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ABSTRACT
The extraction of time series features is essential across various fields, yet it remains a challenging endeavor. Therefore, 
it's crucial to identify appropriate methods capable of extracting pertinent information that can significantly enhance 
classification performance. Among these methods are those that translate time series into different domains. This 
study investigates three distinct time series transformation approaches for addressing time series classification 
challenges within biomedical data. The first method involves a response vector transformation, while the other two 
employ image transformation techniques: RandOm Convolutional KErnel Transform (ROCKET), Gramian Angular 
Fields, and Markov Transition Fields. These transformation methods were applied to five biomedical datasets, 
exploring various format configurations to ascertain the optimal representation technique and configuration for 
input, which in turn improves classification performance. Evaluations were conducted on the effectiveness of these 
methods in conjunction with two classification algorithms. The outcomes underscore the significance of these 
time series transformation techniques as facilitators for enhanced classification algorithms documented in current 
literature.
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RESUMEN
La extracción de características de series temporales es esencial en diversos campos, pero sigue siendo un desafío. 
Por lo tanto, es crucial identificar métodos apropiados capaces de extraer información pertinente que pueda mejorar 
significativamente el rendimiento de clasificación. Entre estos métodos se encuentran aquellos que traducen las 
series temporales a diferentes dominios. Este estudio investiga tres enfoques distintos de transformación de series 
temporales para abordar los desafíos de clasificación de series temporales en datos biomédicos. El primer método 
implica una transformación de vector de respuesta, mientras que los otros dos emplean técnicas de transformación 
de imagen: RandOm Convolutional KErnel Transform (ROCKET), Gramian Angular Fields y Markov Transition 
Fields. Estos métodos de transformación se aplicaron a cinco conjuntos de datos biomédicos, explorando diversas 
configuraciones de formato para determinar la técnica y configuración de representación óptima para la entrada, lo 
que a su vez mejora el rendimiento de clasificación. Se realizaron evaluaciones sobre la efectividad de estos métodos 
en conjunción con dos algoritmos de clasificación. Los resultados subrayan la importancia de estas técnicas de 
transformación de series temporales como facilitadoras para mejorar los algoritmos de clasificación documentados 
en la literatura actual.

PALABRAS CLAVE: clasificación, datos biomédicos, redes neuronales convolucionales, series temporales, 
transformaciones
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INTRODUCTION
The study of time series classification has gained a 

great deal of interest due to the large amounts of infor-
mation generated from the study of various phenom-
ena that evolve in time. This dynamic behavior is 
observed in the biomedical areas such as disease stud-
ies, drug efficacy assessments, treatment analyses, 
signal processing, and image analysis, etc. where the 
importance of finding patterns that can help us to seg-
ment behaviors arises. 

The complexity in time series classification stems 
from the inadequacy of traditional similarity metrics, 
which fail to account for the temporal aspect inherent 
in such data. These datasets frequently exhibit tempo-
ral relationships, shifts over time, and variations in 
magnitude, posing challenges for classification meth-
ods reliant on linear comparisons. Certain conven-
tional approaches opt for an initial feature extraction 
phase to derive pertinent information from the data. 
However, given these limitations, there's a pressing 
need to explore alternative representations that remain 
invariant to shifts, preserve magnitudes, and retain 
temporal dependencies.

In [1], various techniques for time series classification 
across different domain representations are explored. 
These include methods based on dictionary represen-
tation, which involves counting the frequency of spe-
cific patterns within the data. Another approach 
involves extracting distinctive shapes, termed as 
shapelets, present within each class, enabling effective 
differentiation between groups. Additionally, one anal-
ysis strategy involves converting signals into images, 
leveraging our current computational capabilities to 
develop more sophisticated models, often relying on 
neural networks [2][3][4][5][6][7].

This article's contribution lies in its exploration of 
three distinct methods for representing time series 
data, specifically applied to biomedical signals. These 
methods unveil various temporal relationships within 

the information, potentially enhancing classification 
performance. The study also delves into analyzing 
which representation proves most effective for each 
dataset and classifier, thereby shedding light on the 
optimal approach for different data contexts and clas-
sification algorithms.

In this paper, we aim to review three cutting-edge 
time series transformation methods, each tested with 
diverse hyperparameter configurations. These meth-
ods will be applied across five distinct biomedical data-
sets, each possessing unique properties. The objective 
is to thoroughly evaluate their efficacy in handling 
classification tasks within these varied biomedical 
contexts.

MATERIALS AND METHODS

Datasets

The article focuses on five datasets obtained from the 
UCR Time Series Classification Archive [8], which are 
widely acknowledged and frequently employed in 
state-of-the-art methodologies:

A. 'SemgHandGenderCh2' (SHGC2): Captures surface 
electromyography signal power spectrum data depict-
ing muscle electric activity during six hand grasp 
movements by five healthy subjects. These movements 
are categorized into two classes: Class 1 representing 
Female and Class 2 representing Male.

B. 'PhalangesOutlinesCorrect' (POC): Centers on hand 
and bone outline detection, categorizing the output 
label as either a correct or incorrect image outline.

C. 'CinCECGTorso' (CCECGT): Features data derived 
from ECG chlorine concentration readings across mul-
tiple torso-surface sites from four distinct individuals, 
each individual representing a single class.

D. 'ECG5000': Revolves around ECG heartbeat record-
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ings from a patient with severe congestive heart fail-
ure, with class values determined via automated anno-
tation.

E. 'UWaveGestureLibraryAll' (UWGLA): Comprises a 
collection of eight simple gestures generated from 
accelerometers.

Further details and characteristics of these datasets 
are available in Table 1. Notably, these datasets share 
the common characteristic of being univariate time 
series data, characterized by ndim = 1.

 
Datasets 

Type Name Size Class Length 
HAR SemgHandGenderCh2 900 2 1500 
Image PhalangesOutlinesCorrect 2658 2 80 
ECG CinCECGTorso 1420 4 1639 
ECG ECG5000 5000 5 140 
HAR UWaveGestureLibraryAll 9236 8 945 

 

TABLE 1. UCR Datasets [8].

It's interesting to note that these datasets encompass 
three distinct types of data sources:

Human Activity Recognition (HAR): This category 
involves datasets like 'SemgHandGenderCh2' (SHGC2) 
and 'UWaveGestureLibraryAll' (UWGLA), which cap-
ture human movements and gestures, often derived 
from sensors or accelerometers.

Image Contours (Image): 'PhalangesOutlinesCorrect' 
(POC) falls under this category, focusing on the detec-
tion and assessment of image outlines, specifically 
related to hand and bone outlines.

Electrocardiogram Signals (ECG): Datasets such as 
'CinCECGTorso' (CCECGT) and 'ECG5000' involve elec-
trocardiogram data, primarily concerning the record-
ing and analysis of heart-related signals, including 
chlorine concentration readings and heartbeat pat-
terns.

Transformation methods

RandOm Convolutional KErnel Transform 
(ROCKET)

Convolutional kernels can be thought of as a matrix of 
values used to modify the input data by a dot product. 
These kernels contain certain basic parameters such as 
length, weights, bias, dilation, and padding. The ker-
nels have the same 1-dimensional vector structure as 
the input data but are smaller in size. In the case of 
time series, the kernels are weighted vectors with a 
bias added to the result of the convolution between the 
input data and the kernel weights.

These kernels operate as filters, enabling the extraction 
of diverse shapes and patterns embedded within time 
series data. Through kernel dilation, these filters can 
extract patterns across various scales, reflecting differ-
ent frequency characteristics. By leveraging a combi-
nation of multiple kernels, the system can extract 
complex patterns. While the weights of convolutional 
neural network kernels are typically learned, random 
convolutional kernels have demonstrated striking 
effectiveness.

ROCKET capitalizes on the concept of employing ran-
dom convolutional kernels as a feature transformation 
for input in other classifiers. This transformation 
method offers a low computational cost owing to the 
random initialization of kernels instead of learned 
weights. As it involves a single layer, numerous kernels 
can be generated without significantly escalating the 
computational demand.

ROCKET employs a mechanism akin to max pooling 
by extracting maximum values from each feature map. 
However, it introduces a novel feature: the proportion 
of positive values. This addition enables ROCKET to 
discern the prevalence of a distinct pattern within the 
time series [9]. The process of this method is visually 
illustrated in Figure 1. 
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FIGURE 1. Random convolutional kernel transforms flow 
diagram.

Gramian Angular Field

The Gramian Angular Field (GAF) is based on the dot 
product operation between two vectors, which shows 
the similarity that exists between them. If we have two 
vectors u and v with a norm of 1, we get Equation 1.

⟨𝑢𝑢, 𝑣𝑣⟩ = '|𝑢𝑢|' ⋅ '|𝑣𝑣|' ⋅ 𝑐𝑐𝑐𝑐𝑐𝑐(θ) (1)

When working with unit vectors, the dot product is 
characterized only by the angle θ between u and v, 
since the magnitude of a unit vector is 1, which is why 
the result falls in the range [-1,1]. 

G = #

⟨v!, v!⟩ ⟨v!, v"⟩ ⋯ ⟨v!, v#⟩
⟨v", v!⟩ ⟨v", v"⟩ ⋯ ⟨v", v#⟩

⋮ ⋮ ⋱ ⋮
⟨v#, v!⟩ ⟨v#, v"⟩ ⋯ ⟨v#, v#⟩

+     (2) 

 

Considering the data as unit vectors, the Gramian 
matrix depicted in Equation 2 is formulated to capture 
linear dependencies within a vector set. This matrix 
serves to retain temporal dependencies, embedding 
the temporal dimension within the geometry of the 
matrix [10]. 

Given a time series X=x1 , x2 , … ,xn of n real observa-
tions, X is rescaled so that all values remain in the 
interval [-1,1] to preserve the unit vector property.

Once the information is scaled, the polar transforma-
tion is obtained. In this case, two values are consid-
ered:

1. The actual value of the time series (observations).

2. Their respective time labels.

From these values, the angle will be obtained, and 
this operation is described in Equation 3.

!
θ! = arccos(𝑥𝑥!)
𝑟𝑟! =

!
"

    (3) 

 

𝑥𝑥 ⊕ 𝑦𝑦 = cos(θ! + θ")    (4) 

 

G = #

cos(θ! + θ!) cos(θ! + θ") ⋯ cos(θ! + θ#)
cos(θ" + θ!) cos(θ" + θ") ⋯ cos(θ" + θ#)

⋮ ⋮ ⋱ ⋮
cos(θ# + θ!) cos(θ# + θ") ⋯ cos(θ# + θ#)

.    (5) 

 

(2)

(3)

(4)

(5)

Some advantages of this coding are that it is a compo-
sition of bijective functions and that the temporal 
dependence is preserved based on the variable r_i. 
With these new angles, the dot product operation is 
adapted using Equation 4 so that it can be treated as a 
Gram matrix.

By implementing Equation 4 in G,  the following 
Gramian matrix is obtained.
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where cos(θ1+θ2) is given by Equation 6 in cartesian 
system.

cos(θ! + θ") = 𝑥𝑥 ⋅ 𝑦𝑦 − -1 − 𝑥𝑥" ⋅ -1 − 𝑦𝑦" (6)

This transformation generates a density map, portray-
ing values through a color spectrum with intensities 
spanning from -1 to 1. Figure 2 illustrates a visual 
depiction of the encoded magnitudes.

Figure 3 showcases the distinct stages of this method, 
delineating the process involved in achieving the 
intended image representation.

FIGURE 2. Grammian angular field encoding sizes. a) 16X16 
image. b) 24X24 image. c) 32X32 image. d) 48X48 image. 

e) 64x64 image.

FIGURE 3. Gramian angular field flow diagram.

Markov transition fields

Markov Transition Fields (MTF) offer an alternative 
method of transforming a time series into an image, 
employing a probabilistic framework rooted in Markov 
chains. This approach provides a distinctive perspec-
tive on representing time series data as visual ele-
ments.

Given a time series X=x1,x2,…,xn, its Q quantile bins are 
determined and each value x_i is assigned to its corre-
sponding bin qj ( j∈[1,Q]). From these bins, a weighted 
adjacency matrix W of size Q × Q  is constructed, 
counting the transitions between bins in the form of a 
Markov chain along the time axis [10].

𝑀𝑀 =

⎝

⎛

𝑤𝑤!"|𝑥𝑥# ∈ 𝑞𝑞! , 𝑥𝑥# ∈ 𝑞𝑞" ⋯ 𝑤𝑤!"|𝑥𝑥# ∈ 𝑞𝑞! , 𝑥𝑥$ ∈ 𝑞𝑞"
𝑤𝑤!"|𝑥𝑥% ∈ 𝑞𝑞! , 𝑥𝑥# ∈ 𝑞𝑞" ⋯ 𝑤𝑤!"|𝑥𝑥% ∈ 𝑞𝑞! , 𝑥𝑥$ ∈ 𝑞𝑞"

⋮ ⋱ ⋮
𝑤𝑤!"|𝑥𝑥$ ∈ 𝑞𝑞! , 𝑥𝑥# ∈ 𝑞𝑞" ⋯ 𝑤𝑤!"|𝑥𝑥$ ∈ 𝑞𝑞! , 𝑥𝑥$ ∈ 𝑞𝑞"⎠

⎞ (7)

The calculation of wij  is based on the frequency of 
occurrence where a point in quantile qj is succeeded 
by a point in quantile qi. After deriving this transition 
matrix, it undergoes normalization process to yield 
the matrix M. In this transition matrix, Mij represents 
the probability of transitioning from qi to qj. Leveraging 
these probabilities, we encode the time series into an 
N × N matrix, where N corresponds to the length of the 
original signal.

The color representation of the original signal is 
depicted through intensities ranging from [0, 1], delin-
eated by the probability distribution. This image illus-
trates the likelihood of a point transitioning to other 
points (states) within the time series. Figure 4 show-
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cases the visual encoding derived from this probabil-
ity distribution.

For a comprehensive view of the method's process, 
please refer to Figure 5, which details the sequential 
steps involved in this encoding procedure.

FIGURE 4. Markov transition fields resolutions. a) 8 bins. b) 
16 bins. c) 32 bins. d) 64 bins.

FIGURE 6. Transformation methods in time series. a) Original 
time series. b) ROCKET response vector. c) Gramian angular 

field transformation (GAF). d) Markov transition field 
transformation (MTF).

FIGURE 5. Markov transition field flow diagram. 

All three of these transform representations are 
shown in Figure 6 for the same set of time series.

System and software specifications

This methodology was performed in a 11th Gen Intel® 
Core ™ i7-11800H processor with a NVidia GeForce 
RTX 3060 mobile GPU and 16 gb of DDR4 Sodimm.

The transformation methods were implemented 
using Pyts [11], and the classifiers were selected using 
the Scikit learn and tensorflow-keras packages [12][13].

Pre-processing

Given the common occurrence of artifacts like noise 
and baseline offsets in biomedical signal data, a pre-
liminary filtering stage was applied to enhance signal 
quality. To achieve this, a Savitzky–Golay filter was 
employed across all five datasets. This filter, widely 
used in biomedical signal processing [14], utilized a 
window size equivalent to 10 % of the signal length 
with a polyorder of 2. Notably, this filter retains essen-
tial characteristics of the initial distribution, including 
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relative maximums, minimums, and peak widths, 
resulting in smoother signal behavior.

Additionally, Z normalization was performed to rec-
tify baseline offsets, ensuring a consistent reference 
across all signal sets. This standardization establishes 
a zero mean and unit variance across the dataset, a 
technique known to often enhance model perfor-
mance.

Once the whole dataset was ready, the training and 
testing subsets were created. The training set was 
defined as 70 % of the dataset size, the remaining 30 % 
was used for testing the classification models. 20 % of 
the training set was used as validation.

For comparison purpose, all three methods allow to 
define the output dimensions. On the image-based 
transformations it is defined by an N × N image where 
N ∈ {16,24,32,40,48\}. In ROCKET the response vector 
obtained is given by the number of kernels M gener-
ated times 2, the number of features extracted in every 
kernel, this equals to a 2M vector where M ∈ 
{625,1250,2500,5000,10000}.

Rocket
Other set of parameters that were random selected 

along all the kernels were, weights, bias, dilation, pad-
ding, the implementation can be seen in [9].

Gramian Angular Fields (GAF) 
In GAF other variation parameters is the mode, in 

this case we have summation and difference mode.

Markov Transition fields (MTF)
For MTF the remaining variable parameter was the 

number of bins, this number gives us the number of 
states or resolution the data values can transition to. 
The number of bins was given by nBins where nBins 
∈{8,16,32,64}.

All three transformations—ROCKET, GAF, and MTF—

were applied across the five datasets, encompassing 
various combinations of parameters. These trans-
formed datasets were utilized as inputs for the subse-
quent classification methods.

Classification methods

The classification stage aimed solely at evaluating 
transformation performance. The five datasets, trans-
formed using distinct configurations, served as inputs 
for fixed classifiers to determine the input format that 
optimizes classification performance. No hyperpa-
rameter tuning was conducted on the neural network 
in this phase.

For the ROCKET-transformed data, a Ridge regressor 
classifier was utilized. This classifier incorporates a 
regularization parameter α within the loss function to 
prevent overfitting. Various values of α, selected from 
α ∈ {0.001, 0.01, 1, 10, 100, 1000}, were tested to iden-
tify the best-fitting parameter that avoids overfitting 
the model. Classifier selection was guided by refer-
ences [9][10].

In the case of image-based transformations, a convo-
lutional neural network (CNN) with fixed parameters 
was employed. Categorical encoding was applied to 
the labels to optimize network functionality. The CNN 
architecture included the following modules:

1. input layer (image size)
2. convolutional layer (6 neurons, 8x8 size kernels)
3. max pool layer (3x3 pool size, padding=same)
4. convolutional layer (6 neurons, 3x3 size kernels)
5. max pool layer (3x3 pool size, padding=same)
6. flattening layer
7. dropout(0.5)
8. dense layer (categorical enconding = # labels, soft-

max)

The CNN utilized mean square error as the loss func-
tion, employed the adam optimizer, updated batch 
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size weights of 50, and ran for 25 epochs. Figure 7 
illustrates the various stages involved in evaluating 
the enhancement of time series transformations for 
classification.

FIGURE 7. Flow diagram of methodology.

FIGURE 8. ROCKET transformation performance on the five 
datasets, number below each dataset correspond to 

(#kernels, α).

Evaluation metrics

In the evaluation process, both mean square error 
(MSE) and accuracy were utilized to assess the perfor-
mance of various input configurations and different 
parameter settings within the classifier. These metrics 
were computed on both the training and validation 
sets. To identify the most effective input configura-
tion, the validation set's lowest MSE was considered.

For assessing test performance, metrics including 
accuracy, precision, recall, and f1-score were obtained. 
These measurements offer a comprehensive under-
standing of the model's predictive capabilities and 
effectiveness in correctly classifying instances.

RESULTS AND DISCUSSION
The preprocessing stage involved a stratification split 

to ensure an equal representation of class examples 

within the training and test sets. However, only the 
CinCECGTorso and UWaveGestureLibraryAll datasets 
exhibited an equal number of examples in each class.

Figure 8 demonstrates that ROCKET coupled with 
ridge regression exhibited notable performance, par-
ticularly with datasets where all classification test 
accuracies surpassed 0.8. One significant advantage 
observed in employing this method was its low mem-
ory resource consumption, as it did not require batch 
execution. Additionally, it was noted that the regular-
ization parameter tended to perform better when α ≥ 1. 
However, the ECG5000 dataset showed poor precision, 
potentially due to class imbalance issues. It's import-
ant to note that the computing time for this method 
increased with a higher number of kernels, although 
the fitting process to the classifier was relatively swift 
once the data was transformed.

GAF, similar to ROCKET, showed promising perfor-
mance on this type of data. However, certain limita-
tions were observed, particularly with respect to mem-
ory consumption. Unlike ROCKET, the GAF transfor-
mation required batch processing for datasets larger 
than 1000 samples. Despite this limitation, the trans-
formation process itself was rapid, as were the training 
times for the classifier.

Regarding the mode selection in GAF, it was noted 
that the difference mode yielded better results. 
Additionally, the optimal image size seemed to be 48. 



114 REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA VOL. 44 | NO. 4 | SPECIAL ISSUE 2O23 

A detailed overview of performance results can be 
seen in Figure 9.

FIGURE 9. Gramian angular field transformation 
performance on the five datasets, number below each 

dataset correspond to (image size, transformation mode).

FIGURE 11. f-1 score of all 3 transformation methods on the 
five datasets.

Finally, we conducted the MTF classification, yet this 
transformation didn't yield superior results compared 
to the preceding two methods. As illustrated in Figure 
10, specifically in the precision column of ECG5000, 
MTF exhibited heightened sensitivity to quantile 
selection. Signals with low variability necessitated a 
smaller quantile size; larger quantile sizes led to cer-
tain bins containing only a few data points. Similar to 
the former method, MTF also required transformation 
into batches for signals exceeding a length of 1000 
samples.

The optimal outcomes were achieved with an image 
size of 48 and # bins set between 8 to 16.

FIGURE 10. Markov transition field transformation 
performance on the five datasets, number below each 

dataset correspond to (image size, # bins).

TABLE 2. Computation time measurements.

In Figure 11 we summarize the F1 score on all data-
sets given by the optimal parameters for each transfor-
mation methods.

The computation time was systematically measured 
to analyze how signal size and the number of exam-
ples influence the time complexity of these methods. 
Observations revealed that while ROCKET consis-
tently demonstrated better accuracy across all data-
sets, its computation time increased with a higher 
number of filters.

Conversely, GAF and MTF exhibited shorter transfor-
mation times, but they tended to consume more mem-
ory, scaling the information by N^2 where N represents 
the signal size. Additionally, MTF encountered chal-
lenges when discretizing time series with large bins 
and limited variability, preferring a smaller number of 
bins in such cases.

The time metrics were obtained by averaging the 
time taken for each transformation configuration 
across each dataset. These computation times are 
detailed in Table 2.

 
Dataset mean computation time (seconds) 

Name ROCKET GAF MTF 
SemgHandGenderCh2 30.7 1.8 5.7 

PhalangesOutlinesCorrect 5.9 2.3 2.4 
CinCECGTorso 51.8 2.0 9.7 

ECG5000 18.2 2.9 3.4 
UWaveGestureLibraryAll 97.2 3.1 18.7 
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It's evident that these transformation methods serve 
as pivotal preprocessing steps, significantly enhanc-
ing the classification performance of these methods. 
The mean accuracy across all five datasets demon-
strates strong performance: 0.936 for ROCKET, 0.874 
for GAF, and 0.822 for MTF, all showcasing accuracies 
exceeding 0.8. This underscores their effectiveness in 
improving classification outcomes across diverse data-
sets.

For an overview of the key features and comparative 
analysis of each transformation method, please refer 
to Table 3.

TABLE 3. Methods observed characteristics. 
Comparison Table of methods 

ROCKET GAF MTF 
-Presents the 
highest accuracy 
of the three 
representations, 
with f1 scores over 
0.6, even with 
unbalanced 
datasets. 
 
-The computation 
time increases 
linearly with the 
increase of 
number of kernels 
and the time series 
length. 
 
-It’s not image 
based, can be used 
with more 
traditional 
methods. 
 
-Due to the 
random 
initialization of the 
kernels, no 
hyperparameter 
tunning is 
required. 

-Presents the 
lowest 
computation 
time. 
 
-The accuracy 
obtained is lower 
than ROCKET, 
but comparable in 
some datasets. 
 
-Performance 
may increase 
with 
hyperparameter 
tunning on the 
NN or 
implementing 
other 
architectures. 
 
-Involves more 
hyperparameter 
for the 
transformation 
stage. 
 
-Memory 
consuming 
method. 
 
-Piecewise 
aggregate 
approximation is 
needed for high 
length data to 
avoid memory 
overflow. 

-Presents the 
lowest accuracy 
of all three 
methods. 
Struggles with 
unbalanced 
datasets. 
 
-Presents 
stability issues 
with high number 
of bins. 
 
-Has a fast 
computing time 
when 
transformation 
hyperparameters 
are well suited. 
 
- Involves more 
hyperparameter 
for the 
transformation 
stage. 
 
-Memory 
consuming 
method. 
 
-Piecewise 
aggregate 
approximation is 
needed for high 
length data to 
avoid memory 
overflow. 

 
Depending on the specific application and the 

tradeoffs you're willing to consider, you might opt for 
one method over another. Among all three, GAF 

demonstrated the most balanced performance con-
cerning accuracy and utilization of time resources.

Additionally, these scrutinized time series transfor-
mation methods could prove beneficial in various 
machine learning tasks beyond classification, such as 
forecasting [15][16][17][18] or clustering [19]. This can be 
explored in future work.

CONCLUSION
In this study, our primary focus was on transforming 

time series data to enhance classification performance. 
We introduced three distinct methods—Random 
Convolutional Kernel Transform, Gramian Angular 
Fields, and Markov Transition Fields—and rigorously 
tested their efficacy using five diverse biomedical 
datasets. The results illustrate that biomedical signals, 
when treated as time series data, can achieve classifi-
cation performances akin to state-of-the-art method-
ologies [20][21].

While our choice of classifiers was based on existing 
literature, it's crucial to note their adaptability to vari-
ous other classifier types and architectures. For 
instance, in [10], a tiled Convolutional Neural Network 
was employed, with its last layer serving as input for a 
Support Vector Machine classifier. Different neural 
network architectures might yield comparable out-
comes.

Notably, these imaging methods exhibit sensitivity to 
noise and generally perform optimally with signals 
less than 1000 samples in length due to memory con-
straints. However, they enable the extraction of diverse 
features from the data, significantly improving classi-
fication performance for temporal datasets.

For large-scale applications, the integration of deep 
learning computer vision approaches with attention 
mechanisms could leverage these representations, 
potentially offering promising outcomes in big data 
contexts.
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