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Generalized treatment for diffusion waves
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Intended for teaching purposes, the phenomenon of diffusion in the presence of periodical sources is described, taking into account a
characteristic operator,̂F (t), leading to a generalized hyperbolic equation. The essential features of the accompanying harmonic flux are
presented. For this purpose the solution to the problem is interpreted in terms of diffusion waves, a peculiar class of waves with complex
wave numbers whose generation, propagation and detection constitute the basis of modern analytical techniques able to measure optical and
transport properties of materials in the condensed or gaseous phase. A generalized mathematical equation describing this kind of waves
is shown and the existence of critical modulation frequencies, at which the diffusive fluxes change their behaviour, is demonstrated for
different physical phenomena involving diffusion waves. The dispersion equation for diffusion waves is given, and different particular cases
in modulation frequency “spectrum” are discussed.
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Con proṕositos de ensẽnanza se describe el fenómeno de difusíon en presencia de fuentes periódicas teniendo en cuenta un operador car-
acteŕıstico,F̂ (t), que conduce a una ecuación de difusíon hiperb́olica generalizada. Se presentan las caracterı́sticas fundamentales del flujo
de calor harḿonico asociado a ella. Para ello se interpreta la solución del problema en términos de ondas de difusión, un tipo particular de
ondas con ńumeros de onda complejos y cuya generación, propagacíon y deteccíon constituyen las bases de técnicas analı́ticas modernas
capaces de medir propiedadesópticas y de transporte de materiales en la fase condensada o gaseosa. Se presenta una ecuación mateḿatica
generalizada para describir esta clase de ondas y se demuestra para diferentes fenómenos que involucran las ondas de difusión la existencia
de frecuencias de modulación caracteŕısticas a las cuales el flujo difusivo cambia su carácter. Se presenta la ecuación de dispersión y se
discuten diferentes casos particulares en el “espectro” de frecuencia de modulación.

Descriptores:Difusión; fuentes periódicas; ecuación de dispersión.

PACS: 51.20.+d; 66.10.Cb; 36.40.Sx; 68.35.Fx

1. Introduction

In the last 30 years, the concept of Diffusion Waves [1] has
been increasingly used for the description of several physi-
cal phenomena [2-9] for which the presence of a periodically
varying source is common. Therefore, many authors have
adopted the concepts of wave physics that were used suc-
cessfully in the explanation of other periodic phenomena, to
interpret their experimental results.

The concept of waves is involved in many fields of sci-
ence, and is becoming an integral part of the physics curric-
ula at different levels. The increasing use of concepts related
to wave propagation in the teaching of physics argues in fa-
vor of their introduction whenever possible. As the analysis
of transport problems presented in standard textbooks does
not make systematic use of the wave treatment, it is the pur-
pose of this work to discuss some aspects of the so-called
diffusion waves,i.e., solutions of the diffusion equation in
the case of periodic modulated sources. A generalized equa-
tion is presented describing diffusion wave fields of a general
nature. For time-varying harmonic sources, and based on the
dispersion relation, we shall emphasize some of the physical
aspects related to the nature of the diffusion fields and their
frequency dependence, attempting to present these questions
in a unified style so that their use for educational aims will be
favored.

2. Theory

Consider a sample where oscillatory wave fieldsϕ(~r,t) are
generated by a source with periodically modulated intensity,
or driving force [1], of the formQ(~r)eiωt, whereω is the an-
gular modulation frequency,~r is the spatial coordinate, and
t is time. The functionϕ~r,t) can be a thermal or temper-
ature wave,T (~r,t) [10]; or a charge carrier density wave,
N(~r,t) [11], in photothermal [3] experiments; a diffuse pho-
ton density wave in a turbid medium excited by periodically
infrared light,u(~r,t) [2], among others. These phenomena
will be used as illustrative examples for the discussion. For
example, diffusion waves were used in the past in the analysis
of compound migration in stratified media [4]; in the study of
molecular diffusion processes by means of pressure oscilla-
tions in vacuum chambers [5]; as well as in applications re-
lated to mass transport in metals [6], electrolytes [7] and dial-
ysis membranes [8]. Early works concerning the diffusion of
a periodic flux of neutrons were also reported elsewhere [9].

We shall assume, as is often encountered in the praxis,
that the sample is homogeneous and isotropic, and its prop-
erties are constant throughout the changes in temperature in-
volved. The results achieved here can be extended by the in-
terested reader, with suitable modifications, to a more general
situation.



86 E. MARÍN

As mentioned in Ref. 1, the field distribution within the
sample can be described by the homogeneous equation:

∇2ϕ (~r, t)− 1
D

∂ϕ (~r, t)
∂t

− F̂ (t)ϕ (~r, t) = 0 , (1)

where∇2 is the Laplace operator,r is the spatial coordi-
nate, t is time, F̂ (t) is an operator characterizing a given
phenomenon, andD can be interpreted as a medium char-
acteristic transport parameter, usually a diffusion coefficient
in m2/s units. It becomes the material’s thermal diffusivity,
α, in the case of thermal waves, the carrier diffusion coeffi-
cient,Dn, for plasma waves in semiconductors and the light
diffusion coefficient,Dl, for a diffusing photon flux in turbid
media.

A brief discussion concerning the operatorF̂ (t) is intro-
duced at this point. It is usually taken as a (real) scalar con-
stant, sayβ2, given by the inverse of the squares of the diffu-
sion lengths of the wave’s carriers [1]:̂F=1/L2

n for plasma
waves in semiconductors,i.e. the distance a free carrier
travels before it recombines with ones of opposite sign, and
F̂=1/L2

l for diffusing photon waves,i.e., the inverse of the
distance a photon will travel under random motion until it is
absorbed by the medium. For thermal waves, on the other
hand, it is usually assumed thatF̂=0, giving rise to instan-
taneous heat propagation or infinite speeds of propagation,
as described by several authors [1,10,12-14]. If we consider,
for example, a flat slab and a supply of heat is applied, at a
given moment, to one of its faces, then according to Eq. (1),
there is an instantaneous effect to the rear. The same thing
occurs in the case of Fick’s (first and second) Laws of dif-
fusion, where the flux of the diffusing object (mass) reacts
simultaneously to the concentration gradient leading to an
unbounded propagation speed. This conclusion, of course,
is physically unreasonable. If̂F is a constant scalar, as in
the examples given above, then Eq. (1) becomes parabolic
(with a first-order derivative in time and a second-order one
in the spatial coordinate), while wave equations are hyper-
bolic (with second-order derivatives in both space and time
coordinates). This fact can be argued to assert that, accord-
ing to Eq. (1), the magnitudeϕ(~r,t) propagates in a non-
wavelike manner, although nowadays, the theories based on
a wave treatment of its propagation have been successfully
used to interpret the experimental data in experiments related
to the above-mentioned phenomenon.

To rectify the above-described weaknesses, one can rede-
fine the operator̂Fas

F̂ (t) =
1
u2

∂2

∂t2
+ β2 , (2)

introducing the second time derivative, whereu is a parame-
ter having the dimensions of a velocity. Consequently Eq. (1)
becomes hyperbolic (note its analogy with the simplest form
of the well-known telegraphist equation resulting when the
inductance is incorporated into Ohm’s law for an electrical
conductor, implying that electromagnetic signals propagate
with a finite velocity, in agreement with experimental evi-
dence). It is worth recalling that the term containingβ2 is

introduced as anad-hoc condition in order to account for
the discussion given above concerning the significance of the
F̂ (t) operator.

We shall, from now on, consider a source of waves lo-
cated at the (semi-infinite) sample’s surface, and we shall re-
strict our analysis to the one-dimensional case,i.e. we shall
assume the source to be uniformly distributed across the sur-
face. Then we have to solve the equation resulting from sub-
stituting Eq. (2) in Eq. (1),i.e.

∂2ϕ (x, t)
∂x2

− 1
D

∂ϕ (x, t)
∂t

− 1
u2

∂2ϕ (x, t)
∂t2

− β2ϕ (x, t) = 0 (3)

Now we shall try to explain the origin of the second
time derivative term on the basis of the heat transport phe-
nomenon, where it often appears. Note that when the wave
field is the temperature, and forβ2= 0, Eq. (3) becomes the
well-known hyperbolic heat diffusion equation [13,14]. If, as
a consequence of the temperature gradient existing at each
time instant,t, the heat flux appears only at a later instant,
t + τ , then Fourier’s Law adopts the form:

q (x, t + τ) = −k
∂T (x, t)

∂x
(4)

Time τ is the thermal relaxation time,i.e. the build-up
time for the onset of the thermal flux after a temperature gra-
dient is suddenly imposed on the sample. It is associated with
the phonon-phonon interaction after the start of the diffusive
heat flux. Ifτ is small, then we can expand the heat flux in a
Taylor Series aroundτ = 0 obtaining:

q (x, t + τ) = q (x, t) + τ
∂q (x, t)

∂t
(5)

where we neglect higher order terms. Substituting Eq. (5)
into Eq. (4) leads to:

q (x, t) + τ
∂q (x, t)

∂t
= −k

∂T (x, t)
∂x

(6)

This is the so-called modified Fourier’s law, also known
as Cattaneo’s Equation (we can find equations of the same
kind as Eq. (4) for other wave fields, for example the first
Fick’s Law of Mass Diffusion due to a concentration gradi-
ent, for which a similar analysis can be performed). On the
other hand, at each time instant,t, and for each pointx, the
law of energy conservation (neglecting heat generation) lauds
(for other fields one must use the corresponding continuity
equation)

−divq (x, t) = ρc
∂T (x, t)

∂t
(7)

whereρ is the density andc is the specific heat.
From Eqs. (6) and (7) we can obtain the so-called hyper-

bolic heat equation

∂2T (x, t)
∂x2

− 1
α

∂T (x, t)
∂t

− 1
u2

∂2T (x, t)
∂t2

= 0 (8)
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FIGURE 1. Schematic representation of the particular case I. At the top the form of the solutions of the generalized heat diffusion equation
with a periodic source is shown schematically. For lower frequencies we have non-wave behavior. For frequencies betweenω0 andωL

damped harmonic waves appears while for higher frequencies the waves are non-attenuated, and they propagate through a ‘non-dissipating’
medium (Although, not medium exists with zero resistance, an equivalent situation can be obtained in practice by choosing the adequate
modulation frequency [10]).

FIGURE 2. Schematic representation of the particular case II. At the top the form of the solutions of the generalized heat diffusion equation
with a periodic source is shown schematically. For lower frequencies we have non-wave behavior. For frequencies aboveω0 non-attenuated
harmonic waves appears.

Rev. Mex. F́ıs. E55 (1) (2009) 85–91
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whereα = k/ρ c is the thermal diffusivity. The last term
on the left hand side of this equation may help to solve the
paradox of instantaneous heat propagation, introducing the
velocity u, related to the relaxation time and to the thermal
diffusivity through the relationship,u= (α / τ ) 1/2, whose
physical mean in the context of thermal waves has been dis-
cussed in detail elsewhere [10,13]. In some works a phase
lag in the temperature gradient vector was also introduced to
allow either the temperature gradient to precede the heat flux
and vice-versa, introducing a term proportional to the time
derivative of the second spatial derivative of the tempera-
ture field [15-17]. This is the so-called dual-phase-lag-model.
A comparison between the results of the parabolic diffusion
model, the hyperbolic one and the dual phase lag model has
been performed elsewhere [18-20] for different cases of in-
terest. As expected, the differences between the three models
increase with the modulation frequency, due to of the effect
of the time delays between heat flux and temperature gradi-
ent. It is a well-established fact that the dual-phase model
becomes a necessity for very high frequencies of the heat-
ing source (for example for metal slabs they are larger than
1012 s−1) [20]. Here, we shall limit our analysis to the clas-
sical hyperbolic case considering only the thermal relaxation
time,τ .

We can see that Eq. (3) represents a generalized equation
that can be used for the description of any kind of time vary-
ing diffusion phenomena. For large time scales compared
with the relaxation times, the second derivative term can be
neglected. This is the situation that most often appears in
praxis in phenomena such as the above-described (mass, car-
rier and temperature diffusive fields). Care must be taken,
however, in dealing with very fast processes such as those
that would be induced by ultra-short duration laser pulses that
can lead to situations where such physical-mathematical for-
malism is no longer valid and where the second time deriva-
tive must be taken into account.

In the presence of a periodic source of the formQ(x)eiωt,
the solution of physical interest of the problem for the appli-
cations considered here is that related to the time-dependent
component of the solution to Eq. (3). If we separate this com-
ponent from the spatial distribution, the field magnitude can
be expressed as:

ϕ (x, t) = Re [Θ (x) exp (iωt)] . (9)

Substituting in Eq. (3), we obtain, for the spatial compo-
nent, the equation:

d2Θ(x)
dx2

− q2Θ(x) = 0, (10)

where

q2 =
(ω

u

)2
{

ωCωL

ω2

[
1 + i

ω

ωC

]
− 1

}

=
(ω

u

)2
{(ω0

ω

)2
[
1 + i

ω

ωC

]
− 1

}
(11)

is the square of the complex diffusion wave number,q, de-
pending on the characteristic frequencies:

ωC = Dβ2 (12)

ωL =
u2

D
(13)

ω0 =
√

ωLωC = uβ (14)

Equation (11) represents the dispersion relation of the
problem being considered. The solution of Eq. (10) de-
pends, therefore, on the relative value of the modulation fre-
quency,ω, respecting the characteristic frequencies given by
Eqs. (12) to (14). Different particular cases will be analyzed
below.

3. Particular cases and discussion

We shall discuss the possible particular cases, which are il-
lustrated in Figs. 1 and 2.

Case I: ωc < ω0 < ωL

This occurs foru À Dβ as we can easily see from
Eqs. (12) to (14) (Fig. 1). This is a common practical
situation, as we shall discuss later in this section.

Case I.I: ω ¿ ωC

One has

q2 =
(ω

u

)2
{(ω0

ω

)2

− 1
}

(15)

As ω ¿ ω0

q2 = β2 (16)

The solution to Eq. (10) has the form

ΘIA (x) = ΘIA0 exp (−βx) , (17)

i.e., there are no waves for frequenciesω such that
ω ¿ β u. In the above expression, as well as in the
following equations, the explicit form of the amplitude
term (hereΘIA0) is not relevant for the purposes of this
work (the frequency dependent amplitude terms can be
obtained using proper boundary conditions. Generally
theΘ0s decrease asω increases).

Case I.II: ω À ωc

One becomes

q2 =
(ω

u

)2 [
i
ωL

ω
− 1

]
(18)

Case I.II.A: ω ¿ ωL(ωL À ωC)

The wave number becomes

q =
√

i
ω

D
=

(1 + i)
µ

(19)
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i.e. their real and imaginary parts are equal to the in-
verse of the frequency dependent lengthµ= (2D/ω)1/2.
The solution to Eq. (10) is an attenuated wave given
by:

ΘIIA (x) = ΘIIA0 (ω) exp
(
−

√
ω

2D
x

)

× exp
(
−i

√
ω

2D
x

)
(20)

This practical and very important case represents a
mode through which energy is transferred to the sur-
rounding media by diffusion at a rate determined by
diffusion coefficientD. The characteristic (diffusion)
length,µ, gives the distance at which the propagated
wave amplitude decayse times from its value at the
surface. It can be interpreted as a kind of skin depth de-
pending on the diffusion coefficient,D, the relevant pa-
rameter for time-dependent diffusion processes within
homogeneous, isotropic materials. (It is similar to the
skin depth in a metal,µe=(2/ωppσ)1/2, for electromag-
netic waves in an electrically conductive medium. In
that case, as is well known, a dispersion relation is de-
fined assigning the photons a frequency,ωp, depending
on the wave numberke as

ke =
(
(ωp/c)2 + iωppσ

)1/2

,

wherec is the velocity of light in the medium with per-
meability p and electrical conductivityσ). The diffu-
sion length can be varied experimentally by changing
the modulation frequency,ω, permitting depth profil-
ing. Equation (20), therefore, represents an attenuated
wave. Between the excitation and the response of the
sample there is a phase-lag given by the term (x/µ) in
the complex exponent.

Case I.II.B: ω À ωL(ωL > ωC)

Now the wave number becomesq=iω/u, and the solu-
tion to Eq. (10) is a non-attenuated, harmonic wave:

ΘIIB (x) = ΘIIB0 (ω) exp
(
−i

ω

u
x
)

(21)

At a given frequencyω, it travels across any sample
without attenuation and with velocityu.

By analyzing the results obtained for these cases, we can
reach the following conclusions. Until a critical frequency
ωC = Dβ2 is reached, there are no wave fields propagat-
ing through the sample. The energy transfer is governing by
a classical diffusion equation. The frequencyωC can be in-
terpreted as the inverse of a characteristic time after which
the energy carrier “disappears” in an energy conversion pro-
cess. This time can be for example the carrier recombination
life-time in a semiconductor, the time after which a propa-
gating photon is absorbed in a turbid medium or the time af-
ter which a heat carried phonon gives its energy to another

particle interacting with it. Once this frequency is achieved
in the modulation process, the medium becomes resistive, an
attenuated wave field is imposed, and the characteristic decay
lengthµ decreases with the increase in modulation frequency.
When the frequency equals the valueωL = u2/D, the mate-
rial becomes transparent to the propagating wave field, and
a non-attenuated wave propagates through the sample with
the velocityu. This situation is equivalent to the hypotheti-
cal case of a non-resistive medium,i.e. one with an infinite
diffusion coefficient,D →∞, where the transport of energy
loses its diffusive character (the equivalent situation for elec-
tromagnetic waves is the case of a non-dispersive medium,
i.e. a medium with negligible electrical conductivity, such as
a vacuum). This wave can travel across the sample without
attenuation and with velocityu.

As mentioned above, the situation whereu À β is often
encountered in praxis. For example, for (hyperbolic) ther-
mal waves,u is of the order of the sound velocity in the
medium [10], andβ = 0. In this particular case, we have
neitherω0 norωC . This is the case of the thermal wave field
discussed in detail elsewhere [10]. It appears as the solu-
tion to the heat diffusion equation in the presence of mod-
ulated heat sources. For the frequencies often encountered
in PA and PT experiments, we have attenuated parabolic
waves. A typical example which illustrates this particular
case is the so-called thermal wave. Although nowadays the
thermal wave concept has become of great interest for the
explanation and interpretation of photothermal and photoa-
coustic phenomena and techniques [21], it is worth mention-
ing here that several authors have demonstrated that there is
no wave nature in this concept by showing that parabolic
thermal waves do not transport energy [22] and by demon-
strating the reflection- and refractionless nature of parabolic
thermal wave fields [23]. However, as mentioned above, the
analogy with waves enables the description of a number of
phenomena related to time varying heat transfer phenom-
ena, some of which are described in detail elsewhere [24].
In experiments performed under (now idealized) conditions
such that frequenciesω À ωL can be obtained, one can be-
come a hyperbolic non-attenuated wave field in which phe-
nomena such as second sound propagation in solids can be
studied [10,13-14,25,26]. Hyperbolic heat transport has also
received increasing attention for the analysis of practical
problems involving a fast supply of thermal energy (for in-
stance heating of materials with intense ultra-short-duration
laser pulses [27], transient hot wire measurements of ther-
mal conductivity in nanofluids [28], gravitational collapse
of stars [29], and many others), as well as due to theoreti-
cal motivations regarding the peculiarities of hyperbolic heat
propagation in different media and under dissimilar condi-
tions [30-33]. In this case, the characteristic time constant
can also be related to the “memory” effects of the correspond-
ing flux for systems where the propagation speeds are small
(economic and biological systems have been described else-
where [34] using diffusion equations, and they are examples
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where memory effects are quite relevant, since humans make
decisions according to their previous experiences).

On the other hand, when we setβ 6=0 and∂2/∂t2 →0,
it becomes the typical situation encountered in plasma wave
experiments with semiconductors, photon diffusion through
dispersive media, etc, wherêFn=β2, i.e. the square of the
inverse of a typical length, as described in Ref. 1. In this
caseωL → ∞, and we have an attenuated wave whenever
ω > ωC .

Case II.: ωL < ω0 < ωC

It is illustrated in Fig. 2 and takes place foru ¿ Dβ.
Although it is a less common situation, the analysis of
this particular case can also be of interest.

Case II.I: ω ¿ ωC

One has, as in case I.I

q2 =
(ω

u

)2
{(ω0

ω

)2

− 1
}

(22)

Case II.I.A: ω ¿ ω0

q2 = β2 (23)

The solution to Eq. (10) has the form given by Eq. (17).

Case II.I.B: ω À ω0

Now the wave number becomesq=iω/u, and the solu-
tion to Eq. (10) is a non-attenuated, harmonic wave,
which is described by Eq. (21).

Case II.II: ω À ωc (ω À ωL, ω À ω0)

As in case II.I.B, the wave number becomesq=iω/u,
and the solution to Eq. (10) has the form given by
Eq. (21).

We have seen that foru ¿ Dβ, one has only a (non-
attenuated, harmonic) wave field whenever we exceed the
critical frequencyωc. This field propagates through a trans-
parent material with velocityu. For lower frequencies, there
are no waves. The field magnitude is independent of the mod-
ulation frequency and undergoes attenuation determined by
the value of theβ parameter [see Eq. (17)]. Note that for
frequencies much lower thanω0, the wave number becomes
zero [see Eq. (11)] and the Diffusion Equation [Eq. (10)]
becomes the Laplace Equation, with a linear decreasing de-
pendence of the field parameter on the coordinatex. There is
no frequency dependence in the field magnitude either.

In summary: for both particular cases analyzed we have
no waves for frequencies lower thanω0 = uβ and we have
harmonic waves for higher frequencies. These are always
non-attenuated waves propagating at velocityu for the case
in which u ¿ Dβ. For the much more typical situation

whereu À Dβ, there are attenuated thermal waves for fre-
quencies lower thanωL = u2/D, at which the material be-
comes transparent, permitting wave propagation without at-
tenuation. These behaviors are shown qualitatively in the top
parts of Figs. 1 and 2. Note that the amplitude of the signal
always decreases asω increases.

4. Conclusions

In summary, the phenomenological aspects described here
suggest the possibility of dealing in advanced or introduc-
tory physics courses with concepts related to diffusion waves.
Although numerous attempts have been made to give a phe-
nomenological explanation of different kinds of diffusion
waves, a generalized equation analyzed here should be of
great pedagogical interest. Since this equation describes
many kinds of diffusion phenomena, it can be applied to all of
them, with the proper interpretation of each particular phys-
ical situation. Although extensive theoretical work has been
published before in the field of diffusion wave fields (the ma-
jority of them related to parabolic and hyperbolic heat dif-
fusion), and several attempts to give analytical solutions of
the involved equations exist for different cases of practical
and academic interest, the discussion of the limiting cases of
the corresponding dispersion equation in the frequency do-
main performed here, and the qualitative, phenomenological
discussion of the solutions to the wave equation in the case
of periodical sources, should be significant for teaching pur-
poses. The discussion of the analytical solutions to the pro-
posed equation must be limited to special cases and it is be-
yond the scope of this article. Thus we feel that the approach
presented in this study is plausible and satisfying without in-
volving excessively sophisticated mathematical techniques.
Although part of the questions discussed here is not new,
hopefully the basic ideas presented here will aid in opening
the literature associated with this theme to a wider audience.
This work represents a step towards the consolidation of this
objective and towards the better interpretation of periodically
excited diffusion phenomena. It is worth remembering, be-
fore concluding, that the first wave treatment of periodical
phenomena dates from the 1820’s when Fourier [35] showed
that heat conduction problems could be solved by expanding
temperature distributions as series of waves. Two centuries
later, the concept of diffusion waves still receives the atten-
tion of scientists from several fields of research.
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