–1) /mn,
respectivamente, el coeficiente de endogamia del ciclo 2
(F

2,F
) es:

F
2,F

 = 1/ (2mn) +(m-1) /(8mn)                 (9)

Si el punto de partida (C
0
) es un conjunto de n familias

de m medios hermanos, cuando m = 1 este caso se reduce
al caso anterior, en el que el punto de partida (C

0
) es un

conjunto de mn individuos no endogámicos ni emparentados.
Con m = 1, como era de esperarse, la Ecuación 9 se re-
duce a la fórmula F

2,F
 = 1 /(2n), igual a la previamente

discutida que, con este resultado, refrenda su autenticidad.
El coeficiente de endogamia del C

3
 (F

3,F
), se determinará

con el procedimiento utilizado en el ciclo anterior; es decir,
F

3,F
 se derivará vía el coeficiente de coancestría del C

2
.

El muestreo al azar de dos individuos del C
2
 (sin

reemplazo por no haber autofecundación) y el muestreo
aleatorio subsecuente de sendos genes de los genotipos
de estos dos individuos puede formar genotipos con dos
genes idénticos por descendencia debido a que, como en
la derivación de F

3
 (Ec. 2), los genes muestreados provienen:

a) de un mismo individuo del C
1
; b) de dos medios hermanos

del C
1
, y c) de dos individuos de familias diferentes del C

1
.

Las probabilidades de identidad por descendencia de estos
tres casos, por analogía con lo derivado para el F

3
, del caso

en que el C
0
 está formado por mn individuos no endogámicos

ni emparentados (Ec. 2), son: (1+F
1,F

)/2,  (1/8)(1+F
0,F

+6F
1,F

)
y F

2,F
, respectivamente. Con base en éstas y en las
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respectivas frecuencias de ocurrencia de los tres eventos
descritos en a), b) y c), el coeficiente de endogamia del C

3

(F
3,F

), debe expresarse como:

( ) ( ) ( ) nn
mn

m

mn
/F 16FF1

8

1

2

F1
F F2,F1,F0,

F1,
F3,  −+++

−
+

+
=  (10)

Además, como F
0,F

 = 0, F
3,F

 (Ec. 10) también puede
escribirse como:

( ) ( ) ( ) nn
mn

m

mn
/F 16F1

8

1

2

F1
F F2,F1,

F1,
F3, −++

−
+

+
=   (11)

Generalizando, para t = 3, 4, 5, 6,… el coeficiente de
endogamia (F

t,F
), de acuerdo con la Ec. 10 es:

( ) ( ) n
mn

m

mn
n /F 16FF1

8

1

2

F1
F Ft,F2,-tF3,-t

F2,-t
Ft, −+++

−
+

+
= (12)

Nótese que las Ecuaciones 6 y 12 tienen la misma
estructura, no obstante deben diferir porque los dos puntos
de partida (los dos ciclos cero) son diferentes. Las diferen-
cias se aprecian directamente en las magnitudes de los
coeficientes de endogamia derivados para los ciclos C

1
 [F

1

= 0 y F
1,F

 = (m–1) /(8mn)] y C
2
 [F

2
 = 1 /(2mn) y F

2,F
 = 1 /

(2mn) + (m–1) /(8mn)] y lo que estas diferencias implican
en los coeficientes de endogamia de los ciclos más avanza-
dos. Evidentemente, para t = 1,2,3, … y m > 1 F

t,F
 siempre

será mayor que F
t
, aunque en el límite ( )∞→t  ambos

convergen en la unidad.

El efecto de la presión de selección en el coeficiente
de endogamia

El efecto de la presión de selección en el coeficiente
de endogamia se puede apreciar mediante los conceptos
de número (o tamaño) efectivo en términos de varianza [N

e(v)
]

o en términos de endogamia [N
e(f)

] (Márquez-Sánchez, 1998).
Con respecto al primero, Crossa y Vencovsky (1997) encon-
traron que, aproximadamente (cuando nm es grande), N

e(v)

= 4mns /(1+2s) en donde s es la presión de selección que
para el caso del ejemplo referido al maíz por Márquez-Sán-
chez (1998), con n = 200 y m = 20, es igual a n/mn = 1/n =
0.05 (5 %). Al substituir mn, m y n por N

e(v)
, [N

e(v)
m/n]0.5 y

[N
e(v)

n/m]0.5, respectivamente, en el coeficiente de endogamia
que se derivó para el caso en que el C

0
 es un conjunto de

mn individuos no endogámicos ni emparentados y en que el
apareamiento aleatorio no incluye la autofecundación, este
autor generó una fórmula para el coeficiente de endogamia
que refleja el efecto de la presión de selección. Al proceder
de esa manera para el mismo caso (Ecuación 6) la fórmula

para el coeficiente de endogamia en la generación t ( )'
t

F

que se derivó en este trabajo para t = 4,5,6,…, adquiere la
forma:

( )

( )

( )

( )

( )
( )[ ] '

1t
 

ve

2t
'

3t
'

ve

ve

ve

2t
'

'

t

F/N1

6FF1
8N

1/N

2N

F1
F

−

−−
−

−

+++
−

+
+

=
⎥⎦
⎤

⎢⎣
⎡

⎟
⎠
⎞⎜

⎝
⎛

 m

n

  (13)

Evidentemente, para el caso en que el C
0
 es un

conjunto de n familias no emparentadas de medios hermanos
no endogámicos la expresión del coeficiente de endogamia
es igual que la de la Ecuación 13 excepto que los coeficientes

de endogamia serían '
Ft,F , '

F1,-tF , '
F2,-tF  y '

F3,-tF  (Ecuación

12) en lugar de '
tF , '

1-tF , '
2-tF  y '

3-tF  (Ecuación 13),

respectivamente.

Con respecto a los coeficientes de endogamia que
reflejan el efecto de la presión de selección en los primeros
ciclos, de acuerdo con lo derivado para el caso en que el C

0

es un conjunto de mn individuos no endogámicos ni

emparentados, son: 0F'
0 = , 0='

1F , ( )[ ]ve
'
2 2N1F −= ,

='
3F ( )[ ]ve2N1− ( )[ ]{ }1QN

0.51
ve −+

−−
( )[ ]ve8N/ ,

( )
[ ]{ }  1QN

0.5 

ve
−+  ( )[ ]QN/'F ve2 en donde Q = n/m. Con

respecto al caso en que el C
0
 es un conjunto de n familias

de m medios hermanos cuyo coeficiente de endogamia es
cero, los coeficientes de endogamia en cuestión son

0F'
F0, = , ( )[ ]{ }1QNF

0.51
ve

'
F1, −=

−− ( )[ ]ve8N / ,

( )[ ]ve
'

F2, 2N1/F = ( )[ ]{ }1QN
0.51

ve −+
−− ( )[ ]ve8N / y

[ ] ( )[ ]++=
veF1,

'

Ft,
2NF1F /

( )
[ ]{ }{ }'

F1,

0.51

ve
6F11QN +−

−−   

( ) ( )
( )[ ]

( )
[ ] 0.51

ve

'

F2,

0.51

veve
QN/F1QNN

−−−− −+  8/ .

CONCLUSIONES

En este estudio se derivó el coeficiente de endogamia
exacto de una población ideal en que no se incluye la
autofecundación; el ciclo cero es un conjunto de mn
individuos, no endogámicos ni emparentados, y cada ciclo
posterior se establece con n familias de m medios hermanos
cada una. Para las generaciones cero, uno  y dos los
coeficientes de endogamia son F

0 
= 0, F

1 
= 0 y F

2
 = 1 /

(2mn), respectivamente; y para la generación t = 3,4,5,… F
t

= (1 + F
t-2

)/(2mn)+(m-1)(1+F
t-2

+ 6F
t-1

)/(8mn)+(n-1) F
t-1

/n. Para
el caso que difiere de la población anterior sólo en que el
ciclo cero es un conjunto de n familias no emparentadas de
m medios hermanos cuyo coeficiente de endogamia es cero,
los coeficientes de endogamia exactos de las generaciones
cero, uno, dos y tres son F

0,F
=0, F

1,F
=0, F

2,F
=1/(2mn)+(m-
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1)/(8mn) y F
3,F

=1/(2mn)+(m-1)/(8mn)+(n-1)/(2mn),
respectivamente, y para t = 4,5,6,…F

t,F
 = (1+F

t-2,F
)1/

(2mn)+(m-1)(1+F
t-3,F

+6F
t-2,F

)/(8mn) + (n-1)F
t-1,F

/n.
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