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Presentamos una exprasialgebraica para encontrar la integral que
a partir de la fundn de onda radial de Ic#omos hidrogenoides.

aceptado el 13 de mayo de 2002

nos permite calcular de manera general los valoresMediesZ,

DescriptoresiFuncibn de onda radial hidrogenoide; polinomios asociados de Laguerre; valores miédidactoriales negativos.

We present a general formula that allows us to calculate the mean {dlyer € Z, for the radial wave functions of the hidrogen-like

atoms.
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1. Introduccion

Al estudiar las funciones de onda patamos hidrogenoides
los valores medio& ™) cobran especial importancia para co-
nocer, por ejemplo(r), la distancia media entre el elemtr

y el nicleo [1]; (r?), que es proporcional a la susceptibili-
dad diamagética p]; (r—!) que nos da la eneig potencial
media [l]; (r—3), que esi asociado con la enéegde la inter-
accbnespn-orbita [3], etcetera. Mediante labimula encon-
trada podemos calcular sistatitamente todos estos valores
medios.

2. Deduccon de la formula

La funcion de onda radial para loatomos hidrogenoi-
des [I-3] es:

Rnl(r) = _ai/2+anl7"le n4l (anT)> (1)

— 2z _ 2 armi
conay, = oy ag = o, queda expresada e@érminos
de los polinomios asociados de Laguerre, que a su van est
definidos mediante la funin generadora4]

oo

>

m=0

LS
m-+s (p) Zm _

(m+s)! @

yaquet=n+1lys=20+1.

Elevando al cuadrado la furiei generadora y multiplando-
la por p*t*e~* (recordemos qua > —sy A € Z) obtene-
mos
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Los binomios los podemos expander usando el teorema del
binomio de Newton:

22)s+/\+1

1 > +A+k
(1—2)2 = [(1_2)}
2
= Z, —1)72' | (6)
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A 2
_ Z{ } @)

j=0

Resulta ser que como en el primer miembro de la Ec. (3) te-
nemos una serie dondels aparecen potencias pares:glen

la Ec. (6) $lo los £rminos que son de la forma de la Ec. (7)
contribuian a la integral. Los deas €rminos se suman a
cero. A3, la Ec. (4) se transforma en
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(s+ )1 —2)*
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Igualando coeficientes de potencias iguales en las Ecs.
y (8) (tomandoj + & = m en (8)) la integral queda como

/OOO p* e (Ls, , (p)])2dp
L A Vs A+m—j)!
‘;{m—j)!} - ©

Conp = a,ry a, =
finalmente

ag = radio de Bohr, obtenemos
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Esta expregin, Ec. (10), nos permitir calcular los valores
medios(r™).

®3)
32>0

En estos casos l@fmula se aplica directamente. Los valores
medios calculados son los siguientes.

3.1. Constante de normalizadin

Para calcular la constante de normalibacile la funadn de
onda (1), necesitamos el valdr=

2l+2 7anr[ (OénT’)]2d7'
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y si pedimos que el valor de la integral seda constante de
normalizacdn queda como 1
(n—1—1)"?
)3

Ny = § P2
: {Qn(n—i—l'

3.2. Energa potencial

(11)

El valor medio de la enetrg potencial viene dado pod ][

).

dondeZ = nimero abmico, ye = carga electinica. El va-
lor medio (r—1) que necesitamos corresponde a 0. El
calculo es directo:

(V)= —z¢? <1

r
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)
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Cona,, = 2Z/nay, obtenemos
_Z
n2ag

12)

3.3. Distancia media

De la misma manera podemos calcular el valor médjo
gue es la distancia media entre el elenty el ricleo [1], y
que corresponde a= 2:
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(r) = /Ooo | Roa () 2r2dr

oo
214372 2+3 —anr[y 2041 2
= a an/ r e [Ln+l (anr)]?dr
0

= Q23N (”4'1)!2/\2::2 2! f(nti+2-))
n nl™ 2044 2= (n—1-1-34)

n =0

_ Nﬁl(nH)!QQ!Q{ (n+1+2)! (n+1+1) N (n+1)! }

o 01222(n —1—1)! * 1P1RP(n—1-2)!  212012(n —1 - 3)!
1

= {3n% —1(1+ 1)}

Es decir, I
(r) = %{3”2 — 1+ 1)} (13)  4.1. Binomio de Newton

3.4. Susceptibilidad diamaggtica La bien conocida expresi general para desarrollar un bino-

mio para todan € R,
La susceptibilidad diamagtica por gramo mol resulta ser

(oo}

proporcional ar?) [5]: (14 2)m = Z m! i (15)
2 — jl(m —j)!" "’
Ne Z< 2> Jj=0
= — rs
X 6mc? - e nos sugiere que la sumatoria que aparece en (10) éandet

be extenderse hasta el infinito. Sin embargidebe satisfacer
la desigualdad < n — [ — 1 para que el factorial que @sén

m = masa electinica,c = velocidad de la luz y, la sumatoria . .
. el denominador de (10) no se haga negativo, el cual sabemos
la debemos efectuar sobre todos los electronestdeio p). . e
que diverge. En otras palabras, la sumatoria §aita.

Notese comg siempre es negativa y diferente de cero. El va-
lor medio que nos interesa lo encontramos &cA 3:

siendoN = nimero de Avogadrog = carga electrnica,

4.2. Factoriales negativos

o0
2 2 2,2 . . .
(ro) = A | Ry (r)|*r=dr Nos encontraremos cocientes de factoriales negativos que de-
bemos interpretar de la siguiene manera:

oo
:a?j"’?’Nle/ r2l+4e_a“[Lfllj_rl1(anr)]er

(0 . - ) (—=1)! _
_qeraye (EDEBRAL 8 con - b
n an a%l+5 jzo{]'(?)—j)'} (_1)| B w L
(n+1+3—35) =20 (-2 -
C 1) (1! (~1)(=2)- (-3)!
( 2 J) o ((_;)!( ) (—1)(~2),
_ nag 2 2
S0 (2007 —1201* —12n + 4n}. 1 O
Por lo tanto, (—4)! (—4)! )
a2n? y en general
(%) = Sz (o =3 +1) + 1} (14)
(=m)! _ (n—1)! (1) (16)
AAs-1 (=n)!  (m—1)! '

Por ejemplo, para obtener (5) y $egel teorema del binomio
En estos casos es necesario reinterpretadbimdla de la
Ec. (10). De primera instancia la sumatoria se hace infinita, -
aparecean factoriales de enteros negativos y tendremos que ; _ 22)ms AL Z (=s=A-1)! (—1)k . 22
deducir algunas expresiones para las sumatorias que surgen. — El(—s—=A—=1-Fk)!
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y los factoriales negativos se simplificsacfimente: Por tanto,
(—s—=A—-1)! [(s+A+1+Fk)—1)! & Q
= (-1) (P +m)! 1 (P+Q+1)!
—s—A—1—Kk)N —_1m =
(—s—A—1—k)! [(s+A+1)—1]! > — P o . (17)
m=0
(s + A+ k) (—1)*
_ (s A)!
4.3. Sumatorias 4.3.2. Formulas derivadas
4.3.1. Formula kasica . L
Parar = 1 procedimos como sigue:
En el desarrollo de las integrales encontraremos sumatorias
del tipo Q Q-1
Q. (P+m)! (P+1+m)!
o P mt D D Dl T
= m! m=0 m=0
Parar = 0 la sumatoria _ @+ e+1) 1 (18)
0 (Q—-1)! P+2
(P +m)!
2 -
m=0 Similarmente para = 2:
la obtuvimos de la siguiente manera:
P (P+1)! Q Q-1
—pl=__x T/ (P +m)! P+1+m)
" o (P+ 1)1 > el = 5 ) T
m=0 ’ m=0 ’
(P+1)! PH(P+2)
= ' = — —_ —
o Fun = Pl T TRGCESYE _Qz:lm(P+1+m)!+Q L (P4 14m)
(P+2)  PL(P+3) i) m! = om
up + - +uy = Pl(P+2)+ — = o T
2! 20 (P+ 1) 1 (P+Q+1) 1 (P+Q+1)
S P+3 (Q-2) P+2 (Q-1)
(P+Q+1)!{Q—1 1 }
! ! ! = + (19)
k! (P+1)! P+1 k!
| Algunas otras sumatorias son
Q
s(P+m)!  (P+Q+1) [(Q—-1)(Q—2) Q-1 1
mz::Om ml (Q-1) Pra PPi3tEiaf (20)
Q
JPHm) (PR [(Q@-1D(@Q-2)(Q-3) (@Q-1)(Q-2) Q-1 1
;)m m Q-1 Pi5 o ety @

4.4, Correccbn relativista

Iporcional a(r~2). Este valor medio lo encontramos al tomar
En la correcdn relativista ahtomo hidrogenoide encontra- \ = —1:
mos la expredin [3]

1 * s 2,2
<r2> :/0 r 2| Ry ()| r=dr

4 1 2 2
AET == — p = — pf oo
< 8m302> 2m62 <2m> :Oé2l+3N2 T2l€_a”’T[L2l+1<an7")]2d’P
n nl 0 n-+l
1 _
= o (B =V _a21+3<n—z—1>!<n+1>!”1{ (1) }
! [E2 = 2E,(V) + (V?)] B =
= - - n + P
2me2 "

(n+1—-1-7)!

[
dondeE,, = —13.6 eV/n?; (V) = valor medio de la enefg (n—1—1-j)

potencial (que ya evaluamos){¥2?) que resulta ser pro-
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1
=

La sumatoria tenér por imite superior(n — [ — 1), y los
factoriales negativos los simplificamos usando la Ec. (16): <

/ 7"_3|Rnl(r)|27"2dr
0

(—1)! A+ -1 g, S .
=1 [ j!(ljf 1)!] (=17 = %(_1) = Oéi”?’Nﬁz/O P tem ot (L2 () Pdr
para obtener _ 2l (n—1—1)!(n+10)
- " 2n(n+ 0B o2
1 _a%(n—l—l)!"—z— (n+1—-1-7)! e o ) _
)= P p—— (—2)! (n+1—2—j)!
<2> = L x> {j!(—2—j)!} (n—1—1—j)

=0

Agui nuevamente la sumatoria tiene pionite superiofn —
[ — 1). Volviendo a aplicar la Ec. (16) para simplificar los
factoriales negativos:

(=2)! [(2+4)—1)! (1+5)!

= 1) = 1)
_ apm-l-1r 1 (n+1)! G1(=2 —j)! 12— 1) (1) 7l (1)
R y nos queda
gue obtenemos al aplicar la Ec. (17). Por lo tanto, \ -
1 3 (n—1-1)"g= on+l—2—7)!
1 72 1 <r3> n((n—i—l)') Z (1 +])2En—l—l—j§"
=)= 237179 (22) o=l :
72 atndl+1/2

Una vez nas hacemosi =n — [ — 1 — j:

4.5. Interaccion espn-orbita. 5 nel—1
o a, (n—=1-1) Z (n—l—m)2(2l+m)!

La ener@a asociada a la interaéei espn-orbita es propor- n (n+1)! m!
cional a(r—2) [3]:

m=0

adn—Il-1)'(n+1-1) 2n(n +1)

1782 /1 _ n (n+0D)! (n—I01-1!2020+1)(20+2)’
Ee—o =3 3 o ’
‘ 2 m2c? <r3> (@1 por lo tanto
i > ey 7 o— 1 Z3 1
siendog’ = operador de edp; | = operador de momentum <> _ . (23)
angular; y el valor medidr—2) que buscamos lo podemos r3 adndl(l+1/2)(1+1)
obtener hacienda = —2: El valor de ladltima sumatoria lo calculamos de la siguiente
| manera:
n—i—1 . |
= m!
I L (21— 14 m)! I " @ —14m) "R L @I—14+m)!
Sl Y T A e ) e
, (n+1-1) (n+1— 1) (n+1—1)!(n—10)20+1) 2
=(n-D2=—1" 7 _9(p—
ey o e o 7 ey Yory s ey g R 7 B Y7 By

(
_(n41-1) 2n(n +1)
C(n—1—1)120(20 +1)(20 +2)
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que obtenemos tras aplicar las Ecs. (17), (18) y (19) a la priAgradecimientos

mera, segunda y tercera sumatorias, respectivamente. ) ) .
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