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Binding energy of Wannier excitons in a quantum well of thicknessL is studied using two models: a two-parameter trial wave function and a
fractional-dimensional space with dimension2 6 α 6 3. Since both models provide quantitative measures of the exciton spatial anisotropy
asL changes, we give physical arguments for a plausible definition ofα = α(L).
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Se estudia la energı́a de amarre de excitones de Wannier en un pozo cuántico de anchoL utilizando dos modelos: una función de onda de
prueba con dos parámetros y un espacio de dimensión fraccional con dimensión 2 6 α 6 3. Ya que ambos modelos proporcionan medidas
cuantitativas de la anisotropı́a espacial del excitón al cambiarL, damos argumentos fı́sicos para una plausible definición deα = α(L).

Descriptores:Estados electrónicos y excitaciones colectivas en multicapas; pozos cuánticos; sistemas mesoscópicos y de escala nanoscópica.

PACS: 73.21.-b; 02.90.+p

1. Introduction

The electronic properties of highly inhomogeneous systems
such as confined systems have received much attention due,
among other reasons, to the possibility of growing high-
quality nanostructures with prescribed configurations, allow-
ing the control of physical properties such as carrier den-
sities, band gaps and bandwidths, and even dimensionality.
On the other hand excitons are important excitations [1] that
strongly affect the electronic and optical properties of low-
dimensional solids [2].

The purpose of this paper is two-fold; in the first place
we present a variational model calculation for large excitons
(Wannier-Mott excitons) in a semiconducting quantum well
structure as a function of the width of the quantum well to
exhibit their behavior between two and three dimensions (2D
and 3D). Secondly, we compare the variational exciton bind-
ing energy with the energy of an exciton in a space of alfa
dimensions (αD) whereα is a real number between 2 and 3.
In general, a fractional-dimensional space is an interesting
mathematical concept where the dimension is determined by
the degree of anisotropy. In other words the anisotropic inter-
action in a 3D space becomes isotropic in a lower fractional-
dimensional space.

A mathematical basis for spaces with “non integer dimen-
sion” was developed by Stillinger [3] with five axioms; four
of them topological and the fifth of them specifies an inte-
gration measure. In this formalism the dimensionα is not
restricted to the positive integers butα is a real positive num-
ber and theα-dimensional space behaves like a conventional
Euclidean vector space. The article of Stillinger is interest-
ing from the mathematical point of view but it is probably
more indicated for mathematicians than for physicists since

it deals with concepts such as metric space, integration mea-
sure, density of mutually perpendicular lines, etc. Also we
should mention a paper by Wilson [4], which offers a simi-
lar axiomatic description of spaces with non integer dimen-
sions. There exists interesting work on isotropic interactions
in solids making use of fractional dimensionality [5–7]. In
particular, we will employ here some of the results of a paper
by He [7] where a simple hydrogenic Schrödinger equation
is solved in the fractional dimensional space yielding exciton
wave functions, bound energies and associated optical spec-
tra as a function of spatial dimensionality.

The structure of this paper is the following; in Sec. 2
we present a variational approach of an isotropic exciton in
a quantum well. In Sec. 3 we present results of fractional-
dimensional spaces for excitons and Sec. 4 is devoted to com-
parison of results of Secs. 2 and 3 and discussion.

2. Trial wavefunction for excitons between 2D
and 3D.

The two-particle Hamiltonian in a quantum well can be writ-
ten as

ĤΨ(x1,y1, z1,x2, y2,z2)=EtΨ(x1, y1, z1, x2, y2, z2) , (1)

where Et is the total energy of the system and we use the la-
bels 1 and 2 for particlesp1 andp2 (electron and hole).̂H is
defined as

Ĥ = Ĥ1 + Ĥ2 + V̂int, (2)

and the Hamiltonian of each particle is

Ĥν =
−~2

2mν
∇2

ν + Vν (zν) , (3)
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with ν =1, 2, mν are the effective masses,Vν (zν) is
the transverse confinement potential of each carrier and the
Coulomb interaction potential is

V̂int (−→r1−−→r2)=
q1q2

ε

√
(x1−x2)

2+(y1−y2)
2+(z1−z2)

2
, (4)

whereε is the appropriate dielectric screening of the semi-
conductor media.

We assume that the electron and the hole are confined by
an infinite square well potential of thicknessL

Vν (zν) =
{

0 |zν | < L/2
∞ |zν | > L/2 ,

and propose in cylindrical coordinates a binding variational
calculation of an exciton through the use of a two-parameter
trial wave function [8]

Ψ = N cos (πz1/L) cos (πz2/L)

× exp
{
−

[
β2ρ2 + γ2 (z1 − z2)

2
]1/2

}
. (5)

where ρ and z1 − z2 describe the relative motion of the
electron-hole pair in the exciton,N is the normalization con-
stant andγ andβ are parameters chosen in such a way that
they minimize the exciton binding energy. Notice that the ar-
gument of the exponential in Eq. (5) describes in general an
anisotropic wavefunction. The system assumes that in the

confinementz-direction both charged particlesp1 and p2

(electron and hole) are in their respective groundstate and
they are free to move perpendicularly to thez-direction in-
teracting through a screened Coulomb potential

V̂int = −e2/ε |~r1 − ~r2| .

A similar calculation of the exciton binding energy was per-
formed by Bastard,et al. [9] with two types of trial function.
One of them describes a 2D exciton since the main depen-
dence is on the 2D relative coordinateρ and corresponds to
our Eq. (5) withγ = 0. By a 2D system we mean an exciton
which is the solution of a bidimensional Schrödinger equa-
tion with a coulombic interaction term proportional toρ−1 in
polar coordinates. The second one describes 3D exciton since
the dependence is on the 3D relative coordinate

[
ρ2 + (z1 − z2)

2
]1/2

corresponds to our Eq. (5) withγ = β. Although the real
Coulomb potential proportional to

[
ρ2 + z2

]1/2
can not be

exactly separated inρ andz coordinates, the 2D approach is a
good approximation when the confinement in thez-direction
is very strong and the wave functions in that direction are in
their groundstate (very narrow 2D quantum layers) [10].

The exciton binding energy is obtained by minimizing
with respect toγ andβ the following expression:

F (γ, β)− Eg = −~
2β2

4µ
+

21/2e2β3

κγ2G1 (γ)

∫ ∞

0

dq

(q2 + 2β2)3/2

[
qG0 (s) +

γ

β

(
q2 + 2β2

)1/2
sG1 (s)

]
, (6)

whereF is an energy measured from the top of the valence band.Eg is the band gap,s = q + γ
β

(
q2 + 2β2

)1/2
,

G0(s) =
π

s2 +
(

2π
L

)2

{
4π2

Ls2
+

3L

2
− 32π4

L4s3

exp(− sL
2 ) sinh( sL

2 )

s2 +
(

2π
L

)2

}
,

G1 (s) =
2π

s
(
s2 +

(
2π
L

)2
)3

{
14π2s2

L
+

3s4L

2
+

48π4

L3
+

64π6

L5s2
− 56π4

L4s
− 96π6

L6s3

}

+
2π

s
(
s2 +

(
2π
L

)2
)3

{
56π4

L4s
+

96π6

L6s3
+

8π4

L3
+

32π6

L5s2

}
exp(−sL),

and it is found thatN−2 = γ2/β2G1(γ). According to quan-
tum variation method, with these expressions we proceed to
find the values ofγ0 and β0 that minimize the energy for
different values ofL to obtain the exciton binding energy
EB ≡ |F (γ0, β0)− Eg| (which is defined as a positive quan-
tity). In the Fig. 1 one of the curves (solid line) shows the
exciton binding energy as a function ofL. This figure shows
that binding energies decreases asL increases, which is con-
sistent with the values of the effective exciton Bohr radius
a1,2 = ae/4 for 2D anda1,3 = ae for 3D meaning a more
spread groundstate wave function with increasingL.

3. Excitons in fractional-dimensional spaces.

In a space ofα dimension (αD) the Laplace operator pro-
posed by Stillinger [3] is

∇2 = − 1
rα−1

∂

∂r

(
rα−1 ∂

∂r

)
− l2

~2r2
,

where

l̂2 = − ~2

sinα−2 θ

∂

∂θ

(
sinα−2 θ

∂

∂θ

)
(7)
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FIGURE 1. Normalized exciton binding energies vs normalized
quantum well thicknessL/ae. Solid line indicates the variational
energyEB/Ee and dash line indicates the fractional-dimensional
result|E1,α − Eg|.

corresponds to an angular momentum,0 6 r 6 ∞ and
0 6 θ 6 π are the radial distance and the related angle
measured relative to an axis passing through the origin. This
laplacian is to be applied to any functionf(r, θ) in an αD
space where the integration measure can be calculated using
the following formula:

∫

αD

dr =
2π(α−1)/2

Γ
(

α−1
2

)
∞∫

0

drrα−1

π∫

0

dθ sinα−2 θ,

whereΓ(x) is the gamma function [11] anddr represents the
volume element in theαD space.

Therefore the Wannier-Mott exciton time-independent
Schr̈odinger equation in anαD space can be expressed as
follows:

[
− ~2

2µrα−1

∂

∂r

(
rα−1 ∂

∂r

)
+

l̂2

2µr2
− e2

εr

]
ψ (r, θ)

= (E − Eg)ψ (r, θ) , (8)

where l̂2 is given by Eq. (7),α is the dimension of a solid
(here1 < α < 3), radial distancer and related angleθ are
two coordinates describing the relative distance vectorr in
theαD space,ε is the dielectric constant of the background,
E is the exciton energy measure from the top of the valence
band, andµ is the reduced mass.

Equation (8) can be separated asψ (r, θ) = R (r)Θ (θ),
to yield

R′′ (r) +
α− 1

r
R′ (r) +

[
2µ

~2

(
(E − Eg) +

e2

εr

)

− l (l + α− 2)
r2

]
R (r) = 0,

Θ′′ (θ) + [(α− 2) ctgθ] Θ′ (θ) + l (l + α− 2)Θ (θ) = 0,

where l is the angular-momentum quantum number
which satisfies the same rule as in a 3D system,
namelyl = 0, 1, 2, ..., n− 1.

The expressions (7) for all the resulting bound-state ra-
dial and angular wave functions in anαD space and the cor-
responding discrete bound-state energies are

En,α = Eg − Ee(
n + α−3

2

)2 , (9)

where n indicates the principal quantum number (starting
with n = 1) andα the dimension.Ee =

(
µ/ε2me

)
EH is

the effective Rydberg constant,ae = (meε/µ) aH is the ef-
fective exciton Bohr radius, whereEH andaH are, respec-
tively, the atomic Rydberg energy and atomic Bohr radius,
andme is the free electron mass. It should be noted that the
bound-state energy only depends on the principal quantum
number and that the orbital energy degeneracy is the same
for 1 6 α 6 3 [7]. Here we write only the groundstate wave
functions [7]:

R1,0,α(r)=
(

22α

(α−1)α Γ (α) aα
e

)1/2

exp
[
− 2

α−1

(
r

ae

)]
, (10)

Θ0,α (θ) = Γ
(α

2

)(
2α−2 (α− 1)

πΓ (α)

)1/2

(11)

where the first subindex inR indicates the principal quantum
number and the second subindex inR and the first subindex
in Θ indicatesl.

From Eq. (9)E1,3−Eg = −Ee, E1,2−Eg = −4Ee and
E1,1 − Eg = −∞. This results are consistent with the well-
known excitonic spectra in 3D [1], with the excitonic spectra
in 2D [10] and with the theoretical result of the fictitious sys-
tem in 1D first studied by Loudon [12]. As discussed above,
a mathematical approach to excitons in 2D is a good approxi-
mation for very narrow quantum layers but the mathematical
solution of excitons in 1D (vanishing both transverse dimen-
sions) leads to nonphysical states [12].

4. Discussion

In order to compare the binding energy|E1,α − Eg| as a
function of dimension2 6 α 6 3 with the results of the vari-
ational calculation of Sec. 2, we need a model ofα = α(L).
For this purpose, from the variational wavefunctions we show
in Fig. 2 our calculation of

(〈
|ze − zh|2

〉
1s

)1/2

,

and (〈
x2

〉
1s

)1/2
,

(being equal to
(〈

y2
〉
1s

)1/2
from symmetry considerations),

which yield measures of the exciton size in thez− and
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FIGURE 2. Variational calculation of
�
|ze − zh|2

�
1s

�1/2
/ae

(solid line) and
�


x2
�
1s

�1/2
/ae (dashed line) vsL/ae, which

yield information of excitons spatial extensions.

x−directions. This figure shows how both quantities ap-
proach asymptotically the 3D bulk value for largeL, as ex-
pected. On the other hand, since the exciton size is larger in
2D than in 3D, (〈

x2
〉
1s

)1/2

grows asL decreases until it reaches the 2D bulk value.
Meanwhile (〈

|ze − zh|2
〉

1s

)1/2

decreases asL decreases until it vanishes forL = 0, since the
choice of hard-walls as confinement potential does not allow
any “spill over” of the wavefunctions outside the well.

Here we propose a simple way to findα(L) based on the
range of values of

(〈
|ze − zh|2

〉
1s

)1/2

,

and its monotonically behavior:

α = 2 +
(〈
|ze − zh|2

〉
1s

)1/2

(12)

which agrees with the valuesα = 2 for L = 0 andα = 3 for
very largeL. Substitution of this recipe ofα in Eq. (9) yields
the dashed curve in Fig. 1.

The agreement between the variational and the fractional
dimension models is reasonable. Obviously the choice of
α(L) is not unique since there exist several possible expres-
sions forα satisfying the aforementioned requirements. In
terms of (〈

|ze − zh|2
〉

1s

)1/2

and
(〈

x2
〉
1s

)1/2
it is possible to introduce other formulae

with one or more adjustable parameters in order to obtain an
even better agreement in Fig. 1. However, within the spirit of
simplicity, we think that Eq.(12) contains the more important
physical information.

With quantum mechanical theory it is relatively easy to
accurately describe the transition of a 3D exciton to a low di-
mensional regime, and for this purpose we employed here a
variational method. However, to assign a “fractional dimen-
sion” to a 3D anisotropic physical entity (such as an exciton)
is not a straightforward task, despite the fractional dimen-
sionality is a well define concept from the axiomatic math-
ematical point of view. Therefore it is necessary to resort
heuristic arguments, as we did here. In other words, we ex-
pect to have given an outline of how to interpret physically
the exciton spatial form in a fractional dimensional mathe-
matical formalism.

In summary, we have compared two different approaches
for anisotropic excitons in a quantum well. One of them is de-
rived directly from conventional quantum mechanical meth-
ods, whereas the other is the result of a more or less sophisti-
cated mathematical formalism. Although the latter approach
is a relatively novel one and gives by construction the right
results when the dimension is an integer, it is not clear how
it can be employed. Here we gave a plausible definition ofα
for non integer values, which is not unique, but contains the
main physical features of the system.

We hope that this article may stimulate further studies
of both anisotropic systems and fractional-dimensional ap-
proaches in low-dimensional systems.
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