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ABSTRACT

Background: Since to the prognosis of lung squamous cell carcinoma is generally poor, there is an urgent need to innovate 
new prognostic biomarkers and therapeutic targets to improve patient outcomes. Objectives: Our goal was to develop a 
novel multi-gene prognostic model linked to neutrophils for predicting lung squamous cell carcinoma prognosis. Methods: We 
utilized messenger RNA expression profiles and relevant clinical data of lung squamous cell carcinoma patients from the Can-
cer Genome Atlas database. Through K-means clustering, least absolute shrinkage and selection operator regression, and 
univariate/multivariate Cox regression analyses, we identified 12 neutrophil-related genes strongly related to patient survival 
and constructed a prognostic model. We verified the stability of the model in the Cancer Genome Atlas database and gene 
expression omnibus validation set, demonstrating the robust predictive performance of the model. Results: Immunoinfiltration 
analysis revealed remarkably elevated levels of infiltration for natural killer cells resting and monocytes in the high-risk group 
compared to the low-risk group, while macrophages had considerably lower infiltration in the high risk group. Most immune 
checkpoint genes, including programmed cell death protein 1 and  cytotoxic T-lymphocyte-associated antigen 4, exhibited 
high expression levels in the high risk group. Tumor immune dysfunction and exclusion scores and immunophenoscore results 
suggested a potential inclination toward immunotherapy in the “RIC” version V2 revised high risk group. Moreover, prediction 
results from the CellMiner database revealed great correlations between drug sensitivity (e.g., Vinorelbine and PKI-587) and 
prognostic genes. Conclusion: Overall, our study established a reliable prognostic risk model that possessed significant value 
in predicting the overall survival of lung squamous cell carcinoma patients and may guide personalized treatment strategies. 
(REV INVEST CLIN. 2024;76(2):116-31)

Keywords: Neutrophil. Lung squamous cell carcinoma. Prognostic model. Tumor immune dysfunction and exclusion. Immu-
nophenoscore.
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INTRODUCTION

Lung cancer (LC), a malignant tumor originating from 
the bronchial mucosa or glands in the lungs, is one of 
the major malignancies posing a significant threat to 
human health and life1. Conventionally, small-cell LC 
(SCLC) and non-SCLC (NSCLC) are two major types 
of LC, with approximately 85% of LC cases being 
NSCLC2. Among the various subtypes, lung squa-
mous cell carcinoma (LUSC) is one of the most prev-
alent subtypes, accounting for approximately 30% of 
all NSCLC patients3. Smoking is the primary risk fac-
tor, as chemical substances in tobacco smoke can 
induce and accelerate the malignant transformation 
of lung cells4. Other factors include long-term expo-
sure to air pollution, occupational exposure to asbes-
tos, radioactive materials, or certain chemicals, as 
well as a family history of LC. Treatment options for 
LUSC include surgical resection, chemotherapy, im-
munotherapy, and targeted therapy5. The prognosis 
for LUSC is generally poor, as the majority of patients 
are diagnosed at an advanced stage, and currently, 
there are no specific targeted drugs available for this 
disease, which limits treatment options to some ex-
tent6. Early prediction can help physicians identify 
potential risks or disease progression trends that pa-
tients may face, enabling the formulation of earlier 
preventive strategies. Therefore, exploring prognos-
tic markers with higher sensitivity and accuracy so as 
to improve the prognosis of LUSC patients is of great 
necessity.

Accounting for 40-70% of all human white blood 
cells, neutrophils (NE) are the most abundant type 
of granulocyte and the first line of defense in the 
innate branch of the immune system7. The abun-
dance of NE in tumor tissue has connections with 
poor prognosis8, suggesting that high levels of NE 
may be related to tumor progression and malig-
nancy. Research by Zhou et al.9 demonstrated that 
the direct interaction between NE and tumor cells 
leads to the release of inflammatory mediators, 
which may promote tumor growth in NSCLC. Tsukio-
ka et al.10 pointed out that an increased ratio of NE 
to lymphocytes is an independent adverse prognos-
tic factor for LUSC patients undergoing surgical re-
section, with considerably elevated disease recur-
rence rates and poorer outcomes. NE are also 
associated with immunotherapy in cancer patients. 
Soda et al.11 observed a negative correlation 

between the drug response and the NE-related index 
after nivolumab treatment for NSCLC patients. 
Therefore, NE-related genes may be prognostic fea-
tures for LUSC patients.

The purpose of our study was to construct a prog-
nostic risk model to predict the survival rate of LUSC 
patients. We identified 12 NE-related genes through 
statistical and bioinformatics methods based on the 
cancer genome atlas (TCGA) dataset, constructed a 
prognostic model, and validated it using the gene 
expression omnibus (GEO) dataset. Subsequently, we 
investigated the correlation of the model with im-
mune cell infiltration and the prediction of immuno-
therapy response in LUSC patients. It is expected that 
our findings from this study may provide valuable 
assistance in LUSC prognosis and treatment.

METHODS

Data source and preprocessing

The messenger RNA (mRNA) expression data of 
LUSC patients, with 51 normal samples and 501 tu-
mor samples, were successfully obtained from the 
TCGA database (https://portal.gdc.cancer.gov/). The 
standardization of TCGA mRNA expression and clini-
cal data involves the following steps: (1) mapping 
mRNA expression data to human genome annotation 
files, replacing Ensemble IDs with gene names, and 
deleting genes that were not successfully mapped; 
(2) standardizing mRNA expression data; and (3) ex-
tracting clinical information using Perl language 
scripts, including sample ID, overall survival (OS) in 
days, survival status, age, as well as grading and stag-
ing (T, M, and N staging). As an independent valida-
tion set, the GSE74777 microarray data were ob-
tained from the GEO database (https://www.ncbi.
nlm.nih.gov/geo/). The gene annotation platform is 
GPL17586, from where gene expression data and 
clinical information were extracted for subsequent 
analysis. The previous studies12-16 were reviewed, and 
after removing duplicates, 198 NE-related genes were 
obtained (Table S1).

Subtype identification

The “edgeR” package17 was employed to perform dif-
ferential expression analysis on both cancer samples 
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and LUSC samples (FDR < 0.05 and |log(FC)|>1). The 
intersection of NE-related genes and LUSC differentially 
expressed genes (DEGs) yielded NE-related DEGs. 
The K-means algorithm was utilized to classify LUSC 
tumor samples based on the expression profile matrix 
of NE-related DEGs. Based on the NE-related differen-
tial gene expression profile matrix, we used the R 
software package “ConsensusClusterPlus” (https://
www.bioconductor.org/packages/release/bioc/
html/ConsensusClusterPlus.html) to perform K-
means consistency clustering analysis on LUSC sam-
ples and create clustering result graphs for each K 
value (integer K, 2≤K≤10) separately. Unsupervised 
clustering is defined as follows: Clustering algorithm 
(clusterAlg = “km”), maximum number of clusters 
(max K = 10), number of resamples (reps = 1000), 
sampling rate (pItem = 0.8), feature sampling rate 
(pFeature =1 ), and clustering distance (distance = 
“Euclidean”). Subsequently, PCA clustering analysis 
was performed on LUSC. We utilized “survival” package 
(https://www.bioconductor.org/packages/devel/
bioc/vignettes/survtype/inst/doc/survtype.
html#clinical-data-alone) to do survival analysis so as 
to assess the survival differences among the identi-
fied subclasses.

Construction of the prognostic model

Differential analysis was conducted pairwise be-
tween clustered samples (|logFC|>1.0, FDR<0.05), 
and the resulted DEGs between clusters were inter-
sected and used for subsequent analysis. Clinical 
data of patients were merged with the expression 
levels of the intersected DEGs, and LUSC patient 
samples with a survival time of more than 30 days 
were selected. Subsequently, the “survival” package 
was employed to perform univariate Cox regression 
analysis on the intersected DEGs. Genes associated 
with survival were selected based on a p < 0.05. To 
prevent overfitting, the “glmnet” package (https://
mirrors.tuna.tsinghua.edu.cn/CRAN/web/packag-
es/glmnet/index.html) was applied to accomplish 
LASSO analysis. We employed cross-validation to 
select an appropriate penalty parameter lambda. 
This step helped eliminate genes highly correlated 
with other candidate genes, reducing model com-
plexity and improving its generalizability. Finally, we 
employed the “survival” package to perform multi-
variate Cox regression analysis on the candidate 
genes selected by LASSO, thus constructing a 

comprehensive prognostic model. Riskscore model 
was built using the following formula:

Riskscore = Χi × β1

n

i=1
Σ

The n represents the total number of genes, Χi repre-
sents gene expression FPKM value, and βi represents 
the multivariate Cox regression coefficient.

Performance evaluation of the model

According to the expression levels of each gene and 
its corresponding risk coefficient, we calculated the 
risk score of each patient in the TCGA and GEO da-
tasets and grouped the samples into high-risk (HR) 
and low-risk (LR) groups with the median risk score 
as a threshold. We employed the “Survival” and 
“survminer” (https://mirrors.tuna.tsinghua.edu.cn/
CRAN/web/packages/survminer/index.html) pack-
ages to draw risk score distribution plots, survival 
status distribution plots, and survival curves for the 
HR and LR groups. A heatmap was created to visu-
ally display the expression differences of each prog-
nostic gene in the two groups. The “timeROC” 
(https://mirrors.tuna.tsinghua.edu.cn/CRAN/web/
packages/timeROC/index.html) package was applied 
to plot receiver operating characteristic (ROC) curves 
for the risk scores and calculate the area under the 
curve (AUC) values at 1 year, 3 years, and 5 years. 
These values could provide us with an assessment of 
the model’s predictive accuracy at different time 
points. With the use of the “pheatmap” package, we 
plotted a heatmap that visually displays the expres-
sion differences of each prognostic gene between 
high- and LR groups. The same steps were performed 
on the GEO validation set to understand the effective-
ness of the model in different datasets.

Independent prognostic analysis

Combining clinical information with the prognostic 
model risk scores, univariate and multivariate regres-
sion analyses were performed on the samples to 
evaluate whether the model maintained its predictive 
ability when considering other clinical features. Cor-
responding forest plots, derived from the results of 
regression analyses, were generated to present the 
impact and significance of each factor. We created a 
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nomogram using the “rms” package (https://cran.r-
project.org/web/packages/rms/index.html). Calibra-
tion curves were used to depict the predicted sur-
vival rates at 1 year, 3 years, and 5 years for the 
patients to investigate the predictive performance of 
the nomogram.

Immune analysis

The single sample gene set enrichment analysis (ssG-
SEA) is a commonly used method for immune cell 
infiltration analysis, which estimates the relative en-
richment of each gene set in the sample by comparing 
the gene expression data of each sample with the 
immune cell gene set18. The “GSVA” package (https://
www.bioconductor.org/packages/release/bioc/
html/GSVA.html) was utilized for ssGSEA analysis to 
plot heatmaps of immune cell infiltration and immune 
functional scores for the HR and LR groups. CIBER-
SORT is an algorithm used to estimate the relative 
abundance of different cell types in complex mixed 
tissues. Based on known cell type gene expression 
matrices and sample gene expression data, it calcu-
lates the relative proportion of each cell type in the 
sample through methods such as non-negative matrix 
factorization19. We used the CIBERSORT algorithm to 
evaluate the proportion of 22 immune cell subtypes 
at HR and LR, and box plots were generated. The 
“ESTIMATE” package (https://bioinformatics.mdan-
derson.org/estimate/rpackage.html) algorithm was 
applied to evaluate the ESTIMATE score, immune 
score, stromal score, and tumor purity. Wilcoxon test 
was performed, and violin plots of HR and LR groups 
were created.

Prediction of immunotherapy response

We employed the Wilcoxon test to statistically ana-
lyze expression levels of immune checkpoint genes in 
HR and LR groups and presented results with box 
plots. We downloaded the tumor immune dysfunction 
and exclusion (TIDE) scores of TCGA-LUSC patients 
from the TIDE database (http://tide.dfci.harvard.
edu/), performed Wilcoxon tests on the TIDE scores 
of HR and LR groups, and plotted violin plots. From 
the cancer immunohistochemical atlas database 
(https://tcia.at), the IPS scores of TCGA-LUSC pa-
tients were downloaded. The Wilcoxon test was per-
formed on the IPS scores of high- and LR groups, with 
violin charts generated.

Drug prediction

CellMiner (https://discover.nci.nih.gov/cellminer/) is 
a database used for cancer cell line research, aiming 
to provide molecular characteristics, drug responses, 
and gene expression information of cancer cell lines20. 
We obtained RNA expression data (RNA: RNA seq) 
and drug data (Compound activity: DTP NCI-60) from 
the CellMiner database. R language was used to cal-
culate the Pearson correlation coefficient between 
the expression of each prognostic gene and different 
drugs. After the screening, the final results were visu-
alized using the “ggplot2” package (https://mirrors.
tuna.tsinghua.edu.cn/CRAN/web/packages/gg-
plot2/index.html.

Statistical analysis

All statistical analyses in this study were conducted 
using R 4.2.3 (https://www.r-project.org/). The Wil-
coxon test was applied to analyze variables that did 
not follow a normal distribution. The correlation be-
tween two continuous variables was examined 
through Spearman’s correlation analysis. The statisti-
cal significance is set to p < 0.05.

RESULTS

Identification of subtypes in TCGA-LUSC 
patients

Differential analysis was performed on the gene ex-
pression profile data of TCGA-LUSC patients (|log-
FC|>1, FDR <0.05), resulting in 7194 DEGs in LUSC 
(Table S2). The intersection of LUSC DEGs with NE-
related genes yielded 121 NE-related LUSC DEGs (Fig. 
1A). Based on NE-related LUSC DEGs, K-means con-
sistency clustering was performed on LUSC tumor 
samples. The results uncovered that when K=3, the 
sample clustering was optimal, and the sample clus-
tered into three clusters (Fig. 1B and C). To validate 
the K-means results, we conducted PCA clustering, 
finding that the samples were clustered into three 
clusters. We conducted a survival analysis on these 
three clusters, revealing that among the three clus-
ters, the survival rate of cluster-2 was considerably 
higher, while the survival rate of cluster-3 was consid-
erably lower (p < 0.05) (Fig. 1E).
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Figure 1. K-means clustering of LUSC patients and construction of the prognostic model. A: intersection of LUSC differentially 
expressed genes with neutrophils-related genes. B: relative changes in the area under the cumulative distribution function curve. 
When K=3, the relative change in area is small, indicating that the clustering results are relatively stable under this number of 
clusters. Therefore, K=3 is chosen as the optimal number of clusters. C: a consensus clustering matrix with K=3, where differ-
ent colors represent different clusters. D: PCA analysis of three clusters. E: survival differences between clusters. F: UPset plot 
demonstrated the cluster-intersecting genes. G: coefficient distribution generated for the logarithmic (λ) sequence in the LASSO 
model. The image is displayed in the Log (λ) = At 26 o’clock, the coefficient distribution of the model demonstrated the best 
feature selection effect. H: LASSO coefficient spectrum for LASSO analysis. Different colored lines represent different genes. 
I: Forest plot of the multivariate Cox analysis.
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Construction of the prognostic model

We conducted detailed differential analysis for differ-
ent clusters, including cluster-1 versus cluster-2, clus-
ter-1 versus cluster-3, and cluster-2 versus cluster-3. 
The intersection of these three sets of DEGs resulted 
in a total of 454 cluster-intersecting genes (Fig. 1F). 
We associated the gene expression with patient sur-
vival and identified 68 candidate genes closely linked 
to patient survival (p < 0.05) (Table S3). Afterward, 
LASSO analysis was conducted on the candidate 
genes, resulting in the selection of 26 genes (Fig. 1G 
and H). Subsequently, we carried out a multivariate 
Cox regression analysis on the LASSO-selected genes, 
leading to the final selection of 12 prognostic genes 
for constructing the prognostic model:

Riskscore = −0.0491*NPHS1 −0.0292*SHISA9 
−0.0422*PAGE5 + 0.0706*TRIM55 −0.0236*LGI1 + 
0.1405*SLC39A5 + 0.0465*GAS2L2 −0.0246*UG-
T1A5 + 0.0937*CCDC141 −0.0629*TSPAN19 + 
0.0398*FGA −0.0291*CLVS2 (Fig. 1I).

Validation of the prognostic model

We classified patients into HR and LR groups with a 
threshold of median risk score (Fig. 2A). Further anal-
ysis of survival status distribution and Kaplan–Meier 
analysis demonstrated remarkably shorter survival 
time and higher risk of death in the HR group (Fig. 2B 
and C). ROC curves were generated, and the AUC at 
different time points (1 year, 3 years, and 5 years) 
was calculated. The model achieved AUC values of 
0.7, 0.73, and 0.75, respectively (Fig. 2D), indicating 
good predictive ability for survival. The heatmap of 
gene expression levels revealed that CCDC141, FGA, 
TRIM55, GAS2L2, and SLC39A5 exhibited relatively 
higher expression in the HR group, whereas SHISA9, 
UGT1A5, TSPAN19, PAGE5, LGI1, NPHS1, and CLVS2 
exhibited relatively higher expression in the LR group 
(Fig. 2E). In summary, our model had a certain degree 
of reliability and stability.

Clinical significance and nomogram  
of prognostic features

Based on the clinical information of LUSC patients 
(age, gender, stage, T stage, N stage, M stage, and 
riskScore), a univariate Cox regression analysis was 
conducted on the risk score and clinical information. 

It was found that stage, T stage, and riskScore were 
statistically significant (p < 0.05) (Fig. 3A). Subse-
quently, multiple factor Cox regression analysis was 
conducted, finding that the risk score was consider-
ably significant (p < 0.05) (Fig. 3B). These results 
indicated that risk score could independently predict 
the survival outcomes of LUSC patients, even after 
considering other factors. Nomograms combining 
clinical features and risk scores were generated to 
predict patient survival rates (Fig. 3C). Further, analy-
sis revealed a close agreement between the predicted 
survival rates of the model and the observed survival 
rates at the adjusted 1-year, 3-year, and 5-year time 
points, as evidenced by the calibration curves (Fig. 
3D-F). Overall, based on this set of nomograms incor-
porating 12 feature genes, our model exhibited a 
good ability to predict patient prognosis.

Immune landscape analysis

The ssGSEA algorithm was applied to calculate im-
mune cell and immune functional scores. The heat-
map results displayed that the degrees of immune cell 
infiltration and immune functional score were rela-
tively elevated in the HR group while relatively low in 
the LR group (Fig. 4A). CIBERSORT analysis was con-
ducted for more detailed information. The results re-
vealed that compared to the LR group, the HR group 
had considerably higher infiltration levels of natural 
killer (NK) cells resting and monocytes while a re-
markable decrease in Macrophages M0 (p < 0.05) 
(Fig. 4B). We applied the ESTIMATE algorithm to score 
the HR and LR groups, finding that compared to the 
LR group, the HR group exhibited greatly higher ESTI-
MATE scores, immune scores, and stromal scores 
while considerably lower tumor purity (p < 0.05) (Fig. 
4C-F). These results further elucidated features of 
the immune system in patients belonging to different 
risk groups.

Prediction of immunotherapy response

In the analysis of immune checkpoints, the expression 
levels of several immune checkpoint genes in the HR 
group, such as ITGAL, cytotoxic T-lymphocyte-asso-
ciated antigen 4 (CTLA4), LAG3, and programmed 
cell death protein 1 (PDCD1), were considerably high-
er than LR group (p < 0.05) (Fig. 4G). Subsequently, 
we calculated the TIDE score and IPS, finding that the 
TIDE score was remarkably lower in the HR group than 
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Figure 2. Construction of validation of the prognostic model. A: distribution of risk scores and survival status (B) for HR and LR 
patients. C: Kaplan-Meier curves for HR and LR patients. D: heatmap displayed the expression levels of 12 prognostic genes in 
LUSC. E: ROC curves based on TCGA dataset.
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Figure 2. Construction of validation of the prognostic model. A: distribution of risk scores and survival status (B) for HR and LR 
patients. C: Kaplan-Meier curves for HR and LR patients. D: heatmap displayed the expression levels of 12 prognostic genes in 
LUSC. E: ROC curves based on TCGA dataset. (continued)
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Figure 3. Independent prognostic analysis and Immune landscape analysisysis. A-B: univariate (A) and multivariate (B) Cox 
regression analyses results for different feature. C: nomogram combining prognostic model score and clinical information. D-F: 
calibration curves for risk prediction at 1 year (D), 3-year (E), and 5-year (F) time points.
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in the LR group (p < 0.05) (Fig. 4H), while the IPS was 
greatly higher in the HR group compared to the LR 
group (p < 0.05) (Fig. 4I-L). TIDE score is an indicator 
used to evaluate immunotherapy response, and a low-
er TIDE score indicates a lower potential for immuno-
therapy21. IPS is a comprehensive indicator for evaluat-
ing immune status, and a higher IPS indicates that the 
immune system is active22. Therefore, the decrease in 
TIDE score and increase in IPS in HR group patients 
may reflect their relative resistance to immunotherapy 
and overactivation of the immune system.

Drug prediction

The CellMiner database was utilized to predict the 
relationship between feature genes and drug sensitiv-
ity, uncovering an extremely significant negative cor-
relation between the expression of TRIM55 and the 
IC50 values of Vinorelbine, PKI-587, Paclitaxel, and 
Vinblastine (Cor<−0.5, p < 0.001). The expression of 
SHISA9 had a negative correlation with the IC50 value 
of Vinorelbine. The expression of CCDC141 showed 
an extremely significant positive correlation with the 
IC50 value of PX-316 (Cor <−0.5, p < 0.001) (Fig. 5). 
Taken together, these drugs may be beneficial for the 
treatment of LUSC patients with different prognoses.

DISCUSSION

Despite numerous studies on LUSC, the OS rate of pa-
tients with LUSC remains low23. NE not only are attrib-
uted with the formation and maintenance of the tumor 
inflammatory microenvironment but also takes an ex-
tensive part in various tumor pathological processes9. In 
this study, by integrating TCGA LUSC data and NE-re-
lated genes and employing methods such as the K-
means algorithm and univariate/multivariate Cox re-
gression analysis, 12 genes were determined as 
prognostic indicators for LUSC. This model effectively 
distinguished patients with different prognoses and pro-
vided valuable insights into predicting patient response 
to immunotherapy. We conducted the first in-depth 
study on the prognostic role of NE in LUSC, thereby of-
fering novel biological markers and potential therapeutic 
targets for the clinical prognosis of LUSC patients.

Our prognostic model comprised 12 genes: CCDC141, 
FGA, TRIM55, GAS2L2, SLC39A5, SHISA9, UGT1A5, 
TSPAN19, PAGE5, LGI1, NPHS1, and CLVS2. FGA is an 

extracellular matrix protein that influences blood clot 
formation24 and participates in tumor angiogenesis and 
development25. Li et al.26 put forward that FGA is up-
regulated in the serum of stage I LUSC patients, sug-
gesting its potential as an early diagnostic and prog-
nostic biomarker for LUSC. TRIM55 is an E3 ubiquitin 
ligase specific to the myocardium and skeleton muscle 
and maintains muscle development and cardiac func-
tion27. Guo et al.28 demonstrated that silencing TRIM55 
facilitates the mesenchymal phenotype transition of LC 
cells, thereby promoting their migration and invasion. 
SLC39A5, a member of the zinc transporter protein 
family, facilitates the transportation of zinc ions from 
the extracellular space or organelles into the cyto-
plasm, thus maintaining cellular zinc homeostasis29. Liu 
et al.30 revealed the significant function of SLC39A5 in 
lung adenocarcinoma, as it participates in the carcino-
genesis process by activating the PI3K/AKT signaling 
pathway. SHISA9 is closely linked with poor prognosis 
in LUSC patients31. UGT is an essential phase II meta-
bolic enzyme in humans, taking a crucial part in the 
metabolism processes of drugs and endogenous sub-
stances32. Bao et al.33 found that UGT1A5 is specifi-
cally upregulated in LC. LGI1 is a secreted protein found 
in the central nervous system, involved in the modula-
tion of voltage-gated potassium channel activity, neu-
ronal growth, and cell survival34. Virupakshaiah et al.35 
discovered a close association between LGI1 autoim-
mune encephalitis and the occurrence of LUSC. In sum-
mary, the prognostic genes mentioned above take a 
regulatory part in the emergence and progression of 
LUSC. Some genes in the model, such as CCDC141, 
GAS2L2, TSPAN19, PAGE5, NPHS1, and CLVS2, have 
not been extensively studied for their roles in LUSC. 
Given that the study was based on bioinformatics data 
prediction, deep investigation was needed to explore 
the prognostic effects of these genes in LUSC.

Tumor progression and immunotherapy response de-
pend on the types and functions of tumor immune 
cells36. HR patients exhibited distinct patterns of tu-
mor immune cell infiltration compared to LR patients. 
Specifically, NK cells resting and monocytes exhibited 
remarkably elevated levels of infiltration in the HR 
group, while macrophages displayed considerably 
lower levels in the HR group. By activating, expanding, 
and genetically modifying NK cells, their anti-tumor 
activity can be greatly improved and the drug resis-
tance of tumors can be overcome37. Villegas et al.38 
pointed out that the CD57 subset of NK cells is a 
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Figure 4. Immune landscape and immune checkpoints analysis as well as  prediction of immunotherapy response in HR and LR groups. 
A: heatmap displayed immune cell infiltration levels and immune functional scores in HR and LR groups based on ssGSEA analysis. 
B: CIBERSORT algorithm analysis revealed differences in immune cells between HR and LR groups. C-F: analysis of differences in 
ESTIMATE scores (C), immune scores (D), stromal scores (E), and tumor purity scores (F). G: differential expression of immune 
checkpoint genes in HR and LR groups. H-L: difference in TIDE scores (H) and IPS (I-L) between HR and LR groups. ns indicated no 
significant difference.
* Indicated p < 0.05.
** Indicated p < 0.01.
*** Indicated p < 0.001.
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Figure 4. Immune landscape and immune checkpoints analysis as well as  prediction of immunotherapy response in HR and LR groups. 
A: heatmap displayed immune cell infiltration levels and immune functional scores in HR and LR groups based on ssGSEA analysis. 
B: CIBERSORT algorithm analysis revealed differences in immune cells between HR and LR groups. C-F: analysis of differences in 
ESTIMATE scores (C), immune scores (D), stromal scores (E), and tumor purity scores (F). G: differential expression of immune 
checkpoint genes in HR and LR groups. H-L: difference in TIDE scores (H) and IPS (I-L) between HR and LR groups. ns indicated no 
significant difference. (continued)
* Indicated p < 0.05.
** Indicated p < 0.01.
*** Indicated p < 0.001.
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favorable prognostic factor for survival in LUSC pa-
tients. During cancer, different subsets of monocytes 
perform functions that contribute to tumor promotion 
and anti-tumor immunity, exhibiting distinct roles at 
different stages of tumor growth and progression39. 
Hai et al.40 put forward that an early postoperative 
increased peripheral monocyte count is an indepen-
dent prognostic factor for poor prognosis and worse 
clinicopathological characteristics in LUSC patients 
undergoing pulmonary lobectomy. The high infiltration 

of NK cells and monocytes at a resting state observed 
in this study was a characteristic feature of poor prog-
nosis in LUSC patients and may play a key part in 
cancer development. Macrophages are key factors in 
the complex interaction between the tumors and the 
immune system, functioning as important targets for 
tumor prognosis and treatment41. In this study, mac-
rophages exhibited high infiltration in LUSC patients 
with a favorable prognosis. Therefore, macrophages 
might take a pivotal part in tumor suppression.

Figure 4. Immune landscape and immune checkpoints analysis as well as  prediction of immunotherapy response in HR and LR groups. 
A: heatmap displayed immune cell infiltration levels and immune functional scores in HR and LR groups based on ssGSEA analysis. 
B: CIBERSORT algorithm analysis revealed differences in immune cells between HR and LR groups. C-F: analysis of differences in 
ESTIMATE scores (C), immune scores (D), stromal scores (E), and tumor purity scores (F). G: differential expression of immune 
checkpoint genes in HR and LR groups. H-L: difference in TIDE scores (H) and IPS (I-L) between HR and LR groups. ns indicated no 
significant difference. (continued)
* Indicated p < 0.05.
** Indicated p < 0.01.
*** Indicated p < 0.001.
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Immunotherapy is a promising cancer treatment strat-
egy, and many immune checkpoint inhibitors targeting 
immunological checkpoints have been approved by 
regulatory authorities for the treatment of various 
cancers42. Despite these significant advancements, 
only a subset of patients respond to immunotherapy, 
hindering the prediction of patient responses43.

PD-1 and CTLA-4 are the most studied and effective 
T-cell immune checkpoint molecules. The PD-1 pro-
tein is encoded by the PDCD1 gene, and tumor cells 

can inhibit the normal immune activity of T-cells by 
interacting with PD-1 on the T-cell surface through 
an abundant expression of PD-L144. Therefore, 
blocking the interaction between PD-1 and PD-L1 
can relieve tumor cell immune suppression on T-cells 
and restore the normal anti-tumor function of T-
cells. Another immune checkpoint, CTLA-4, is a co-
inhibitory molecule that modulates the activity of 
T-cells. The interaction between CTLA-4 and its li-
gands (CD80 and CD86) can suppress T-cell activity 
and promote tumor progression45. When the interplay 

Figure 5. Correlation plot of drug sensitivity prediction using CellMiner. IC50 refers to the drug concentration required to reduce 
the number of surviving cells by half after medication. The lower the IC50, the more sensitive it is to the drug, and the stronger 
its inhibitory effect on tumor cells. The correlation coefficient Cor is between 0.1 and 0.3, indicating weak correlation; 0.3 to 0.5, 
indicating moderate correlation; 0.5 to 1.0, indicating strong correlation.
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between CTLA-4 and these ligands is blocked, tumor 
cells can be identified and killed. In our analysis, we 
found remarkably higher expression levels of immune 
checkpoint genes, including PDCD1 and CTLA4, in the 
HR group of patients compared to the LR group.

Subsequently, immunotherapy prediction revealed 
that patients of the HR group may be more sensitive 
to immunotherapy. These findings suggested that our 
risk scoring model can be used to predict immuno-
therapy responses in patients.

There are extensive inter-individual differences among 
cancer patients, including genetic backgrounds, life-
styles, and disease stages, which may have a consid-
erable impact on prognosis. However, our current 
prognostic models often struggle to adequately con-
sider these complex individual differences, limiting 
their accuracy and applicability. Finally, when using 
the TCGA database for cancer prognosis research, we 
had to recognize the limitations of sample size, which 
may influence the reliability of the results. In vitro and 
in vivo studies are required in the future to develop 
a deeper understanding of the function of prognostic-
related genes in the molecular mechanisms of LUSC.
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