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Función de onda hidrogenoide: nueva f́ormula para una vieja integral
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Presentamos una expresión algebraica para encontrar la integral que nos permite calcular de manera general los valores medios〈rn〉, n ∈ Z,
a partir de la funcíon de onda radial de lośatomos hidrogenoides.
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We present a general formula that allows us to calculate the mean value〈rn〉, n ∈ Z, for the radial wave functions of the hidrogen-like
atoms.
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1. Introducción

Al estudiar las funciones de onda paraátomos hidrogenoides
los valores medios〈rn〉 cobran especial importancia para co-
nocer, por ejemplo:〈r〉, la distancia media entre el electrón
y el núcleo [1]; 〈r2〉, que es proporcional a la susceptibili-
dad diamagńetica [5]; 〈r−1〉 que nos da la energı́a potencial
media [1]; 〈r−3〉, que est́a asociado con la energı́a de la inter-
accíonesṕın-órbita [3], etćetera. Mediante la fórmula encon-
trada podemos calcular sistemáticamente todos estos valores
medios.

2. Deduccíon de la fórmula

La función de onda radial para lośatomos hidrogenoi-
des [1–3] es:

Rnl(r) = −α3/2+l
n Nnlr

le−
αnr

2 L2l+1
n+l (αnr), (1)

con αn = 2Z
na0

y a0 = ~2
µe2 , queda expresada en términos

de los polinomios asociados de Laguerre, que a su vez están
definidos mediante la función generadora [4]

∞∑
m=0

Ls
m+s(ρ)

(m + s)!
zm = (−1)s e−

ρz
1−z

(1− z)s+1
, m = t− s, (2)

ya que t = n + l y s = 2l + 1.

Elevando al cuadrado la función generadora y multiplićando-
la porρs+λe−ρ (recordemos queλ ≥ −s y λ ∈ Z) obtene-
mos

∞∑
m=0

z2m

∫ ∞

0

ρs+λe−ρ[Ls
m+s(ρ)]2dρ

=
∫ ∞

0

ρs+λe−ρ e−
2ρz
1−z

(1− z)2s+2
dρ (3)

=
1

(1− z)2s+2

∫ ∞

0

ρs+λe−ρ( 1+z
1−z ) dρ

=
(s + λ)!

(1− z)2s+2

(1− z)s+λ+1

(1 + z)s+λ+1

=
(s + λ)!(1− z)2λ

(1− z2)s+λ+1
. (4)

Los binomios los podemos expander usando el teorema del
binomio de Newton:

1
(1− z2)s+λ+1

=
∞∑

k=0

(s + λ + k)!
(s + λ)!k!

z2k (5)

(1− z)2λ =
[
(1− z)λ

]2

=




λ∑

j=0

λ!
j!(λ− j)!

(−1)jzj




2

(6)

=
λ∑

j=0

{
λ!

j!(λ− j)!
zj

}2

. (7)

Resulta ser que como en el primer miembro de la Ec. (3) te-
nemos una serie donde sólo aparecen potencias pares dez, en
la Ec. (6) śolo los t́erminos que son de la forma de la Ec. (7)
contribuiŕan a la integral. Los deḿas t́erminos se sumarán a
cero. Aśı, la Ec. (4) se transforma en
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(s + λ)!(1− z)2λ

(1− z2)s+λ+1

= (s + λ)!
∞∑

k=0

(s + λ + k)!
(s + λ)!k!

z2k
λ∑

j=0

{
λ!

j!(λ− j)!

}2

z2j

=
∞∑

k=0

λ∑

j=0

{
λ!

j!(λ− j)!

}2 (s + λ + k)!
k!

z2k+2j (8)

Igualando coeficientes de potencias iguales en las Ecs. (3)
y (8) (tomandoj + k = m en (8)) la integral queda como

∫ ∞

0

ρs+λe−ρ[Ls
m+s(ρ)]2dρ

=
λ∑

j=0

{
λ!

j!(λ− j)!

}2 (s + λ + m− j)!
(m− j)!

(9)

Conρ = αnr y αn = 2Z
na0

, a0 = radio de Bohr, obtenemos
finalmente

∫ ∞

0

r2l+λ+1e−αnr[L2l+1
n+l (αnr)]2dr

=
(n + l)!2

α2l+λ+2
n

λ∑

j=0

{
λ!

j!(λ− j)!

}2 (n + l + λ− j)!
(n− l − 1− j)!

(10)

Esta expresión, Ec. (10), nos permitirá calcular los valores
medios〈rn〉.

3. λ ≥ 0

En estos casos la fórmula se aplica directamente. Los valores
medios calculados son los siguientes.

3.1. Constante de normalizacíon

Para calcular la constante de normalización de la funcíon de
onda (1), necesitamos el valorλ = 1:

∫ ∞

0

|Rnl(r)|2r2dr = α2l+3
n N2

nl

∫ ∞

0

r2l+2e−αnr[L2l+1
n+l (αnr)]2dr

= α2l+3
n N2

nl

(n + l)!2

α2l+3
n

λ=1∑

j=0

{
1!

j!(1− j)!

}2 (n + l − 1− j)!
(n− l − 1− j)!

= N2
nl(n + l)!2

{
(n + l + 1)!
(n− l − 1)!

+
(n + l)!

(n− l − 2)!

}

= N2
nl

(n + l)!3

(n− l − 1)!
{(n + l + 1) + (n− l − 1)}

y si pedimos que el valor de la integral sea1, la constante de
normalizacíon queda como [1]

Nnl =
{

(n− l − 1)!
2n(n + l)!3

}1/2

(11)

3.2. Enerǵıa potencial

El valor medio de la energı́a potencial viene dado por [1]

〈V 〉 = −Ze2

〈
1
r

〉
,

dondeZ = número at́omico, ye = carga electŕonica. El va-
lor medio 〈r−1〉 que necesitamos corresponde aλ = 0. El
cálculo es directo:

〈
1
r

〉
=

∫ ∞

0

r−1|Rnl(r)|2r2dr

= α2l+3
n N2

nl

∫ ∞

0

r2l+1e−αnr[L2l+1
n+l (αnr)]2dr

= α2l+3
n N2

nl

(n+l)!2

α2l+2
n

λ=0∑

j=0

{
0!

j!(0−j)!

}2 (n + l − j)!
(n−l−1−j)!

=
αn

2n
.

Conαn = 2Z/na0, obtenemos〈
1
r

〉
=

Z

n2a0
. (12)

3.3. Distancia media

De la misma manera podemos calcular el valor medio〈r〉,
que es la distancia media entre el electrón y el ńucleo [1], y
que corresponde aλ = 2:
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〈r〉 =
∫ ∞

0

r|Rnl(r)|2r2dr

= α2l+3
n N2

nl

∫ ∞

0

r2l+3e−αnr[L2l+1
n+l (αnr)]2dr

= α2l+3
n N2

nl

(n + l)!2

α2l+4
n

λ=2∑

j=0

{
2!

j!(2− j)!

}2 (n + l + 2− j)!
(n− l − 1− j)!

=
N2

nl

αn
(n + l)!22!2

{
(n + l + 2)!

0!22!2(n− l − 1)!
+

(n + l + 1)!
1!21!2(n− l − 2)!

+
(n + l)!

2!20!2(n− l − 3)!

}

=
1

nαn
{3n2 − l(l + 1)}

Es decir,

〈r〉 =
a0

2Z
{3n2 − l(l + 1)} (13)

3.4. Susceptibilidad diamagńetica

La susceptibilidad diamagnética por gramo mol resulta ser
proporcional a〈r2〉 [5]:

χ = − Ne2

6mc2

∑

i

〈r2
i 〉,

siendoN = número de Avogadro,e = carga electŕonica,
m = masa electŕonica,c = velocidad de la luz y, la sumatoria
la debemos efectuar sobre todos los electrones delátomo [5].
Nótese comoχ siempre es negativa y diferente de cero. El va-
lor medio que nos interesa lo encontramos conλ = 3:

〈r2〉 =
∫ ∞

0

r2|Rnl(r)|2r2dr

= α2l+3
n N2

nl

∫ ∞

0

r2l+4e−αnr[L2l+1
n+l (αnr)]2dr

= α2l+3
n N2

nl

(n + l)!3

α2l+5
n

λ=3∑

j=0

{
3!

j!(3− j)!

}2

× (n + l + 3− j)!
(n− l − 1− j)!

=
na2

0

8Z2
{20n2 − 12nl2 − 12nl + 4n}.

Por lo tanto,

〈r2〉 =
a2
0n

2

2Z2
{5n2 − 3l(l + 1) + 1} (14)

4. λ ≤ −1

En estos casos es necesario reinterpretar la fórmula de la
Ec. (10). De primera instancia la sumatoria se hace infinita,
apareceŕan factoriales de enteros negativos y tendremos que
deducir algunas expresiones para las sumatorias que surgen.

4.1. Binomio de Newton

La bien conocida expresión general para desarrollar un bino-
mio para todam ∈ R,

(1 + z)m =
∞∑

j=0

m!
j!(m− j)!

zj , (15)

nos sugiere que la sumatoria que aparece en (10) también de-
be extenderse hasta el infinito. Sin embargo,j debe satisfacer
la desigualdadj ≤ n− l− 1 para que el factorial que está en
el denominador de (10) no se haga negativo, el cual sabemos
que diverge. En otras palabras, la sumatoria será finita.

4.2. Factoriales negativos

Nos encontraremos cocientes de factoriales negativos que de-
bemos interpretar de la siguiene manera:

(−1)!
(−1)!

= 1,

(−1)!
(−2)!

=
(−1) · (−2)!

(−2)!
= −1,

(−1)!
(−3)!

=
(−1)(−2) · (−3)!

(−3)!
= (−1)(−2),

(−1)!
(−4)!

=
(−1)(−2)(−3) · (−4)!

(−4)!
= (−1)(−2)(−3),

y en general

(−m)!
(−n)!

=
(n− 1)!
(m− 1)!

(−1)n−m. (16)

Por ejemplo, para obtener (5) y según el teorema del binomio

(1− z2)−s−λ−1 =
∞∑

k=0

(−s− λ− 1)!
k!(−s− λ− 1− k)!

(−1)k · z2k
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y los factoriales negativos se simplifican fácilmente:

(−s− λ− 1)!
(−s− λ− 1− k)!

=
[(s + λ + 1 + k)− 1]!

[(s + λ + 1)− 1]!
(−1)k

=
(s + λ + k)!

(s + λ)!
(−1)k

4.3. Sumatorias

4.3.1. F́ormula b́asica

En el desarrollo de las integrales encontraremos sumatorias
del tipo

Q∑
m=0

mr(P + m)!
m!

.

Parar = 0 la sumatoria
Q∑

m=0

(P + m)!
m!

,

la obtuvimos de la siguiente manera:

u0 = P ! =
P !
0!

(P + 1)!
(P + 1)!

,

u0 + u1 = P ! +
(P + 1)!

1!
=

P !
1!

(P + 2)!
(P + 1)!

,

u0 + · · ·+ u2 = P !(P + 2) +
(P + 2)!

2!
=

P !
2!

(P + 3)!
(P + 1)!

,

...

u0 + · · ·+ uk =
P !
k!

(P + k + 1)!
(P + 1)!

=
1

P + 1
(P + k + 1)!

k!
.

Por tanto,

Q∑
m=0

(P + m)!
m!

=
1

P + 1
(P + Q + 1)!

Q!
. (17)

4.3.2. F́ormulas derivadas

Parar = 1 procedimos como sigue:

Q∑
m=0

m
(P + m)!

m!
=

Q−1∑
m=0

(P + 1 + m)!
m!

=
(P + Q + 1)!

(Q− 1)!

{
1

P + 2

}
(18)

Similarmente parar = 2:

Q∑
m=0

m2 (P + m)!
m!

=
Q−1∑
m=0

(m + 1)
(P + 1 + m)!

m!

=
Q−1∑
m=0

m
(P + 1 + m)!

m!
+

Q−1∑
m=0

(P + 1 + m)!
m!

=
1

P + 3
(P + Q + 1)!

(Q− 2)!
+

1
P + 2

(P + Q + 1)!
(Q− 1)!

=
(P + Q + 1)!

(Q− 1)!

{
Q− 1
P + 3

+
1

P + 2

}
(19)

Algunas otras sumatorias son

Q∑
m=0

m3 (P + m)!
m!

=
(P + Q + 1)!

(Q− 1)!

{
(Q− 1)(Q− 2)

P + 4
+ 3

Q− 1
P + 3

+
1

P + 2

}
, (20)

Q∑
m=0

m4 (P + m)!
m!

=
(P + Q + 1)!

(Q− 1)!

{
(Q− 1)(Q− 2)(Q− 3)

P + 5
+ 6

(Q− 1)(Q− 2)
P + 4

+ 7
Q− 1
P + 3

+
1

P + 2

}
. (21)

4.4. Correccíon relativista

En la correccíon relativista aĺatomo hidrogenoide encontra-
mos la expresión [3]

∆Er =
〈
− p4

8m3c2

〉
= − 1

2mc2

〈(
p2

2m

)2
〉

= − 1
2mc2

〈(En − V )2〉

= − 1
2mc2

[E2
n − 2En〈V 〉+ 〈V 2〉],

dondeEn = −13.6 eV/n2; 〈V 〉 = valor medio de la energı́a
potencial (que ya evaluamos); y〈V 2〉 que resulta ser pro-

porcional a〈r−2〉. Este valor medio lo encontramos al tomar
λ = −1:
〈

1
r2

〉
=

∫ ∞

0

r−2|Rnl(r)|2r2dr

=α2l+3
n N2

nl

∫ ∞

0

r2le−αnr[L2l+1
n+l (αnr)]2dr

=α2l+3
n

(n− l − 1)!
2n(n + l)!3

(n + l)!2

α2l+1
n

λ=−1∑

j=0

{
(−1)!

j!(−1− j)!

}2

× (n + l − 1− j)!
(n− l − 1− j)!
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La sumatoria tendrá por ĺımite superior(n − l − 1), y los
factoriales negativos los simplificamos usando la Ec. (16):

(−1)!
j!(−1− j)!

=
[(1 + j)− 1]!

j!(1− 1)!
(−1)j =

j!
j!

(−1)j

para obtener

〈
1
r2

〉
=

α2
n

2n

(n− l − 1)!
(n + l)!

n−l−1∑

j=0

(n + l − 1− j)!
(n− l − 1− j)!

Ahora hacemosm = n− l − 1− j:

〈
1
r2

〉
=

α2
n

2n

(n− l − 1)!
(n + l)!

n−l−1∑
m=0

(2l + m)!
m!

=
α2

n

2n

(n− l − 1)!
(n + l)!

1
2l + 1

(n + l)!
(n− l − 1)!

,

que obtenemos al aplicar la Ec. (17). Por lo tanto,

〈
1
r2

〉
=

Z2

a2
0n

3

1
l + 1/2

. (22)

4.5. Interacción esṕın-órbita.

La enerǵıa asociada a la interacción esṕın-órbita es propor-
cional a〈r−3〉 [3]:

Es−o =
1
2

Ze2

m2c2

〈
1
r3

〉
〈~σ ·~l〉,

siendo~σ = operador de espı́n;~l = operador de momentum
angular; y el valor medio〈r−3〉 que buscamos lo podemos
obtener haciendoλ = −2:

〈
1
r3

〉
=

∫ ∞

0

r−3|Rnl(r)|2r2dr

= α2l+3
n N2

nl

∫ ∞

0

r2l−1e−αnr[L2l+1
n+l (αnr)]2dr

= α2l+3
n

(n− l − 1)!
2n(n + l)!3

(n + l)!2

α2l
n

×
λ=−2∑

j=0

{
(−2)!

j!(−2− j)!

}2 (n + l − 2− j)!
(n− l − 1− j)!

.

Aqúı nuevamente la sumatoria tiene por lı́mite superior(n−
l − 1). Volviendo a aplicar la Ec. (16) para simplificar los
factoriales negativos:

(−2)!
j!(−2− j)!

=
[(2 + j)− 1]!

j!(2− 1)!
(−1)j =

(1 + j)!
j!

(−1)j

y nos queda

〈
1
r3

〉
=

α3
n

2n

(n− l − 1)!
(n + l)!

n−l−1∑

j=1

(1 + j)2
(n + l − 2− j)!
(n− l − 1− j)!

.

Una vez ḿas hacemosm = n− l − 1− j:

=
α3

n

2n

(n− l − 1)!
(n + l)!

n−l−1∑
m=0

(n− l −m)2
(2l + m)!

m!

=
α3

n

2n

(n− l − 1)!
(n + l)!

(n + l − 1)!
(n− l − 1)!

2n(n + l)
2l(2l + 1)(2l + 2)

,

por lo tanto
〈

1
r3

〉
=

Z3

a3
0n

3

1
l(l + 1/2)(l + 1)

. (23)

El valor de laúltima sumatoria lo calculamos de la siguiente
manera:

n−l−1∑
m=0

(n− l −m)2
(2l + m− 1)!

m!

= (n− l)2
n−l−1∑
m=0

(2l − 1 + m)!
m!

− 2(n− l)
n−l−1∑
m=0

m
(2l − 1 + m)!

m!
+

n−l−1∑
m=0

m2 (2l − 1 + m)!
m!

= (n− l)2
(n + l − 1)!

2l(n− l − 1)!
− 2(n− l)

(n + l − 1)!
(2l + 1)(n− l − 2)!

+
(n + l − 1)!
(n− l − 2)!

(n− l)(2l + 1)− 2l

(2l + 1)(2l + 2)

=
(n + l − 1)!
(n− l − 1)!

2n(n + l)
2l(2l + 1)(2l + 2)

.
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que obtenemos tras aplicar las Ecs. (17), (18) y (19) a la pri-
mera, segunda y tercera sumatorias, respectivamente.
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