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Abstract

Quantifying biodiversity is key to natural resource conservation; however, data collection can be time-consuming and
costly. Given that climate and remote sensing data help in the prediction of species diversity, the objective of this
study was to analyze the relationship of climate data and the Normalized Difference Vegetation Index (NDVI) with
tree diversity in a temperate forest in Northern Mexico. Species richness (S), Simpson's (1-D) and Shannon's (H)
diversity indices were calculated at 663 sampling sites. Subsequently, an exploratory regression analysis was
performed to obtain regression models that would account for the relationship of tree diversity indices with the NDVI,
climatic data, and the number of trees. The best model for each diversity index and its predictor variables was
integrated into a Geographically Weighted Regression (GWR) model. The results showed that the relationship of
diversity indices and predictor variables varies across the space. The variables showed greater predictive potential in
the Northern and Northwestern part of the study area. The NDVI was the variable with the greatest relative influence
in the explanation of the diversity indices; therefore, it can function as a proxy for factors associated with tree
diversity.

Keywords: Spatial distribution, vegetation index, diversity indices, forest management, spatial regression,
species richness.

Resumen

Cuantificar la biodiversidad es clave para la conservacion de los recursos naturales; sin embargo, la recoleccion
de datos puede llevar mucho tiempo y resultar costosa. Dado que los datos climaticos y de teledeteccion ayudan
a la prediccion de la diversidad de especies, el objetivo de este estudio fue analizar la relacion entre datos
climaticos y el Indice de Vegetacion de Diferencia Normalizada (IVDN) con la diversidad arbdrea, en un bosque
templado del Norte de México. Se calculé la riqueza de especies (S), los indices de diversidad de Simpson (1-D)
y de Shannon (H) en 663 sitios de muestreo. Posteriormente se realizé un analisis de regresion exploratoria
para obtener modelos de regresidon que expliquen la relacidon de los indices de diversidad de arboles con el
IVDN, los datos climaticos y el nUmero de arboles. El mejor modelo de cada indice de diversidad y sus variables
predictoras se integré en un modelo de Regresion Ponderada Geograficamente (RGP). Los resultados mostraron
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qgue la relacién de los indices de diversidad y las variables predictoras varia a través del espacio. Las variables
registraron mayor potencial de prediccién en la zona Norte y Noroeste del area de estudio. El IVDN fue la
variable de mayor influencia relativa en la explicacion de los indices de diversidad, por lo que puede funcionar
como sustituto de factores asociados con la diversidad arbdrea.

Palabras Clave: Distribucidon espacial, indice de vegetacion, indices de diversidad, manejo forestal, regresion
espacial, riqueza de especies.

Introduction

Biodiversity loss is increasingly evident and worrisome, mainly due to the
deforestation resulting from agricultural activities (Leija et al., 2021); consequently,

interest in measuring and modeling it has increased (Gillespie et al., 2008).

The most popular strategy has been to model individual species distributions one at
a time (Miller, 2010; Aceves-Rangel et al., 2018; Martinez-Sifuentes et al., 2021).
However, spatial modeling of species diversity at the community level can generate
significant benefits, particularly if many of these taxa are infrequently recorded
(Ferrier and Guisan, 2006).

Remote sensing is one of the main tools available for the study and monitoring of
biodiversity patterns across different spatial scales (Sanchez-Diaz, 2018), given that
it is possible to assess the spectral characteristics of communities (Arekhi et al.,
2017). Such monitoring and evaluation is based on establishing relationships
between the spectral information in an image and the tree species diversity
measured in the field (Madonsela et al., 2018). Likewise, vegetation indices
estimated thanks to remote sensing allow us to know the different plant elements
located on the surface of the Earth (Sancha, 2010; Vela-Pelaez et al., 2024).
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Globally, several studies have used the Normalized Difference Vegetation Index
(NDVI) to estimate tree diversity, based on its sensitivity to primary productivity,
that defines the spatial variation in plant diversity (Madonsela et al., 2018). Given
that such spatial variation or heterogeneity is an important driver of species
richness, population structure, and complexity (Amatulli et al., 2018), it is of great
interest to use techniques that may help understand such variation and,

consequently, in due course, make better decisions.

The main objective of this study was to reveal the spatial relationship between tree
diversity, NDVI, and certain environmental variables according to the Geographically
Weighted Regression model. The hypothesis is that the relationship between tree

diversity, the NDVI, and environmental variables vary across space.

Materials and Methods

Study area

The study area included the Adolfo Ruiz Cortines e€jido, located in Pueblo Nuevo
municipality, in the Southwestern region of the state of Durango, within the
Western Sierra Madre (Figure 1). The climates present are temperate sub-humid
C(wz2) and semi-warm sub-humid (A)C(wz), with an average annual precipitation of
1 000 mm. The altitude above the sea level varies between 2 063 and 2 670 m

(Rosales, 2016). The main vegetation types are mixed forests composed of the
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genera Pinus L. and Quercus L., the most representative vegetation types being
pine forest (P), pine-oak forest (Pq) and oak-pine forest (Qp) (Rosales, 2016).
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Vegetacion = Vegetation; Bosque de pino = Pine forest; Bosque de pino-encino =
Pine-oak forest; Pastizal inducido = Induced grassland; Vegetacion secundaria
arbustiva de bosque de encino = Shrub secondary vegetation of oak forest;
Vegetacion secundaria arbustiva de selva baja caducifolia = Shrub secondary
vegetation of low deciduous rainforest; Vegetacion secundaria arborea de bosque de

pino-encino = Tree secondary vegetation of pine-oak forest.
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Figure 1. Location of the study area, main vegetation types, and distribution of

sampling sites.

Dasometric data

Based on information from the ejido's Forest Management Program, the authors
analyzed dasometric data of a total of 41 928 trees belonging to 20 species from

663 sampling sites circular in shape with a surface area of 1 000 m?2 (Table 1).

Table 1. Analyzed species and number of trees.

Species Number of trees

Pinus cooperi C. E. Blanco 561
Pinus durangensis Martinez 4 150
Pinus leiophylla Schiede ex Schitdl. & Cham. 7 532
Pinus teocote Schlitdl. & Cham. 2 645
Pinus engelmannii Carriere 2138
Pinus lumholtzii B. L. Rob. & Fernald 54
Pinus ayacahuite C. Ehrenb. ex Schitdl. 52
Pinus chihuahuana Engelm. 1
Juniperus deppeana Steud. 1813
Cupressus spp. 1
Quercus sideroxyla Bonpl. 7 211
Quercus durifolia Seemen 1253
Quercus laeta Liebm. 257
Quercus eduardii Trelease 195
Quercus crassifolia Bonpl. 21
Quercus splendens Née 132
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Quercus rugosa Née 9963
Alnus acuminata Kunth 3
Alnus spp. 10
Arbutus xalapensis Kunth 3936

As indicators of alpha diversity, the total number of species (species richness S) and
Simpson's Diversity Index (1) (Equation 1) (Simpson, 1949; Peet, 1974) were
measured at each site, and, given that their value is inverse to the evenness

(Equation 2) (Lande, 1996), diversity can be calculated as follows:

1-D0 (1)

D=3()*=Z() (2

Where:

n = Number of trees of a particular species
N = Number of trees of all the species

pi = Proportional abundance of the species

Also utilized was the Shannon Index (Equation 3), which measures the average
degree of uncertainty in predicting to which species a tree chosen at random from a

collection will belong (Peet, 1974; Magurran, 1988). It acquires values between 0,
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when there is only one species, and the logarithm of S, when all the species are

represented by the same number of trees (Magurran, 1988).

H = —X pilnpi (3)

Where:

H = Shannon's Index
pi = Proportional abundance of the species

In = Natural logarithm

NDVI and climate data

The NVDI was computed monthly and annually, using the Landsat 8 Surface
Reflectance Tier 1 image set (30 m spatial resolution) in the Google Earth Engine®
platform. These data have been atmospherically corrected using the LaSRC algorithm
and include a cloud, shadow, water, and snow mask produced with CFMask and a
per-pixel saturation mask. The images used correspond to the period from January 1,
2020 to December 31, 2020. One image was used for each month of the year with
the least amount of clouds, and for the annual NDVI data, an average of the 12

images was calculated. Subsequently, the images were cropped to fit the study area.

In addition, data were obtained on mean annual precipitation and minimum, mean and

maximum temperatures. These data were recorded in raster format (600 m spatial
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resolution) through the Digital Climate Atlas of Mexico and represent the average for
the period 1902-2011 (Instituto de Ciencias de la Atmosfera y Cambio Climatico,
2009).

Geoprocessing

Sampling sites were georeferenced and linked to the diversity index in a point-type
shapefile. To match the diversity index data for each sampling site with the NDVI and
climate information, a data extraction process was performed in ArcGIS 10.8® (ESRI,
2020), which consisted of extracting cell values from a raster based on a set of
coordinate points. The resulting file was a point-type shapefile with attributes of
coordinates, sampling site number, total number of trees per site, number of trees
per species, diversity index values, monthly and annual average NDVI values, and
climatic data of mean annual precipitation and minimum, mean and maximum

temperatures.

Statistical analysis

An Exploratory Regression analysis was carried out using the ArcGIS 10.8® (ESRI,
2020) software to generate regression models that would explain the relationship

between tree diversity and the NDVI and climate data. The dependent variables were
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the values of tree diversity indices, and the independent variables were the values of
the NDVI, climate data, and the number of trees in each sampling site. In this
analysis, all possible combinations of the candidate independent variables were
evaluated. Unlike Stepwise Regression, which looks for models with high adjusted R?
values, Exploratory Regression tracks models that meet all the requirements and
assumptions of the Ordinary Least Squares (OLS) method (ESRI, 2024).

Subsequently, to analyze the spatial pattern of the relationship between tree diversity
and the NDVI, climate data, and number of trees, the models obtained using the
Exploratory Regression were integrated into the Geographically Weighted Regression
(GWR) model (Equation 4); i. e., the same models were utilized, but the spatial
component (location) was incorporated in their structure. The method fits a
regression model for each observation (in this case for each sampling site) based on
data from close neighbors and, under a concept of distance (bandwidth), gives more
weight to the closest neighbor and vice versa (Brunsdon et al., 1996). The optimal
bandwidth for each model was identified using an adaptive kernel function that was
evaluated by minimizing the Akaike Information Criterion (AIC) (Fotheringham et al.,
2002). According to Fotheringham et al. (2002), the model can be expressed as

follows:

}TII = JBI}[:I“I: UI) + E;.::lﬁk (H‘ir L‘II)_'XE-J{ + el (4)

Where:

vi = Dependent variable
B, = Intercept

(u,v) = Coordinates the /" observation
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k = Number of independent variables
B, = Slope
x,, = Independent variables

e = Model error

The Geographically Weighted Regression model was fitted in GWR 4.0.90 software
(Nakaya, 2015), which also fits the Ordinary Least Squares (OLS) regression model
and through an F-test compares the improvements of the GWR model about the
OLS model (Nakaya, 2016).

Results

Exploratory Regression Analysis

An Exploratory Regression analysis indicated the combination of independent
variables that best met the assumptions of the OLS method for each model. The
independent variables for the regression model explaining species richness (S) were
the NDVI values for the month of March (NDVIwarch), the number of trees present at
each site, and the mean annual rainfall. For the Simpson (1-D) and Shannon (H)

index models, the independent variables were the values of the January NDVI
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(NDVIanuary) and the number of trees. All variables were statistically significant
(p=<0.05).

OLS regression models

The regression equations adjusted for the diversity indices and their explanatory
variables through OLS showed a low explanation of the observed variation (R?). The
values of the variance inflation factor (VIF) of the explanatory variables of the
diversity indexes did not show multicollinearity issues, as in all cases the values
were lower than the reference value (7.5). In addition, the regression coefficients
indicated that, in all cases, the NDVI was the variable of greatest relative
importance, followed by the number of trees. In the case of species richness (S),

the variable of least relative importance was precipitation (Table 2).

Table 2. Regression coefficients of OLS models adjusted for diversity indices.

Index Variable coI:ef?i::?es:ito(n B) P value St::ia:-rd AIC R?
Species Intercept 9.1347 0.000 2.09 2239.05 0.15
fchness (S)  NDVIuaren 2.0978 0.002  0.68
Number of trees 0.0178 0.000 0.002
Rainfall -0.0055 0.033 0.002

Simpson (1-D) Intercept 0.6621 0.000 0.02 -921.9 0.005
NDVIanuary 0.1617 0.045 0.08
Number of trees 0.00005 0.007 0.0001

Shannon (H) Intercept 1.3146 0.000 0.05 286.09 0.01
NDVIanuary 0.4071 0.048 0.2
Number of trees 0.0009 0.033 0.0004
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AIC = Akaike Information Criterion.

GWR models

The number of spatial units (sampling sites) considered for the fit of the GWR
models was 663, the bandwidth was defined as 48 neighbors for the species
richness (S) model and 46 for the Simpson and Shannon index models. The fitted
GWR models showed lower AIC values than those obtained with the OLS models.
These AIC values were 2 174.42 for the species richness (S) explanatory model, -1
000.37 for the Simpson's Index model, and 195.72 for the Shannon Index model.
The above indicated that the GWR models had an improvement in error reduction,
concerning the OLS models. In addition, based on the F-tests, the reduction in the
sum of squares of GWR was determined to be significant (p<0.05) in all cases. This
suggests that the GWR models are statistically different from the OLS models.
Regarding the regression coefficients of the GWR model, it was also observed that
the variable with the highest relative importance was the NDVI in all cases (Table
3).

Table 3. Summary statistics of the regression coefficients of the fitted GWR models

for the diversity indices.

Index Variable Mean cSI:?l?adt?;: Minimum Maximum AVS;?E: t-
Species Intercept 6.8749  12.4785  -26.6498  33.518 1.4216
richness () VD Ivaren 2.3361 2.1847 -1.9417  6.4714 1.4187

Number of ~ 0.0183 0.0076 -0.0038  0.0307 3.8003
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trees
Rainfall -0.0031 0.0136 -0.0344 0.0325 -0.5272
Simpson (1-D) Intercept 0.5869 0.0683 0.4305 0.7446 12.1779
NDVLanuary 0.6939 0.5533 -0.1278 2.3567 2.0044
Number of -0.00005 0.0008 -0.0024 0.001 -0.1102
trees
Shannon (H) Intercept 1.1338 0.1859 0.6952 1.5882 9.6453
NDVI;anuary 1.7722 1.5229 -0.9463 5.8945 2.0255
Number of 0.0005 0.0019 -0.0049 0.0028 0.5003
trees

The GWR approach allowed the mapping of model statistics and the analysis of their
spatial variability. Figure 2A shows the spatial distribution of the NDVImaren that
corresponded to the one with the highest association with the species richness. The
highest values of the regression coefficients of the number of trees tend to be
distributed in the Northern part of the property (Figure 2B). Rainfall had a positive
relationship with species richness in some spatial units, while in others it had a
negative relationship (Figure 2C). The highest values for the regression coefficients of
NDVImarcn Were distributed in the Central-Northern part of the property, and the
lowest, in the Northwestern portion (Figure 2D). Regarding the spatial variation of
the coefficients of determination (local R?s), the highest values were registered in the
Northern part of the property (Figure 2E). This variability in the local R?s indicates the
locations where the variables explain the diversity indices to a greater or lesser

extent.
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Figure 2. Spatial distribution of GWR statistics for species richness.

Figure 3A shows the spatial distribution of the NDVI January, which exhibited the
highest association with the Shannon index. The Regression coefficient of the
number of trees had the lowest relative importance of the analyzed variables

(Figure 3B). The highest values of relative importance for a nhumber of trees showed
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a tendency to be distributed in the Northern part of the property. The Regression
coefficient of the NDVI@anuary registered the highest relative importance, with the
highest values distributed toward the Northwest of the property, while the lowest
values were for the Northeast to Southwest area (Figure 3C). Finally, the local R%s
had the highest values in the Northwest of the site, where the NDVIjnuary showed
the highest relative importance. The lowest values were distributed in most of the

analyzed samples (Figure 3D).

& . N < ’
Number of trees
© -0.004 --0.003
C2Q study area
NV © -0.003 --0.001
e High: 0.8190 o -0.001 --0.0002
@ -0.0002 - 0.001
— -
Low: -0.0208 . >0.001
m Study area
"+ ) -
g » B
Kilgmetros Kilmetros g
o 051 2 b i} { J G
[ | U s - J
r 7 B
A A 5
NDVI Local R2s
© -09-04 o 0.04-0.10
° 04-17 © 0.10-0.15
® 1.7-31 e 0.15-0.20
e 31-45 e 0.20-0.25
® >45 ®  >0.25
C3 Study area Cs Study area
Kilsmetros Y ; o > d ; Kilsmetros ’
T ¢ - TR
o 05t ; 0 05ty
\l - { J < 7 W J

A = NDVI@:anuary; B = Regression coefficient associated with a number of trees; C =
Regression coefficients associated with NDVIjanuary; D = Local R%s. Kilometros =

Kilometers.

Figure 3. Spatial distribution of GWR statistics for Shannon index.
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The spatial distribution of NDVIanuary showed the strongest association with
Simpson's index (Figure 4A). The Regression coefficient of the number of trees
registered the lowest relative importance of all the variables analyzed (Figure 4B);
the highest values for the relative importance of number of trees were distributed in
the Northern, Central, and Southern parts of the total distribution of the sites within
the property. The lowest values were clustered to the Northwest of the property
boundary and shared this distribution zone with the highest January values. The
lowest values of the January regression coefficient were recorded from Northeast to
East and South (Figure 4C). The local R? values followed the same distribution

pattern (Figure 4D).
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A = NDVI@:anuary; B = Regression coefficient associated with a number of trees; C =
Regression coefficients associated with NDVIjanuary; D = Local R?s. Kilémetros =

Kilometers.

Figure 4. Spatial distribution of GWR statistics for Simpson's index.

Discussion

Understanding how species diversity varies across space and exploring the
processes and driving mechanisms involved have been fundamental goals of
ecology (Balvanera and Aguirre, 2006) and have contributed to the development of
different estimation methods that make it possible to improve the traditional

classification methods (Hernandez-Stefanoni et al., 2012).

In this study, the spatial variation of the relationship of tree diversity indices with
NDVI values, climate data, and number of trees was analyzed using the GWR
model. The use of spatially adjusted regression models, such as the GWR, improves
the estimation of the statistics in comparison with OLS (Mallick et al., 2021; Cabral-
Aleman et al., 2022; Lu et al., 2022); this was also observed in the present study.
In addition, the use of GWR allowed the visualization of the predictive power of the
independent variables analyzed, as well as the spatial distribution of the statistics

and their respective mapping.

Notably, it was determined that the relationship of tree diversity indices with NDVI
values, climatic data, and number of trees varied across space. Likewise, the
explanatory power of each adjusted GWR model showed a tendency to vary in
space; that is, there are areas where the R? was higher: for example, in the

Northern and Northwestern part of the study area. It should be noted that these
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areas coincide with the most productive areas of the property in terms of biomass
and carbon (Cartus et al., 2014; Vargas-Larreta et al., 2017). In addition, in these
areas, a higher relationship between the NDVI and tree diversity was observed; this
can be explained by the direct relationship between the biomass and structural
variables and the NDVI (Meng et al., 2016). Thus, the relaionship between IVDN
and tree diversity supports the positive productivity-diversity assumption, which
states that the relationship between productivity and species diversity follows an
environmental gradient (Madonsela et al., 2017). Another important finding was the
relationship of the diversity indices with the NDVI of different months; that is,
species richness was more closely related to the NDVIwarcn, while the Simpson's and
Shannon's indices showed a closer relationship with the NDVIjanuary. These results
are consistent with some precedents indicating that diversity indices tend to relate
mostly to monthly NDVI values rather than to annual values (Meng et al., 2016;
Madonsela et al., 2017); this has been directly related to the beginning of the
growing season, as the onset of leaf senescence in trees marks an increase in NDVI
values (Lu et al., 2022). For the study area, the growing season begins after cold
conditions (January-March), characterized by low evaporation and greater soil
moisture (Chavez-Gandara et al., 2017), agreeing with the period when the NDVI-

diversity ratio was higher.

As for the relative influence of the explanatory variables of diversity, the NDVI was
the most influential in explaining diversity indices; thus, it is an important predictor of
tree diversity (Arekhi et al., 2017; Madonsela et al., 2018), and functions as a
surrogate for factors associated with species diversity (Hernandez-Stefanoni et al.,
2023).

Another variable that helped explain the variability in the values of the diversity

indices was the number of trees, which is the second variable in relative
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importance. This relationship is logical, given that diversity indices are a function of

the relative distribution of individuals among species (Salami et al., 2021).

On the other hand, many other factors influence species diversity, mainly climate,
topography, and soil properties (Song et al., 2021). However, the relative
contribution of each variable may vary from one region to another (Song et al.,
2021). Particularly, in the present study, no significant relationships were obtained
between certain diversity indices and climate data. However, it was determined that
rainfall may be a predictor of species richness in the study area, although this

relationship has been more evident at larger scales (Xu et al., 2019).

Finally, as mentioned in similar studies, these types of results should be restricted
to the working area, as they may be modified depending on the species examined,

the environment, or the overall community members (Kiran and Mudaliar, 2012).

Conclusions

The relationship of diversity indices with NVDI, climate data, and a number of trees
varies across space. The independent variables show greater predictive potential in
the Northern and Northwestern parts of the study area; these results support the
research hypothesis. NDVI has a high predictive power; therefore, it can function as

a proxy for factors associated with tree diversity.

GWR is an effective method for analyzing the relationship between tree diversity
and associated factors; in addition to being a technique that improves the results, it

also contributes to the explanation of the spatial distribution of tree diversity.
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Finally, these results serve as a basis for similar research in the region, and the use
of statistical models that include the spatial component is recommended for a better

understanding of diversity patterns and associated factors.
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