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Recibido el 1 de febrero de 2006; aceptado el 30 de marzo de 2006

An overview of the concept of quadrupole shape invariants is given. Definitions and ways to derive shape invariants from data that were
found in recent works are summarized, and the connection and sensitivity of shape invariants to the nuclear shape/phase transition is shown.
First results of an ongoing survey of shape invariants for excited states are presented, investigating the critical point behavior as a function of
angular momentum and energy. A manifestation of theoretical predictions appears to be found in the transitional Gd isotopes.
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Se presenta una revisión del concepto de los invariantes de forma cuadrupolares, sus definiciones y las maneras de extraerlos de los datos
experimentales. Se muestra la conexión y sensibilidad de invariantes de forma con las transiciones de fase en la fı́sica nuclear. Se discuten los
primeros resultados de una investigación de invariantes de fase para estados excitados a través de un estudio del comportamiento del punto
crı́tico como función del momento angular y la energı́a. Hay evidencia que las predicciones teóricas se manifiestan en los isótopos de Gd.
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1. Introduction

The well-known deformation parameters β and γ parametrize
the shape of a nucleus like the shape of a liquid drop. They
are used in geometrical models like that of Bohr and Mottel-
son [1] or the rigid triaxial rotor model (RTRM) by Davydov
and Fillipov [2]. However, due to their geometrical origin,
β and γ are model dependent and therefore values derived
within different models are not trivially comparable.

An alternative approach for the description of the nuclear
shape was introduced by Kumar [3], and later on was widely
used and applied by Cline and co-workers (see, e.g. [4]). This
approach used quadrupole shape invariants, which are higher
order moments of the quadrupole operator in a given state,
and will be introduced in more detail in Sec. 2.. Such shape
invariants are not only calculable from every model giving E2
transition matrix elements, but can in principle also directly
be measured in means of experimentally obtaining complete
sets of E2 matrix elements.

The latter requirement makes the experimental determi-
nation of quadrupole shape invariants more than difficult,
but we will see below that, in some cases, shape invariants
can already be deduced with good accuracy from only few
data [5]. This affords certain truncations to the pool of re-
quired matrix elements, by applying approximate selection
rules, which were found to be valid within the so-called Q-
phonon scheme [6, 7] for collective nuclei of various sym-
metries. Using such truncations and relations between shape
invariants, in addition useful relations have been identified,
resulting, e.g., in a way to calculate the absolute value of the
quadrupole moment of the first excited 2+ state in even-even
nuclei from other lifetime data. This will be discussed in
Sec. 3.

As model independent quantities, quadrupole shape in-
variants can be calculated within geometrical models, there-
fore leading to expressions relating the lowest two invariants
to the geometrical deformation parameters. However, we will
see that those only give effective geometrical deformation pa-
rameters, as we deal with averages in a given state. In con-
trast, higher invariants relate to fluctuations in these parame-
ters, making quadrupole shape invariants suitable for the de-
scription of rigid and non-rigid deformation, and therefore
applicable to a wide range of nuclei.

This was shown [8] to be of special importance in the
description of the nuclear shape/phase transition [9, 10], oc-
curring as a function of the number of valence nucleons
from spherical (vibrators) to deformed (rotors or γ-soft) nu-
clei [11,12]. As discussed in section 4., certain invariants ex-
hibit rapid changes in the vicinity of the nuclear shape/phase
transition, therefore providing a way to experimentally sur-
vey the transition for a limited number of valence nucleons
from E2 transition data, complementary to the investigation
of level energies.

Many works focused on only the evolution of the ground
state in even-even nuclei, but we now use quadrupole shape
invariants to gain insight in the evolution of excited states. In
Secs. 5 and 6 of we will show first results obtained within
the ground state band and for the lowest two 0+ states, which
need to be explored in more detail in future works.

2. Quadrupole shape invariants

Quadrupole shape invariants are defined as higher order mo-
ments of the quadrupole operator in a given state. The lowest
invariants are

q2(J) =〈J |(Q ·Q)|J〉 (1)
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q3(J) =

√
35
2
〈J |[QQQ](0)|J〉 (2)

q4(J) = 〈J |(Q ·Q)(Q ·Q)|J〉 (3)

q5(J) =

√
35
2
〈J |(Q ·Q) [QQQ](0)|J〉 (4)

q6(J) =
35
2
〈J |[QQQ](0) [QQQ](0)|J〉, (5)

where Q is the quadrupole transition operator, brackets de-
note tensor coupling and a dot denotes a scalar product. Note
that for q4 we chose an intermediate coupling to spin zero,
as we want to use it to measure fluctuations in q2. However,
other choices can be made and lead to interesting relations as
demonstrated in Sec. 3. The expressions (1)-(5) can be con-
verted into sums over E2 matrix elements using tensor cou-
pling, the Wigner-Eckert theorem and the unitarity relation of
Clebsch Gordan coefficients. For the lowest three invariants
in the ground state, this procedure yields

q2(0+
1 ) =

∑

i

〈0+
1 ‖ Q ‖ 2+

i 〉〈2+
i ‖ Q ‖ 0+

1 〉 (6)

q3(0+
1 ) =

√
7
10

∑

i,j

〈0+
1 ‖ Q ‖ 2+

i 〉〈2+
i ‖ Q ‖ 2+

j 〉

· 〈2+
j ‖ Q ‖ 0+

1 〉 (7)

q4(0+
1 ) =

∑

i,j,k

〈0+
1 ‖ Q ‖ 2+

i 〉〈2+
i ‖ Q ‖ 0+

j 〉

· 〈0+
j ‖ Q ‖ 2+

k 〉 · 〈2+
k ‖ Q ‖ 0+

1 〉 . (8)

We usually define [13] dimensionless shape parameters by
dividing qn by an appropriate power of q2, which gives

Kn(J) =
qn(J)

q2(J)n/2
for n ∈ {3, 4, 5, 6}. (9)

for any state.
The shape parameters K can be calculated within any

model. The geometrical model, for example, leads to the ex-
pressions (omitting J for abbreviation)

q2 =
(

3ZeR2

4π

)2

〈β2〉 ≡
(

3ZeR2

4π

)2

βeff
2 (10)

K3 =
〈β3 cos 3γ〉
〈β2〉3/2

≡ cos 3γeff (11)

K4 =
〈β4〉
〈β2〉2 (12)

K6 =
〈β6 cos2 3γ〉
〈β2〉3 , (13)

relating the shape parameters to the geometrical deformation
parameters, or more precisely, to effective (non-rigid) defor-
mation parameters [by Eqs. (10) and (11)] and fluctuations
in those [from Eqs. (12) and (13)]. We note, that γeff gives
a measure for triaxiality if the β-deformation is rigid and can
be separated out.

The general behavior of the shape parameters K has been
investigated for the ground state [13] and is shown in Fig. 1,
showing results of calculations within the Interacting Boson
Model (IBM-1) [14] for NB = 10 bosons, using the extended
consistent Q formalism (ECQF) [13, 15, 16]

FIGURE 1. The relevant shape parameters q2, K3, K4 and K6, calculated for the ground state over the whole symmetry space spanned by
the ECQF Hamiltonian in the IBM-1, using the parametrization of [13].
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HIBM = (1− ζ) nd − ζ

4NB
Qχ ·Qχ , (14)

omitting an absolute energy scale, and the quadrupole opera-
tor Qχ which appears also in the E2 transition operator

T (E2)IBM = eBQχ = eB [(s+d̃ + d+s) + χ(d+d̃)] , (15)

nd is the boson number operator, and eB the effective charge.
The limiting dynamical symmetry limits are denoted as U(5)
(vibrator), SU(3) (axially symmetric rotor), and O(6) (γ-soft
rotor)

3. Shape parameters from data

In general the derivation of quadrupole shape invariants from
data affords the measurement of complete sets of E2 matrix
elements. However, many of the involved matrix elements
will be small and will not significantly contribute to the val-
ues of the invariants. In order to have a consistent way to
truncate the sums given in Eqs. (6)-(8), it was shown [5, 17]
that the application of the Q-phonon scheme [6, 7] is conve-
nient and leads to good approximations.

In the Q-phonon scheme the first excited 2+ state in even-
even nuclei is given by acting on the ground state with the
quadrupole operator Q, and n-phonon states are derived by
acting on the ground state with Q n times, coupling the oper-
ators to angular momentum L,

|L+, n〉 = N (L,n)(Q . . .Q︸ ︷︷ ︸
n

)(L)|0+
1 〉 , (16)

where N (L,n) are normalization constants. As the E2 transi-
tion operator is Q, transitions between states are only allowed
if they change the number of phonons by one, hence the se-
lection rule ∆Q = 1. It was shown in earlier works [18–20]
that the the lowest excited states of even-even collective nu-
clei are rather pure Q-phonon configurations, regardless of
the structure of a specific nucleus. Therefore, especially for
the ground state, applying the Q-phonon selection rule to
Eqs. (6)-(8) severely truncates the sums, and only few E2
matrix elements are left.

The simplest example is the shape invariant q2(0+
1 ), for

which only the matrix element to the 2+
1 state is allowed in

the truncation. Therefore, a good approximation is given by

q2(0+
1 ) ≈ qappr.

2 (0+
1 ) = B(E2; 0+

1 → 2+
1 ) , (17)

where we denote the used truncation as a first order approx-
imation as a means of only allowing matrix elements with
∆Q = 1 for transitions and ∆Q = 0 for quadrupole mo-
ments.

The quadrupole shape invariant q4 can be defined in dif-
ferent ways, as mentioned above, using different intermedi-
ate couplings of the quadrupole operators, e.g. for the ground
state, as

q4,J(0+
1 ) = 〈0+

1 |[QQ](J)[QQ](J)|0+
1 〉 , J = 0, 2, 4 . (18)

It was found [5] that the three different q4 values from
Eq. (18) are approximately equal, which is trivial in some
models, while in the IBM-1 it is a 1/N or 1/N2 effect. This
approximate identity lead to a useful relation between three
B(E2) values, which is

B(E2; 2+
1 → 2+

1 ) ≈ B(E2; 4+
1 → 2+

1 )

−B(E2; 2+
2 → 2+

1 ) , (19)

where the B(E2; 2+
1 → 2+

1 ) is directly proportional to the
squared quadrupole moment Q(2+

1 )2, using consistently

B(E2; Ji → Jf ) =
1

2Ji + 1
e2〈Jf ||Q||Ji〉2 . (20)

The relation (19) was shown [5, 17] to be valid within few
percent within the IBM-1 and the RTRM.

Another outcome of the approximate identity of the q4

values and truncation of the Q-phonon scheme in first order
is an approximation to the shape parameter K4(0+

1 ), which is

Kappr.
4 (0+

1 ) =
7
10

B(E2; 4+
1 → 2+

1 )
B(E2; 2+

1 → 0+
1 )

, (21)

involving only the lowest two B(E2) values in the ground
state band.

Applying the Q-phonon truncation to the shape parame-
ter K3, which relates to triaxiality via Eq. (11) showed [17]
that the above first order approximation does not yield accu-
rate values. In this case it is necessary to allow at most one
matrix element in the sum with ∆Q = 2, leading to an ap-
proximate value

Kappr.
3 (0+

1 )=

√
7
10

sign(Q(2+
1 ))

[√
B(E2; 2+

1 → 2+
1 )

B(E2; 2+
1 → 0+

1 )

−2

√
B(E2; 2+

2 → 0+
1 )B(E2; 2+

2 → 2+
1 )

B(E2; 2+
1 → 0+

1 )


 (22)

involving four B(E2) values, one of which is the above men-
tioned quadrupole moment of the 2+

1 state, which is the lead-
ing term. Using the technique described in section 4., but
taking the derivative of K3 with respect to the parameter χ
which is inherent to the IBM-1 quadrupole operator, one can
identify K3 as a sensitive observable for the phase transition
between prolate and oblate rotors, in which the O(6) dynami-
cal symmetry limit of the IBM itself is the critical point [21].

4. Identification of critical points

One of the most striking features seen in Fig. 1 is the sharp
drop of K4 from vibrators toward the deformed limits, cor-
responding to the transition from β-soft to β-stable nuclei.
This drop appears around ζ = 0.5, which is the critical point
between vibrators and deformed nuclei for an infinite num-
ber of valence nucleons. Due to the finite boson number the
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transition is smoothed out, which makes the definition of a
critical point difficult.

In Ref. 8 it was suggested to identify the critical point in
the realistic case of limited boson numbers with the point of
steepest changes in corresponding observables, e.g. in K4.
It was found that this point corresponds well with the crit-
ical point found within the coherent state formalism of the
IBM-1 [22, 23], where two coexisting minima of the ground
state energy functional are degenerate.

Figure 2 shows the derivative of the shape parameter K4,
calculated within the IBM-1 between the U(5) (ζ=0) and
SU(3) (ζ = 1) dynamical symmetry limits. The derivative
peaks at a value of ζ slightly larger than 0.5, reflecting the
dependence of the exact location of the critical point (which
is related to the X(5) critical point symmetry introduced by
Iachello [10]) on the boson number. A similar analysis can be
made for the shape invariant q2, which rises from small val-
ues (small average deformations) in the vibrator limit to large
values in the deformed limits (compare Fig. 1). This will be
used in the analysis of shape invariants for excited states in
the ground state band in Sec. 5.

5. The ground state band

We are currently carrying out calculations of shape parame-
ters for excited states. First results are obtained for the ground
state band. Figure 3 shows a plot similar to to Fig. 2, but for
the derivative of q2 for members of the ground state band up
to J = 10 on the transition path U(5) to SU(3). For all states
a qualitatively similar behavior is seen, while the absolute
scale varies.

FIGURE 2. Derivative of K4 with respect to the control parame-
ter ζ, peaking at the point of steepest change in K4. The calcula-
tion was done for NB = 10 bosons fixing χ = −√7/2 between
the U(5) (ζ = 0) and SU(3) (ζ = 1) dynamical symmetry limits of
the IBM-1.

FIGURE 3. Derivative of q2 with respect to the control parame-
ter ζ, peaking at the point of steepest change in q2. The calcula-
tion was done for NB = 10 bosons fixing χ = −√7/2 between
the U(5) (ζ = 0) and SU(3) (ζ = 1) dynamical symmetry limits
of the IBM-1. The line with the highest amplitude corresponds to
the ground state, followed with decreasing amplitudes by the next
members of the ground state band.

FIGURE 4. Schematic of the nuclear potential in the region where a
coexistence of two minima occurs, as a function of the deformation
parameter β.

The most important result is that the critical point of the
transition, which corresponds to the maxima in the plotted
curves, appears at decreasing values of the control parame-
ter ζ, that means closer to the vibrator limit. It is not yet clear
whether this is just a finite boson number effect that vanishes
for NB →∞. One possible qualitative interpretation may be
that the lowering of a second, deformed, minimum of the po-
tential when increasing ζ leads to a wider potential at higher
energies, as depicted in Fig. 4. Higher lying states should
be sensitive to a widening of the potential earlier than lower
lying states.

These findings are currently being tested for large boson
numbers, as well as for higher lying bands. In this way we
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TABLE I. Approximate effective deformation parameters for the
ground state and the first excited 0+ state in the transitional Gd iso-
topes. For each state the value derived from data, as well as the
value derived from IBM-1 fits are given.

0+
1 0+

2

βappr.
eff βIBM,appr.

eff βappr.
eff βIBM,appr.

eff

152Gd 0.212(10) 0.216 0.22(1) 0.250
154Gd 0.317(1) 0.320 0.26(1) 0.264

FIGURE 5. Schematic of the nuclear potential for a vibrator (left)
and slightly behind the shape/phase transition to the rotational side
(right), as a function of the deformation parameter β. Dotted lines
denote the lowest 0+ levels.

want to explore the phase transitional behavior of their band
members as functions of spin, energy and number of valence
nucleons.

6. Shrinking effect for 0+ states

Another finding from the calculations for the ground state
and the first excited 0+ state is a shrinking effect in the β-
deformation. From extensive fits to a large set of nuclei [24]
within the IBM-1, parameters for the A=152,154 Gd isotopes
are known. Using these parameters, we calculated shape pa-
rameters for those isotopes and find that the values of q2, or
in terms of the geometrical model the β-deformation, of the
lowest two 0+ states seem to reflect the change in the nuclear
potential.

For the calculation of qappr.
2 (0+

2 ) following

q2(0+
n ) =

∑

i

B(E2; 0+
n → 2+

i ) (23)

the B(E2) transitions to the first three 2+ states were taken
into account in order to derive a first order approximation.
Those correspond to the transition to the ground state band
and the in-band transition. For the latter it was found that
B(E2) values to the second and third excited 2+ states had to
be considered due to mixing effects.

Table I shows approximate effective β-deformation pa-
rameters, obtained from q2 via Eqs. (17) and (10) for those

nuclei. For the ground state one sees the typical drastic in-
crease in deformation when passing the shape transition, in-
creasing βeff from about 0.21 to 0.32. This increase does not
appear for the first excited 0+ state, for which the deforma-
tion remains almost constant at about 0.25.

Comparing the deformations of 0+ states within each iso-
tope, they increase only slightly in the vibrational 152Gd. In
154Gd, the deformation of the excited state is lower than that
of the ground state. In this case the ground state is in the
deformed minimum. Data for both nuclei, which was taken
from high precision experiments [25, 26], is included in Ta-
ble I for both nuclei and seems to confirm the model predic-
tions.

Again, a qualitative explanation for the effect may be
found considering the nuclear potentials as sketched in Fig. 5.
In the vibrational case, with a minimum of the potential at
zero deformation, the effective deformation of the 0+ states
should be similar, somewhat larger for the excited state, cor-
responding to the findings for 152Gd. When the ground state
is in the deformed minimum, the excited 0+ state may still
reach zero deformation and therefore have a smaller effective
deformation than that of the ground state, which may be the
case in 154Gd.

7. Summary

A review of results on quadrupole shape invariants and re-
lated shape parameters, obtained within recent years, was
given. Shape parameters are model independent quantities
and can be derived from E2 data. Using truncations implied
by the Q-phonon scheme, the lowest shape parameters can
be obtained from only few data for some states. Shape pa-
rameters are sensitive probes of the nuclear shape/phase tran-
sition, as was shown in earlier works for the ground state.
A new study focuses on the systematic behavior of excited
states. First results for the ground state band show a shift
of the critical point on the vibrator/rotor transition toward the
vibrator limit for higher members of the ground state band. A
shrinking of the 0+

2 state deformation relative to the ground
state deformation is predicted, and an example was identified
in the transitional Gd isotopes.
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