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The mass matrices of the charged leptons and neutrinos, that had been derived in the framework of a Minimal S3-invariant Extension of the
Standard Model, are reparametrized in terms of the masses of the charged leptons and neutrinos. Then, the neutrino mixing matrix VPMNS

is computed and we obtain explicit, analytic and exact expressions for the neutrino mixing angles as function of the masses of the charged
leptons and neutrinos. By comparison with the experimental data on neutrino mixings, we obtain numerical values for the neutrino masses
in good agreement with the experimental bounds extracted from neutrinoless double beta decay and precision cosmological observations.
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Las matrices de masas de los leptones cargados y los neutrinos, que previamente habı́amos obtenido en una extensión Mı́nima S3-invariante
del Modelo Standard, se reparametrizan en términos de las masas de los leptones cargados y los neutrinos. A partir de aquı́, se calcula
la matriz de mezclas de los neutrinos, VPMNS , y se obtienen expresiones analı́ticas, explı́citas y exactas para los ángulos de mezcla y las
fases de Majorana como función de las masas de los leptones cargados y los neutrinos. Por comparación con los datos experimentales sobre
mezclas de neutrinos, obtenemos valores numéricos de las masas de los neutrinos en buen acuerdo con las cotas experimentales extraı́das de
las medidas de la desintegración beta, la desintegración doble beta sin neutrinos y las observaciones cosmológicas de precisión.

Descriptores: Simetrı́as del sabor; masas y mezclas de quarks y leptones; masas y mezclas de neutrinos.
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1. Introduction

The discovery of neutrino masses and mixings marked a turn-
ing point in our understanding of nature and brought neutrino
physics to the focus of attention of the particle, nuclear and
astrophysics communities [1]. Recent neutrino oscillation
observations and experiments have allowed the determina-
tion of the differences of the neutrino masses squared and the
flavour mixing angles in the leptonic sector. The solar [2-5],
atmospheric [6,7] and reactor [8,9] experiments produced the
following results:

7.1× 10−5(eV )2 ≤ ∆2m12 ≤ 8.9× 10−5(eV )2, (1)

0.29 ≤ sin2θ12 ≤ 0.40, (2)

1.4× 10−3(eV )2 ≤ ∆2m13 ≤ 3.3× 10−3(eV )2, (3)

0.34 ≤ sin2θ23 ≤ 0.68, (4)

at 90% confidence level [10, 11]. The CHOOZ experi-
ment [12] determined an upper bound for the flavour mixing
angle between the first and the third generations:

sin2θ13 ≤ 0.046. (5)

Neutrino oscillation data are insensitive to the absolute value
of neutrino masses and also to the fundamental issue of
whether neutrinos are Dirac or Majorana particles. Hence,
the importance of the upper bounds on neutrino masses pro-
vided by the searches that probe the neutrino mass values at
rest: beta decay experiments [13], neutrinoless double beta
decay [14] and precision cosmology [15].

On the theoretical side, the discovery of neutrino masses
and mixings has also brought about important changes. In
the Standard Model, the Higgs and Yukawa sectors, which
are responsible for the generation of the masses of quarks
and charged leptons, do not give mass to the neutrinos. Fur-
thermore, the Yukawa sector of the Standard Model already
has too many parameters whose values can not be determined
from experiment. These two facts, taken together, point to the
necessity and convenience of eliminating parameters and sys-
tematizing the observed hierarchies of masses and mixings,
as well as the presence or absence of CP violating phases by
means of a flavour or family symmetry under which the fam-
ilies transform in a non-trivial fashion. Such a flavour sym-
metry might be a continuous group or, more economically, a
finite group.

In a recent paper, we argued that such a flavour symmetry,
unbroken at the Fermi scale, is the permutational symmetry
of three objects, S3, and introduced a Minimal S3-invariant
Extension of the Standard Model [16]. In this model, we im-
posed S3 as a fundamental symmetry in the matter sector.
This assumption led us necessarily to extend the concept of
flavour and generations to the Higgs sector. Hence, going to
the irreducible representations of S3, we added to the Higgs
SU(2)L doublet in the S3-singlet representation, two more
Higgs SU(2)L doublets which can only belong to the two
components of the S3-doublet representation. In this way,
all the matter fields in the Minimal S3-invariant Extension
of the Standard Model - Higgs, quark and lepton fields, in-
cluding the right handed neutrino fields- belong to the three
dimensional representation 1⊕ 2 of the permutational group
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S3. The leptonic sector of the model was further constrained
by an Abelian Z2 symmetry.

The group S3 [17-25] and the product groups
S3×S3 [25-28] and S3×S3×S3 [29,30] have been consid-
ered by many authors to explain successfully the hierarchical
structure of quark masses and mixings in the Standard Model.
However, in these works, the S3, S3 × S3 and S3 × S3 × S3

symmetries are explicitly broken at the Fermi scale to give
mass to the lighter quarks and charged leptons, neutrinos are
left massless. Some other interesting models based on the
S3, S4 and A4 flavour symmetry groups, unbroken at the
Fermi scale, have also been proposed [31-36], but in those
models, equality of the number of fields and the irreducible
representations is not obtained.

In this paper, we derive exact, explicit, analytic expres-
sion for the elements of the leptonic mixing matrix, VPMNS ,
as functions of the masses of the charged leptons and the neu-
trinos. By comparison with the latest experimental data on
neutrino mixings, we obtain numerical values for the neutrino
masses in good agreement with the experimental bounds ex-
tracted from the precision cosmological observations and the
neutrinoless double beta decay.

2. The Minimal S3-invariant Extension of the
Standard Model

In the Standard Model analogous fermions in different gen-
erations have completely identical couplings to all gauge
bosons of the strong, weak and electromagnetic interactions.
Prior to the introduction of the Higgs boson and mass terms,
the Lagrangian is chiral and invariant with respect to permu-
tations of the left and right fermionic fields.

The six possible permutations of three objects (f1, f2, f3)
are elements of the permutational group S3. This is the dis-
crete, non-Abelian group with the smallest number of ele-
ments. The three-dimensional real representation is not an
irreducible representation of S3. It can be decomposed into
the direct sum of a doublet fD and a singlet fs, where

fs =
1√
3
(f1 + f2 + f3),

fT
D =

(
1√
2
(f1 − f2),

1√
6
(f1 + f2 − 2f3)

)
. (6)

The direct product of two doublets pD
T = (pD1, pD2) and

qD
T = (qD1, qD2) may be decomposed into the direct sum

of two singlets rs and rs′ , and one doublet rDT where

rs = pD1qD1 + pD2qD2, rs′ = pD1qD2 − pD2qD1, (7)

rDT = (rD1, rD2)

= (pD1qD2 + pD2qD1, pD1qD1 − pD2qD2). (8)

The antisymmetric singlet rs′ is not invariant under S3.
Since the Standard Model has only one Higgs SU(2)L

doublet, which can only be an S3 singlet, it can only give

mass to the quark or charged lepton in the S3 singlet repre-
sentation, one in each family, without breaking the S3 sym-
metry.

Hence, in order to impose S3 as a fundamental symmetry,
unbroken at the Fermi scale, we are led to extend the Higgs
sector of the theory. The quark, lepton and Higgs fields are

QT = (uL, dL) , uR , dR ,

LT = (νL, eL) , eR , νR and H, (9)

in an obvious notation. All of these fields have three
species, and we assume that each forms a reducible repre-
sentation 1S ⊕ 2. The doublets carry capital indices I and
J , which run from 1 to 2, and the singlets are denoted by
Q3, u3R, d3R, L3, e3R, ν3R and HS .Note that the subscript
3 denotes the singlet representation and not the third gener-
ation. The most general renormalizable Yukawa interactions
are given by

LY = LYD
+ LYU

+ LYE
+ LYν

, (10)

where

LYD
=− Y d

1 QIHSdIR − Y d
3 Q3HSd3R

− Y d
2 [ QIκIJH1dJR + QIηIJH2dJR ]

− Y d
4 Q3HIdIR − Y d

5 QIHId3R + h.c., (11)

LYU
=− Y u

1 QI(iσ2)H∗
SuIR − Y u

3 Q3(iσ2)H∗
Su3R

− Y u
2 [ QIκIJ(iσ2)H∗

1uJR + ηQIηIJ (iσ2)H∗
2uJR ]

−Y u
4 Q3(iσ2)H∗

I uIR−Y u
5 QI(iσ2)H∗

I u3R+h.c., (12)

LYE =− Y e
1 LIHSeIR − Y e

3 L3HSe3R

− Y e
2 [ LIκIJH1eJR + LIηIJH2eJR ]

− Y e
4 L3HIeIR − Y e

5 LIHIe3R+ h.c., (13)

LYν =− Y ν
1 LI(iσ2)H∗

SνIR − Y ν
3 L3(iσ2)H∗

Sν3R

− Y ν
2 [ LIκIJ (iσ2)H∗

1νJR + LIηIJ (iσ2)H∗
2νJR ]

−Y ν
4 L3(iσ2)H∗

I νIR−Y ν
5 LI(iσ2)H∗

I ν3R+ h.c., (14)

and
κ=

(
0 1
1 0

)
and η =

(
1 0
0 −1

)
. (15)

Furthermore, we add to the Lagrangian the Majorana mass
terms for the right-handed neutrinos

LM = −M1ν
T
IRCνIR −M3ν

T
3RCν3R. (16)

Due to the presence of three Higgs fields, the Higgs po-
tential VH(HS ,HD) is more complicated than that of the
Standard Model. This potential was analyzed by Pakvasa and
Sugawara [18] who found that in addition to the S3 symme-
try, it has a permutational symmetry S2: H1 ↔ H2, which
is not a subgroup of the flavour group S3 and an Abelian
discrete symmetry that we will use for selection rules of the
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Yukawa couplings in the leptonic sector. In this communica-
tion, we will assume that the vacuum respects the accidental
S2 symmetry of the Higgs potential and

〈H1〉 = 〈H2〉. (17)

With these assumptions, the Yukawa interactions,
Eqs. (11)-(14) yield mass matrices, for all fermions in the
theory, of the general form

M =




µ1 + µ2 µ2 µ5

µ2 µ1 − µ2 µ5

µ4 µ4 µ3


 . (18)

The Majorana mass for the left neutrinos νL will be ob-
tained from the see-saw mechanism. The corresponding mass
matrix is given by

Mν = MνD
M̃−1(MνD

)T (19)

where M̃ = diag(M1,M1,M3).
In principle, all entries in the mass matrices can be com-

plex since there is no restriction coming from the flavour
symmetry S3.

The mass matrices are diagonalized by bi-unitary trans-
formations as

U†
d(u,e)LMd(u,e)Ud(u,e)R = diag(md(u,e), ms(c,µ),mb(t,τ)),

UT
ν MνUν = diag(mν1 ,mν2 ,mν3). (20)

The entries in the diagonal matrices may be complex, so the
physical masses are their absolute values.

The mixing matrices are, by definition,

VCKM = U†
uLUdL, VPMNS = U†

eLUνK, (21)

where K is the diagonal matrix of the Majorana phases.

3. The mass matrices in the leptonic sector and
Z2 symmetry

A further reduction of the number of parameters in the lep-
tonic sector may be achieved by means of an Abelian Z2 sym-
metry. A possible set of charge assignments of Z2, compati-
ble with the experimental data on masses and mixings in the
leptonic sector is given in Table I

These Z2 assignments forbid certain Yukawa couplings,

Y e
1 = Y e

3 = Y ν
1 = Y ν

5 = 0. (22)

Therefore, the corresponding entries in the mass matrices
vanish,i.e., µe

1 = µe
3 = 0 and µν

1 = µν
5 = 0.

TABLE I. Z2 assignment in the leptonic sector.

− +

HS , ν3R HI , L3, LI , e3R, eIR, νIR

3.1. The mass matrix of the charged leptons

The mass matrix of the charged leptons takes the form

Me = mτ




µ̃2 µ̃2 µ̃5

µ̃2 −µ̃2 µ̃5

µ̃4 µ̃4 0


 . (23)

The unitary matrix UeL that enters in the definition of the
mixing matrix, VPMNS , is calculated from

U†
eLMeM

†
e UeL = diag(m2

e,m
2
µ,m2

τ ), (24)

where me, mµ and mτ are the masses of the charged leptons,
and

MeM
†
e = m2

τ

×



2|µ̃2|2 + |µ̃5|2 |µ̃5|2 2|µ̃2||µ̃4|e−iδe

|µ̃5|2 2|µ̃2|2 + |µ̃5|2 0
2|µ̃2||µ̃4|eiδe 0 2 |µ̃4|2


 , (25)

Notice that this matrix has only one non-ignorable phase fac-
tor.

The parameters |µ̃2|, |µ̃4| and |µ̃5| may readily be ex-
pressed in terms of the charged lepton masses. From the in-
variants of MeM

†
e , we get the set of equations

Tr(MeM
†
e ) = m2

e + m2
µ + m2

τ

= m2
τ

[
4|µ̃2|2 + 2

(|µ̃4|2 + |µ̃5|2
)]

, (26)

χ(MeM
†
e ) = m2

τ (m2
e + m2

µ) + m2
em

2
µ

= 4m4
τ

[|µ̃2|4+|µ̃2|2
(|µ̃4|2+|µ̃5|2

)
+|µ̃4|2|µ̃5|2

]
, (27)

det(MeM
†
e ) = m2

em
2
µm2

τ = 4m6
τ |µ̃2|2|µ̃4|2|µ̃5|2, (28)

where χ(MeM
†
e ) = 1

2

[
(Tr(MeM

†
e ))2 − Tr(MeM

†
e )2

]
.

Solving these equations for |µ̃2|2, |µ̃4|2 and |µ̃5|2, we ob-
tain

|µ̃2|2 =
1
2

m2
e + m2

µ

m2
τ

− m2
em

2
µ

m2
τ (m2

e + m2
µ)

+ β, (29)

in this expression, β is the smallest solution of the equation

β3 − 1
2

(
1− 2y + 6

z

y

)
β2

− 1
4

(
y − y2 − 4

z

y
+ 7z − 12

z2

y2

)
β

− 1
8
yz − 1

2
z2

y2
+

3
4

z2

y
− z3

y3
= 0. (30)

where y = (m2
e + m2

µ)/m2
τ and z = m2

µm2
e/m4

τ .
A good, order of magnitude, estimation for β is obtained

from (30)

β ≈ − m2
µm2

e

2m2
τ (m2

τ − (m2
µ + m2

e))
. (31)
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The parameters |µ̃4|2 and |µ̃5|2 are, then, readily expressed in terms of |µ̃2|2,

|µ̃4,5|2=1
4

(
1−m2

µ+m2
e

m2
τ

+4
m2

em
2
µ

m2
τ (m2

e + m2
µ)
−4β

)
±

√
(1−m2

µ+m2
e

m2
τ

+4
m2

em
2
µ

m2
τ (m2

e+m2
µ)
−4β)2 − m2

µm2
e

m4
τ

1
|µ̃2|2 . (32)

Once MeM
†
e has been reparametrized in terms of the charged lepton masses, it is straightforward to compute UeL also as a

function of the lepton masses. Here, in order to avoid a clumsy notation, we will write the result to order of
(
mµme/m2

τ

)2.

Me≈mτ
1√
2




√
m2

µ+m2
e

mτ

√
1− 2 m2

µm2
e

(m2
µ+m2

e)m2
τ

√
m2

µ+m2
e

mτ

√
1− 2 m2

µm2
e

(m2
µ+m2

e)m2
τ

√
1− m2

µ+m2
e

m2
τ

+ 4 m2
em2

µ

m2
τ (m2

µ+m2
e)

√
m2

µ+m2
e

mτ

√
1− 2 m2

µm2
e

(m2
µ+m2

e)m2
τ

−
√

m2
µ+m2

e

mτ

√
1− 2 m2

µm2
e

(m2
µ+m2

e)m2
τ

√
1− m2

µ+m2
e

m2
τ

+ 4 m2
em2

µ

m2
τ (m2

µ+m2
e)

mµme

mτ

√
m2

µ−m2
e

eiδe mµme

mτ

√
m2

µ−m2
e

eiδe 0




(33)

and

UeL ≈




1√
2

me

mµ√√√√1−
(

me

mµ

)2

1√
2

1√√√√1 +

(
me

mµ

)2

1√
2

1√
1 +

memµ

m2
τ

− 1√
2

me

mµ√√√√1−
(

me

mµ

)2
− 1√

2

1√√√√1 +

(
me

mµ

)2

1√
2

1√
1 +

memµ

m2
τ

√
1− 2

(
me

mµ

)2

eiδe

√
1−

(
me

mµ

)2

me

mµ
eiδe

√√√√1 +

(
me

mµ

)2

memµ

m2
τ

eiδe

√
1 +

memµ

m2
τ




(34)

4. The mass matrix of the neutrinos

According with the Z2 selection rule eq. (22), the mass ma-
trix of the Dirac neutrino takes the form

M =




µν
2 µν

2 0
µν

2 −µν
2 0

µν
4 µν

4 µν
3


 . (35)

Then, the mass matrix for the left-handed Majorana neutrinos
obtained from the see-saw mechanism as

Mν = MνD
M̃−1(MνD

)T (36)

=




2(ρν
2)2 0 2ρν

2ρν
4

0 2(ρν
2)2 0

2ρν
2ρν

4 0 2(ρν
4)2 + (ρν

3)2


 , (37)

where ρν
2=(µν

2)/M1/2
1 , ρν

4=(µν
4)/M1/2

1 and
ρν
3=(µν

3)/M1/2
3 ; M1 and M3 are the masses of the right

handed neutrinos appearing in (16).
The non-Hermitian, complex, symmetric matrix Mν may

be brought to a diagonal form by a bi-unitary transformation,
as

UT
ν MνUν = diag

(|mν1 |eiφ1 , |mν2 |eiφ2 , |mν3 |eiφν
)
. (38)

In order to compute Uν , we notice that Mν may be
brought to a block diagonal form by a permutation of the sec-
ond and third rows and columns

S23MνS23 =




2(ρν
2)2 2ρν

2ρν
4 0

2ρν
2ρν

4 2(ρν
4)2 + (ρν

3)2 0
0 0 2(ρν

2)2


 ,

(39)
where

S23 =




1 0 0
0 0 1
0 1 0


 .

The entry in the lower right corner of the matrix in the
right hand side of eq. (39), is already diagonal and may be
identified with mν3e

iφν ; |mν3 | is the physical mass.
Then, the 2 × 2 block in the upper left hand corner may

be diagonalized by a 2× 2 bi-unitary transformation as

UT
2×2M2×2U2×2 = diag

(|mν1 |eiφ1 , |mν2 |eiφ2
)
.

U2×2 is computed from

U†
2×2M2×2M

†
2×2U2×2 = diag

(|mν1 |2, |mν2 |2
)
.
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Since the 2 × 2 Hermitian matrix M2×2M
†
2×2 has only

one phase factor, the unitary U2×2 matrix may be written as

U2×2 =
(

sin η cos η
− cos ηeiδν sin ηeiδν

)
. (40)

Explicit expressions for the entries of M2×2 and sin η, cos η
as functions of the complex masses mν1 , mν2 and mν3 are
obtained when the expression (40) for U2×2 is substituted in
eq (38) and we require that this equation be satisfied as an
identity. The result is

cos η =
√

mν3 −mν1

mν2 −mν1

, sin η =
√

mν2 −mν3

mν2 −mν1

(41)

The unitarity of U2×2 constrains sin η to be real and
| sin η| ≤ 1. This condition fixes the phases φ1 and φ2 as

|mν1 | sinφ1 = |mν2 | sin φ2 = |mν3 | sin φν . (42)

The real phase δν appearing in eq. (40) is not constrained by
the unitarity of Uν .

By doing a second permutation of the second and third
rows and columns in eq. (39) and writing the entries in Mν

as functions of the complex masses mν1 , mν2 and mν3 , we
find

Mν =




mν3 0
√

(mν3 −mν1)(mν2 −mν3)e
−iδν

0 mν3 0√
(mν3 −mν1)(mν2 −mν3)e

−iδν 0 (mν1 + mν2 −mν3)e
−2iδν


 . (43)

and

Uν =




√
mν2 −mν3

mν2 −mν1

√
mν3 −mν1

mν2 −mν1

0

0 0 1

−
√

mν3 −mν1

mν2 −mν1

eiδν

√
mν2 −mν3

mν2 −mν1

eiδν 0




. (44)

The only free parameters in these matrices, other than the neutrino masses, are the phase φν , implicit in mν1 , mν2 and mν3 ,
and the Dirac phase δν .

4.1. The neutrino mixing matrix

The neutrino mixing matrix VPMNS , in the standard form advocated by the PDG [37], is obtained by taking the product
U†

eLUνK and making an appropriate transformation of phases. Writing the resulting expression to the same approximation as
in eq. (33), we get

VPMNS ≈




1√
2

x√
1−x2 sin η +

√
1−2x2√
1−x2 cos η 1√

2
x√

1−x2 cos η −
√

1−2x2√
1−x2 sin η − 1√

2
x√

1−x2 e−iδ

1√
2

1√
1+x2 sin η − x√

1−x2 cos ηeiδ 1√
2

1√
1+x2 cos η + x√

1−x2 sin ηeiδ − 1√
2

1+2 z
y(1−y)√
1+x2

1√
2

1√
1+
√

z
sin η −

√
z√

1+
√

z
cos ηeiδ 1√

2
1√

1+
√

z
cos η +

√
z√

1+
√

z
sin ηeiδ 1√

2
1√

1+
√

z




K. (45)

where cos η and sin η are given in eq. (41), x = me/mµ, δ =
δν − δe and K is the diagonal matrix of the Majorana phases,
K = diag(1, eiα, eiβ).

A comparison of this expression with the standard
parametrization allowed us to derive expressions for the mix-
ing angles in terms of the charged lepton and neutrino masses

sin θ13 ≈
1√
2

me

mµ√
1−

(
me

mµ

)2
,

sin θ23 ≈ − 1√
2

√
1−

(
me

mµ

)2

√
1− 1

2

(
me

mµ

)2
(46)

and

tan θ12 =−
√

mν2 −mν3

mν3 −mν1

×


√

1− 2x2 − 1√
2
x
√

mν3−mν1
mν2−mν3√

1− 2x2 + 1√
2
x
√

mν2−mν3
mν3−mν1


 (47)

The dependence of tan θ12 on the phase φν and the physical
masses of the neutrinos is made explicit with the help of the
unitarity constraint on Uν , eq (42), we get

tan2 η =
mν2 −mν3

mν3 −mν1

= − (|mν2 |2 − |mν3 |2 sin2 φν)1/2 − |mν3 || cosφν |
(|mν1 |2 − |mν3 |2 sin2 φν)1/2 + |mν3 || cosφν |

. (48)
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Similarly, the Majorana phases are given by

sin 2α = sin(φ1 − φ2) = ±|mν3 | sin φν

|mν1 ||mν2 |
×

(√
|mν2 |2 − |mν3 |2 sin2 φν +

√
|mν1 |2 − |mν3 |2 sin2 φν

)

sin 2β = sin(φ1 − φν) = ± sin φν

|mν1 |
(
|mν3 |

√
1− sin2 φν +

√
|mν1 |2 − |mν3 |2 sin2 φν

)
(49)

A more complete and detailed discussion of the Majorana
phases in the neutrino mixing matrix VPMNS obtained in our
model is given in J. Kubo [38].

In this model, sin2 θ12 and sin2 θ23 are determined by the
masses of the charged leptons in very good agreement with
the experimental values [10, 11, 39],

(sin2 θ13)th = 1.1× 10−5, (sin2 θ13)exp ≤ 0.046,

and

(sin2 θ23)th = 0.49× 10−5, (sin2 θ23)exp = 0.5+0.06
−0.05.

In the present model, the experimental restriction
|∆m2

12| < |∆m2
13| implies an inverted neutrino mass spec-

trum, |mν3 | < |mν1 | < |mν2 | [16].
As seen from Eqs. (47) and (48), the solar mixing an-

gle is sensitive to the neutrino mass differences and the phase
φν but is only very weakly sensitive to the charged lepton
masses. Writing the neutrino mass differences mνi − mνj

in terms of the differences of the mass squared and one of
the neutrino masses, say |mν2 |, from our previous expres-
sions, (47) and (48), we obtain

m2
ν2

∆m2
13

=
1 + 2t212 + t412 − rt12

4t212(1 + t212)(1 + t212 − rt212)cos2φν

− tan2 φν + O(x2)

≈ 1
sin2 2θ12 cos2 φν

− tan2 φν for r ¿ 1, (50)

where t12 = tan θ12 and r = ∆m2
21/∆m2

13.
The mass |mν2 | assumes its minimal value when sinφν

vanishes, then

|mν2 | ≈
√

∆m2
13

sin 2θ12
. (51)

Hence, we find

|mν2 | ≈ 0.0507eV,

|mν1 | ≈ 0.0499eV

|mν3 | ≈ 0.0193eV

(52)

where we used the values ∆m2
13 = 2.2+0.37

−0.27 × 10−3eV 2 and
sin2 θ12 = 0.31+0.02

−0.03 taken from M. Maltoni et al. [10], T.
Schwetz [11] and G.L. Fogli et al. [39].

With those values for the neutrino masses we compute the
effective electron neutrino mass mβ ,

mβ =

[∑

i

|Uei|2m2
νi

] 1
2

= 0.0502eV, (53)

well below the upper bound mβ < 1.8eV coming from the
tritium β-decay experiments [13, 39, 40].

5. Conclusions

By introducing three Higgs fields that are SU(2)L doublets
in the theory, we extended the concept of flavour and gen-
erations to the Higgs sector and formulated a Minimal S3-
invariant Extension of the Standard Model [16]. A defined
structure of the Yukawa couplings is obtained which permits
the calculation of mass and mixing matrices for quarks and
leptons in a unified way. A further reduction of redundant
parameters is achieved in the leptonic sector by introducing a
Z2 symmetry. The flavour symmetry group Z2 × S3 relates
the mass spectrum and mixings. This allowed us to compute
the neutrino mixing matrix explicitly in terms of the masses
of charged leptons and neutrinos. In this model, the magni-
tudes of the three mixing angles are determined by the inter-
play of the flavour S3×Z2 symmetry, the see-saw mechanism
and the lepton mass hierarchy. We also found that VPMNS

has one Dirac and two Majorana CP violating phases. The
numerical values of the mixing angles are determined by the
masses of the charged leptons only in very good agreement
with the experiment. The solar mixing angle θ12 is almost
insensitive to the values of the masses of the charged leptons,
but its experimental value allowed us to fix the scale and ori-
gin of the neutrino mass spectrum which has an inverted hier-
archy with the values |mν2 | = 0.0507eV , |mν1 | = 0.0499eV
and |mν3 | = 0.0193eV .
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Prog. Theor. Phys. 109, (2003), 795.

17. H. Fritzsch Phys. Lett. B70, (1977), 436.

18. S. Pakvasa and H. Sugawara, Phys. Lett. 73B (1978), 61.

19. H. Fritzsch, Phys. Lett. B73, (1978), 317.

20. H.Harari, H.Haut, J.Weyers, Phys. Lett. B78 (1978), 459.

21. H. Fritzsch, Nucl. Phys. B 155, (1979), 189.

22. Y. Yamanaka, S. Pakvasa and H. Sugawara, Phys. Rev. D25
(1982), 1895.

23. P. Kaus and S. Meshkov, Phys. Rev. D42 (1990), 1863.

24. H. Fritzsch and J.P. Plankl, Phys. Lett. B237 (1990), 451.

25. P.F. Harrison and W.G. Scott, Phys. Lett. B333 (1994), 471.

26. A. Mondragón and E. Rodrı́guez-Jáuregui, Phys. Rev. D59
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