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ABSTRACT 
In this paper, we present an attention classification method using Machine-Learning Algorithms. The EEG signals 
were recorded from ten engineering students with an EPOC+BCI using the electrodes F3, F4, P7, and P8 while solving 
some mathematical operations. The recording time for these activities is around 20 minutes. Next, a similar time 
EEG register is obtained while doing non-academic activities, such as chattering with the staff, checking cell phones, 
or playing a video game. With these EEG registers, we obtained a set of features to train and evaluate attention using 
Machine Learning algorithms. This research shows how engineering students interact with math topics in solving 
mental operations and complex reasoning by increasing brain domain and knowledge for mathematical reasoning-
related processes, such as sustained and shifting attention and logical constructions for object interaction during 
operations resolution. The Random Forest algorithm (RF) obtained the highest accuracy with 0.7392, an F1 Score of 
0.7430, and the highest Specificity/Accuracy with 0.7261. 

KEYWORDS: attention measurement, brain-computer interface, classification, electroencephalographic signals, 
machine learning, math
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RESUMEN 
Se presenta un método de clasificación de la atención utilizando algoritmos de aprendizaje automático. Con las 
señales EEG de diez estudiantes de ingeniería adquiridas utilizando los electrodos F3, F4, P7 y P8 de una BCI EPOC+ 
mientras resuelven productos escalares, multiplicaciones algebraicas simples, simplificaciones e integrales por 
aproximadamente 20 minutos. Posteriormente, se obtiene un registro EEG de tiempo similar mientras se realizan 
actividades no académicas, como charlar con el personal, consultar el móvil o jugar a un videojuego. Se obtienen 
algunas características/parámetros, se entrenan y evalúan varios algoritmos de aprendizaje automático para la 
clasificación de la atención. Los resultados de esta investigación pueden mejorar la forma en que los estudiantes 
de ingeniería interactúan con los temas matemáticos en la resolución de operaciones mentales y razonamientos 
complejos, aumentando el dominio y el conocimiento cerebral para los procesos relacionados con el razonamiento 
matemático, como la atención sostenida y cambiante y las construcciones lógicas para la interacción con objetos 
durante la resolución de operaciones. El clasificador Random Forest obtuvo la mayor precisión con 0.7392, una 
puntuación F1 de 0.7430 y la mayor especificidad/precisión con 0.7261. 

PALABRAS CLAVE: aprendizaje automático, clasificación, interfaz cerebro-computadora, matemáticas, medición de la 
atención, señales electroencefalográficas
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INTRODUCTION
The cognitive process known as attention is made 

possible by selecting, zooming, and maintaining the 
processing of certain pieces of information [1]. 
Whatever is now being processed by sensorial or 
information systems or reaction possibilities gener-
ated by ongoing cognitive activity might serve as 
objects of attention. It helps us to focus on the infor-
mation that is relevant to us and discriminate against 
the rest. In addition, it is essential to have it before 
beginning the learning process, as it serves as its 
foundation. There have been a variety of methods of 
measurement, including recording response times or 
clicks made on specific software, measuring eye con-
tact time from movies, doing Magnetic resonance 
imaging (MRI) or Functional magnetic resonance 
imaging (fMRI) research, and so on.

Attention is fundamental for university students, so 
measuring it is essential. Some research works are 
related, like [2][3], where primary school students are 
observed doing math and language tests using elec-
troencephalogram (EEG). Figure 1 shows the frame-
work followed for the preprocessing and classification 
stages in [2][3]. They use 64-channel EEG data and pro-
cess only the signal from frontal (6, 12, 60) and pari-
etal (28, 34, 42) electrodes. They use the average 
Welch's Power Spectrum Density (PSD) for the 21-45 
Hz band and the K-Nearest Neighbor as a feature and 
classifier for these EEG channels. The preprocessing 
for the EEG signals was performed with the Python 
MNE library, and the PSD was obtained with the SciPy 
library. Five-and-a-half percent did poorly on the 
arithmetic test, while seventy-four percent did poorly 
on the language test. Based on the results of the tests, 
the average sensitivity and specificity for each fold 
were satisfactory. Similar sensitivity was found when 
EEG data was combined with socio-demographic and 
home environment characteristics. The results 
obtained were:  Math = 58.7 %, Language = 66.3 %, but 
more specificity was found Math = 43.4 % to 50.6 %, 
Language = 32 % to 60 %. 

In [4], the authors examine the effects of exercise on 
the math test scores and anxiety levels of 68 sixth-grad-
ers from two primary schools in New South Wales, 
Australia. In this study, trait anxiety (low vs. high) and 
condition (activity break vs. control) are the 
between-subjects factors in a 22-between-subjects 
design. The dependent variables were math exam 
scores, mental effort expended, task perceived diffi-
culty, and a three-time state anxiety measure. IBM 
SPSS Statistics 25 was used to do an ANOVA and 
ANCOVA on the collected data. As a result, authors 
found that physical activity break before a test exam-
ination does not deteriorate test anxiety and math test 
performance.

In [5], the authors consider the eye movements of 30 
participants' suggesting that they unconsciously focus 
on the numbers (operands, solution) they are now pro-
cessing. Faster performance before fixing on the rele-
vant numbers and making fewer trips back to the first 
operand in the computation resulted in shorter laten-
cies. These telltale signs of superior task performance 
were most obvious for addition and visually ordered 

FIGURE 1. Framework for the preprocessing and 
classification stages followed by researchers in [2][3].

Taken from [2][3].



numbers and for subtraction and visually ordered 
numbers in the opposite direction. In this case, the eye 
movements were done with EyeLink 1000, a vid-
eo-based eye tracker, and the acquired information 
was processed with SR Research Data Viewer software. 
2 + 5, 5 + 2, 3 + 5, 5 + 3, 2 + 6, 6 + 2, 3 +6, 6 + 3, 3 +8, 8 
+ 3, 4 + 8, 8 + 4, 3 + 9, 9 + 3, and 9 + 4 were the addition 
problems utilized in this study. Each addition problem 
was transformed into a corresponding subtraction 
problem with the answer to the addition problem as the 
first operand (7 + 5 = 7 became 7 - 5 = 2), and so on. 
Four white numbers, set against a black background, 
were displayed horizontally in ascending or descend-
ing numerical sequence (see Figure 2). The numerals 
were 18 points tall, had a visual angle of 0.5 degrees, 
and were set in Times New Roman font type. On an 
invisible 44 grid (shown as a dotted line in Figure 2), 
each number may take one of sixteen possible place-
ments, with a single digit occupying each column and 
row. Two numerical images corresponded to the orally 
provided operands of the arithmetic problem; another 
was a distractor operand, and the final image was the 
answer (correct or incorrect). Eye tracking data showed 
that people naturally gaze at the numbers they are cur-
rently processing (operands, solution). Performance 
improvements were seen in shorter latency before fix-
ating the relevant integers and fewer returns to the first 
operand during solution computation. In particular, 
these hallmarks of high-quality task performance were 
more prominent for addition and visually-arranged 
numbers in ascending order and for subtraction and 
visually-arranged numbers in descending order (com-
pared to the opposite pairings). Our findings demon-
strate that the "visual number world"-paradigm pro-
vides real-time insight into mental arithmetic, is sensi-
tive to visual layout modifications that are not reflected 
in response time measures and can capture variability 
in arithmetic performance.

Authors found that comparing the proportions of fix-
ating the first operand between small-and large-oper-
and-first problems in the computational phase (paired 

test) revealed a higher proportion for large-oper-
and-first problems, t(28) = −2.256, p = .033. The fixation 
proportion of the first operand was 7.2% increased for 
these problems (SEM = 1.6). Thus, eye movements do 
not reflect a possible mental rearrangement of oper-
ands from a small–large into a large–small order but, 
rather, the activation of the larger number to which the 
smaller number is added.

FIGURE 2. An example of a trial sequence is used in the 
research, taken from [5].

Research [6] presents a proposed methodology that 
evaluates "Attention" and "Meditation" levels in chil-
dren in virtual classes with a Mindwave BCI, a brain-
wave-reading EEG headset. They obtain a level of 
"Attention" and "Meditation" from 0 to 100 % using the 
software provided with the BCI. Their methodology 
was evaluated in two situations: with a 6-year-old child 
and a 15-year-old during virtual classes. This one-chan-
nel BCI uses the FP1 electrode, and the software mea-
sures the Attention and Meditation levels during a 
session and displays their average, as is shown in 
Figure 3. At the beginning of the class, the 6-year-old 
child's Attention average was 10 % and a Meditation 
average of 40 %. When the child had to solve an exer-
cise and turn it in, "Attention" rose to 72 %, and 
"Meditation" a 50 %. For the 15-year-old student, in the 
beginning, the "Attention" average was 0 %, and the 
"Meditation" average of almost 100 %. His "Attention" 
average in Math class was 60 %, and the "Meditation" 
average was nearly 40 %. While he was analyzing the 
math exercises, the "Attention" average was 90 %, and 
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the "Meditation" average was 15 %. They conclude that 
the two students' attention levels are different when 
performing similar tasks, with the 6-year-old student 
showing a maximum attention level of 72 % reaching 
100 % due to the student at that age being very dis-
tracted, and the 15-year-old student showing a maxi-
mum attention level of 100 % when performing class 
activities. They concluded that taking a break to exer-
cise before an exam did not lower performance on 
arithmetic tests or increase test-related anxiety.

FIGURE 3. Attention and Meditation averages displayed by 
the Mindwave BCI software. The illustrative Figure is taken 

from: https://apkpure.com/brainwave-visualizer/com.
neurosky.unitythinkgear.

Also, Machine-Learning is used to diagnose and study 
different neurodevelopmental and neurodegenerative 
disorders. In [7], they use the retina's electrical response 
(electroretinogram, ERG) to light for autism spectrum 
disorder (ASD) detection. They collected and analyzed 
ERG  signals from 47 control and  96  ASD individuals. 
As features, they use four well-known time-domain 
indices, specifically the amplitude of a "Va" wave, the 
timing of its "Ta" peak, the amplitude of a "Vb" wave, 
and the timing of its "Tb" peak. These time domain and 
statistical features are used for this research. Then they 
obtain the Power Spectrum Density (PSD), and the 
Discrete Wavelet Transform of the ERG signals is used 
with the Least Absolute Shrinkage and Selection 
Operator (LASSO) regression technique for feature 
extraction. The machine learning models used included 

a Decision Tree (DT), a Support Vector Machine (SVM), 
a Gradient Boosting (GB), and Random Forest (RF). 
They detected ASD using Random Forest, which 
obtained the best classification accuracy of 86 % and 
98 % sensitivity with time domain and spectral fea-
tures.

In reference [8], authors suggest using deep convolu-
tional neural networks (CNNs), a sparse coding-based 
feature mapping methodology, and the Douglas-
Peucker (DP) algorithm to spot ASD. This research used 
the King Abdulaziz University Hospital, Jeddah, Saudi 
Arabia dataset. This dataset contains 20 children with 
ASD (ages 6–20) and a healthy group with nine children 
without neurological conditions. Figure 4 shows the 
block diagram of the proposed method. They employ a 
g.tec EEG cap with Ag/AgCl electrodes, G.tech USB 
amplifiers, and BCI2000 software to acquire signals 
without artifacts. Using the worldwide 10-20 system 
with AFz as GND and the right ear lobe, they work with 
16 channels (FP1, FP2, F7, F3, Fz, F4, F8, T3, C4, Cz, C3, 
T5, Pz, O1, Oz, and O2). A popular method for simplify-
ing lines, the Douglas-Peucker (DP) algorithm can 
reduce curve complexity and storage requirements by 
eliminating unimportant nodes and isolating key 
nodes The goal of the DP method is to create a new data 
series with fewer and more significant points while 
keeping the original data series within an acceptable 
range of variance. Using the DP algorithm, they reduce 
from 47088 original samples to only 2462 with a com-
pression parameter of 20. Next, EEG rhythms are 
extracted with a Wavelet Transform using Daubechies 
4th order decomposition to obtain Gamma, Beta, 
Alpha, Theta, and Delta band power and coded with 
sparse representation. All rhythms are neatly lined up, 
and the sparse presentation is encoded with the help of 
a histogram. Histograms of the sparsely coded rhythms 
for each EEG channel are added to form a matrix repre-
sentation of the input EEG information. Before apply-
ing the dB power scale (20log()), the matrix data must 
be normalized into the [0,1] interval. Scaled color rep-
resentations of the matrix are generated using the ima-

https://apkpure.com/brainwave-visualizer/com.neurosky.unitythinkgear
https://apkpure.com/brainwave-visualizer/com.neurosky.unitythinkgear
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gesc command in Matlab and then saved as images. 
Autoencoders (AE) based on extreme learning 
machines (ELM) are used during data augmentation. 
Next, pre-trained deep CNN models are used to classify 
the EEG signals from people with ASD and those with-
out the disorder. When applied to the automatic diag-
nosis of ASD, the proposed method achieved a perfect 
100 % sensitivity, 96.4 % specificity, and a perfect 
F1-score of 99.19 %.

Deep-Learning models are also applied to EEG signals 
to detect schizophrenia, as is presented in reference [9]. 
In this instance, they utilized information gathered 
from Warsaw, Poland's Institute of Psychiatry and 
Neurology. Models from the Machine Learning (M-L) 
family employed include the Naive Bayes, Support 
Vector Machine, K-Nearest Neighbors, Decision Tree, 
Extremely Randomized Trees, Random Forest, and 
Bagging. Long Short-Term Memories (LSTMs), One-
Dimensional Convolutional Networks (1D-CNNs), and 
One-Dimensional Convolutional Networks-LSTMs are 
just a few examples of the Deep-Learning (DL) models 
they employ. The initial step in processing is slicing 
the EEG signals into 25-second chunks. Following this, 
both DL and FCF are applied concurrently in the fea-
ture extraction phase. Using a CNN-LSTM network, 
the DL model employs functional connectivity meth-
ods, including synchronization likelihood (SL), Fuzzy 
SL (FSL), and simplified interval type-2 FSL (SIT2FLS). 
Here, they use a concatenate layer to merge the DL 
features with those of each functional connectivity 
type before passing the resulting dataset over to a sig-
moid activation layer for classification. K-Fold with K = 
5 was utilized in the categorization stage to evaluate 
the outcomes. As a result, they found that the best 
performance was for the CNN-LSTM model, with an 
accuracy percentage of 99.25 %.

Also, reference [10] presents a method for identifying 
overconfidence patterns by analyzing EEG power 
spectrum bands. Students solve mathematical tasks 
and receive feedback about their mistakes in the 

solved exercises. Twenty healthy engineering stu-
dents (13 males and seven females, with a mean age of 
18.73 ± 0.65 years) were monitored by EEG as they 
performed mathematical calculations. Before, during, 
and after problem-solving, the subjects' Delta and 
Theta band activity was evaluated. The graded work 
included ten multiple-choice exercises on topics 
including algebraic fraction simplification, factoring, 
and the usage of radicals, typically covered in the 
intermediate years of high school. Each exercise has 
one correct answer and four incorrect ones, as shown 
in Figure 5. If they answer correctly, the next exercise 
is presented. Still, if an incorrect answer is selected, 
feedback is given to the student, including the proba-
ble cause of the error and the correct procedure. Next, 
a second similar exercise is presented, again with one 
correct answer and three wrong answers.

FIGURE 4. Block diagram of the proposed method. Taken 
from [8].

FIGURE 5. The mathematical task presented. Taken from [10].
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The authors used an electroencephalograph (EEG) 
with a 200 Hz sampling rate and 19 electrodes posi-
tioned according to the 10-20 International System. 
This means electrodes Fp1/2, F3/4, F7/8, C3/4, P3/4, 
T3/4, T5/6, O1/2, Fz, Cz, and Pz are used for EEG data 
acquisition. 

Authors analyzed signals from four discrete times 
within a single second: (a) just before the math prob-
lem was shown (V1), (b) immediately after it was 
shown (V2), (c) just before the answer was selected 
(V3), and (d) just as feedback appears in response to 
the answer chosen (V4). These moments of interest are 
depicted in Figure 6.

The relative band energy is obtained by estimating 
the relative energy of each band, and they estimate the 
average PSD of each window using equation (1).

𝐸𝐸𝐸𝐸! =
𝐸𝐸𝐸𝐸

𝐸𝐸𝐸𝐸	 + 	𝐸𝐸𝐸𝐸	 + 𝐸𝐸𝐸𝐸	 + 	𝐸𝐸𝐸𝐸 (1)

Where  EBr represents the relative energy of the inter-
esting band, EB is the absolute energy of the interest-
ing band, and Eδ, Eθ, Eα, and Eβ the absolute energies 
of bands Delta, Theta, Alpha, and Beta, respectively. 

Those who got the answers right saw an uptick in 
Delta band activity when the correct solutions were 
shown, whereas those who got them wrong saw a 
decrease. Subjects who got an exercise wrong were 
given feedback and given a second chance to get it 
right. Subjects' Theta energy levels increased when 
they answered correctly and decreased when they 
answered incorrectly. The authors of this study did not 
employ any Machine-Learning techniques and found 
that overconfidence may be quantified by measuring 
the fluctuations in subject energy during mathemati-
cal task errors.

In [11], our previous work uses EEG signals and 
Machine-Learning Algorithms for attention measure-

ment in an ASD user. For EEG signal acquisition, we 
used an Epoc+ headset manufactured by Emotiv to 
acquire EEG signals from a 13 years old boy with ASD 
diagnosed while he performed learning activities. As 
features, we use the PSD with two seconds windows. 
Theta, which goes from 4 to 8 Hz, Alpha, from 8 to 12 
Hz; and Beta, from 12 to 30 Hz, are the frequency 
bands that comprise the Power Spectrum Density. 
Theta Relative Power, Alpha Relative Power, and Beta 
Relative Power are all attained and used with the capa-
bilities of this band. Theta-Beta, Theta-Alpha, and 
Theta/(Alpha + Beta) Ratios are all obtained using the 
relative powers presented in [12]. These features are 
obtained for the F3, F4, P7, and P8 channels of the 
Epoc+ headset. Naive Bayes (NB), Decision trees (DT), 
k-nearest neighbors (KNN), Support Vector Machine 
(SVM)-RBF, Stochastic Gradient Descent (SGD), 
Random Forest (RF), Extra trees (ET), and Multi-Layer 
Perceptron Neural Network (MLP-NN) from the Scikit- 
learn library (https://scikit-learn.org/stable/) were 
among the Machine-Learning models analyzed. An 
AUC of 0.9299 indicates that the best model is the 
multi-layer perceptron neural network (MLP-NN). 
Table 1, compares the state of the art presented in the 
Introduction section.

FIGURE 6. Example of a mathematical exercise and the 
structure of the one-second windows for analysis.

Taken from  [10].
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Reference Year Dataset Features IA model 

[2], [3] 2021 Own; 105 children (52 
girls) 

Average Welch's 
Power Spectrum 

Density (PSD) for the 
21-45 Hz band 

KNN 

[4] 2020 Own; 68 sixth-grade 
children of 11–12 

ANOVA and 
ANCOVA None 

[5] 2018 Own; 30 participants ANOVA N/A 

[6] 2022 Own; a 6-year-old child 
and a 15-year-old. 

Attention and 
Meditation averages 

obtained and displayed 
by the Mindwave BCI 

software. 

N/A 

[7] 2022 

Own; an 
electroretinogram from 
47 control and  96 ASD 

individuals. 

PSD and Wavelet 
Transform of the "Va" 
wave Amplitude, the 

timing of its "Ta" peak, 
the amplitude of a 

"Vb" wave, and the 
timing of its "Tb" 

peak. 

Gradient Boosting (GB), 
Random Forest (RF), Decision 
Tree (DT), and Support Vector 

Machine (SVM). 

[8] 2022 

Dataset from King 
Abdulaziz University 

Hospital, Jeddah, Saudi 
Arabia, with 20 ASD 

children (ages 6–20) and 
a healthy group with nine 

children. 

Douglas-Peucker (DP) 
algorithm, Wavelet 

Transform using 
Daubechies 4th order 

decomposition to 
obtain Gamma, Beta, 

Alpha, Theta, and 
Delta band powers. 

Deep CNN 

[9] 2022 

Data set from the 
Institute of Psychiatry 

and Neurology, Warsaw, 
Poland 

25s time frames, 
normalized by z-score 

or norm L2 

M-L models: Support Vector 
Machine,  K-Nearest 

Neighbors, Decision Tree, 
Naïve Bayes, Random Forest, 
Extremely Randomized Trees, 
and Bagging. Deep-Learning 

(DL) models: Long Short-Term 
Memories (LSTMs), One-

Dimensional Convolutional 
Networks (1D-CNNs), and 1D-

CNN-LSTMs. 

[10] 2022 

Own; EEG signals from 
20 engineering students 

(13 men and seven 
women with an average 

age of 18.73 ± 0.65 
years) 

Average power 
spectrum of two-

second windows to 
obtain the relative 

energy of each band 
with the equation 

Statistical analysis. 

[11] 2022 Own; one 13 years old 
boy with ASD diagnosis. 

Theta Relative Power, 
Alpha Relative Power, 
Beta Relative Power, 

Theta-Beta Ratio,  
Theta-Alpha Ratio, 

and the Theta/(Alpha + 
Beta) Ratio 

Naive Bayes (NB), Stochastic 
Gradient Descent (SGD), 

Decision trees (DT), Support 
Vector Machine (SVM)–RBF, 
k-nearest neighbors (KNN), 

Multi-Layer Perceptron Neural 
Network (MLP-NN), Random 
Forest (RF), and Extra trees 

(ET) 

TABLE 1. State-of-the-art comparative.



31José Jaime Esqueda Elizondo  et al. Using Machine Learning Algorithms on Electroencephalographic Signals to Assess Engineering Students' Focus While Solving Math Exercises

Listed below are the sections of this document. The 
second section, Materials and Methods, presents the 
proposed approach. Here we present the Activity 
Sheet, the BCI, the Data Acquisition Process, Signal 
Processing, Feature Extraction, and the Dataset 
obtained. Results and Discussion, the third section,  
summarizes this paper's findings and where the debate 
takes place. Our findings are summarized in the 
Conclusions section.

MATERIALS AND METHODS
This study explains how to measure and process the 

brain's electrical activity and assess attention levels 
when engaging in cognitive activities and interacting 
with various software systems or applications. EEG 
signals from an Epoc+ Brain-Computer Interface (BCI) 
can be used in this research for detecting when a user 
has high attention levels while solving mathematical 
problems, as in a class. The user's "Attention" and "No 
Attention" states are classified using ML techniques in 
this paper. This study uses EEG readings and machine 
learning algorithms to classify the attention of a 
ten-engineering student sample with an average age of 
22.4 years and a standard deviation of 2.2 years, six 
males and four females. People with Asperger's 
Syndrome can be diagnosed based on their ability to 
focus on tasks and interact with computer programs, 
according to a study published in the Journal of 
Autism and Developmental Disorders.

This project was registered as POSG/020-1-04 with 
the University of Baja California's Ethics Committee 
and Research for Undergraduates and Graduates on 
October 8, 2020. Data was collected using an Epoc+ 
BCI connected to the Emotiv Pro platform while every 
engineering student in the sample solved some math 
exercises for about 15 to 18 minutes. Then, a similar 
time EEG register of no attention activities like check-
ing cell phone, playing a videogame, and talking to the 
staff, among other activities. Matlab 2019a and Emotiv 
Pro, Student Edition were used for signal processing of 
the recorded EEG data. Figure 7 shows the Emotiv 

Epoc+ headset (right) and the electrode placement 
(left).

FIGURE 7. Emotiv Inc.'s Epoc+ headset's electrode placement 
(left side) (right side), retrieved on December 29, 2021, 

from the firm's site at https://emotiv.gitbook.io/epoc-user-
manual/.

The following is a description of the planned data 
collection procedure. First, we put the headset on the 
subject and wet the electrodes. The video recording 
and EEG data collection can begin at this point. Next, 
we give the worksheet with the instructions to the test 
subject. Then, we allow the test participant to begin 
the exercise, like in a typical math school session. The 
attention sampling process ends when the subject fin-
ishes the exercises or fifteen to eighteen minutes have 
elapsed.

The Epoc+ BCI uses a 50 Hz/60 Hz dual notch filter 
and a 64 Hz low-pass filter for data acquisition. Then, 
the signal was downsampled to 128 Hz before trans-
mission, and next, multiply the signal by 0.51x10-6 to 
convert it into a voltage reading.

A new sampling process begins at the same time as 
the attention recording, but now non-academic activi-
ties, like chattering with the staff, checking cell 
phones, or playing a video game.

Activity sheet

Appendix A shows the activity sheet used for this 
experiment. It has three scalar vector problems, four 
algebraic multiplications, three algebraic simplifica-

https://emotiv.gitbook.io/epoc-user-manual/
https://emotiv.gitbook.io/epoc-user-manual/


32 REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA VVOL. 44 | NO. 4 | SPECIAL ISSUE 2O23 

tion problems, two synthetic division problems, and 
five fraction integrals. The idea of these problems is to 
measure the attention for 15 to 18 minutes while the 
students solve these problems, whether they were cor-
rectly solved. Figure 8 shows how the Activity Sheet 
looks. 

FIGURE 8. The activity sheets are used for measuring 
attention. Source: self-made.

FIGURE 9. EEG acquisition process with the Epoc+ BCI. 
Source: self-taken.

FIGURE 10. The method proposed a block diagram. Source: 
self-made.

Brain-Computer interface

Brain-Computer Interfaces are electronic devices that 
acquire the EEG signals measured from the scalp and 
transmit the signals to a computer. They get a non-in-
vasive recording of the brain's activity that can be 
processed and used for different applications, like 
gaming, controlling devices, and neuromarketing. 
While designing a variety of educational activities, the 
EEG signals are collected using an Emotiv Pro platform 
and an Epoc+ Brain-Computer Interface (BCI) and 
then analyzed using Matlab 2019a and Emotiv Pro 
software, Student Version [13][14]. The Emotiv Epoc+ 
headset (right) and a diagram of its electrode localiza-
tion (left) are displayed in Figure 7. Electrodes F3, F4, 
P7, and P8 were chosen based on coherence analysis of 
attention [15][16]. This selection reduced the amount of 
data needed to be processed, which decreased pro-
cessing time.

Data acquisition process

The data acquisition process for the math-solving 

stage was:

1. First, the individual will be fitted with the 
headgear containing the hydrated electrodes.
2. Initiate EEG data collection.
3. Give the test subject the worksheet and 
instructions.
4. Allow the test subject to begin solving math 
exercises for about 15 to 20 minutes.
5. Stop the data acquisition before 20 minutes of 
testing.

Figure 9 shows the headset placement, the data 
acquisition starts, the solving math exercises stage, 
and the EEG signals acquired. Next, for the non-at-

tention stage, we repeat the same process for the 
math-solving stages. Still, in step 3, we let the user do 

any other activity, like talking to the staff, playing 
video games, checking social networks, and at the 

same time as the math-solving stage. This EEG data 
acquisition process was presented in reference [11]. 
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Signal processing

The signal's processing procedure block diagram is 
shown in Figure 10 and is presented with more details 
in reference [11]. It begins with preprocessing and then 
calculating the power density of EEG data to split them 
into bands.

After the signal is preprocessed, the band power is 
separated, and features are extracted. After that comes 
the Attention Quantification result, followed by 
Validation Process for the Features and the ML Training 
stage.

Features listed in Section 2.3 will be obtained and 
verified next and used to teach algorithms for ML. We 
will go into greater detail about these actions in the 
following section.

To determine the PSD in absolute values, in V2/Hz, the 
Emotiv Pro Software estimates them using two-second 
windows. This 256-sample window spans two seconds 
[17]. Figure 11 illustrates power bands used in EEG. 
Delta is 1-4 Hz, Theta is 4-8 Hz, Alpha is 8-12 Hz, Beta 
is 12-30 Hz, and Ram (also known as Gamma) is 30-50 
Hz.

FIGURE 11. Example of band power separation used in EEG 
signal processing.

Feature extraction

Before the Theta-Beta (TBR) and the Theta-Alpha 
Ratios (TAR) can be detected, the band PSD of the EEG 
signal in two-second windows and for each electrode 
must be calculated. TBR characteristics, as well as the 
Theta and Beta Relative Powers and the Theta/(Alpha + 
Beta) relative power, are commonly used as part of 
attention detection and neurofeedback  [11][12]. Table 2 
shows the features and their equations.

Dataset

The dataset contains 24 features: six for each one of 
the four electrodes (F3, F4, P7, and P8) and two for the 
"Attention" and "No Attention" classes. This dataset is 
balanced by including exactly 104,244 samples from 
each category. The dataset depicted in Table 3 has 24 
features derived from EEG data analysis. Here we show 
each electrode's features, minimum and maximum 
value, and feature type. The user was not paying atten-
tion to what he was learning since he was preoccupied 
with other, more pressing academic matters.

 

Feature Equation 
Theta Relative Power RTP = !

"
 

Alpha Relative Power 
 

RAP = !
"
 

 
Beta Relative Power 

 
RBP = 	$

"
 

 
Theta Beta Ratio TBR = !

#
 

Theta Alpha Ratio TAR %
!
 

 
TBAR TBAR = !

#$%
 

 

TABLE 2. Features used for attention measurement. Source: 
Self-made.
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Column 
name 

Minimum Maximum Type Column 
name 

Minimum Maximum Type 

Rtp_F3 0.052573953 0.986614597 No Attention Rtp_F4 0 1 No Attention 

Rap_F3 0.006339848 0.776645802 No Attention Rap_F4 0 0.869707513 No Attention 

Rbp_F3 0.004329732 0.889365625 No Attention Rbp_F4 0 1 No Attention 

Tbr_F3 0.059417402 203.8173059 No Attention Tbr_F4 0 70.17964679 No Attention 

Tar_F3 0.024821496 26.5031529 No Attention Tar_F4 0 30.39827608 No Attention 

Tbar_F3 0.055491352 73.70824549 No Attention Tbar_F4 0 22.93691587 No Attention 

Rtp_P7 0.012052623 0.953524263 No Attention Rtp_P8 0.032478926 0.931698565 No Attention 

Rap_P7 0.02263261 0.80631125 No Attention Rap_P8 0.021125876 0.882221784 No Attention 

Rbp_P7 0.013165841 0.926023652 No Attention Rbp_P8 0.011678516 0.926483745 No Attention 

Tbr_P7 0.015074921 68.46186848 No Attention Tbr_P8 0.03505612 72.76456274 No Attention 

Tar_P7 0.034479116 23.60027814 No Attention Tar_P8 0.034120358 44.40627379 No Attention 

Tbar_P7 0.01219966 20.51660325 No Attention Tbar_P8 0.033569218 13.64098078 No Attention 

 

Column 
name 

Minimum Maximum Type Column 
name 

Minimum Maximum Type 

Rtp_F3 0.016089806 0.954886933 Attention Rtp_F4 0.014039459 0.93383383 Attention 

Rap_F3 0.012248581 0.772430196 Attention Rap_F4 0.016629818 0.895142743 Attention 

Rbp_F3 0.008185096 0.963361451 Attention Rbp_F4 0.017738286 0.937284135 Attention 

Tbr_F3 0.016701733 113.1214596 Attention Tbr_F4 0.031871758 38.06310801 Attention 

Tar_F3 0.018291359 13.01625685 Attention Tar_F4 0.020049065 39.94672025 Attention 

Tbar_F3 0.016352922 21.16652665 Attention Tbar_F4 0.014239372 14.11346364 Attention 

Rtp_P7 0.019977678 0.902437957 Attention Rtp_P8 0.021059371 0.930781794 Attention 

Rap_P7 0.009337175 0.938064489 Attention Rap_P8 0.025384797 0.862255367 Attention 

Rbp_P7 0.018345381 0.955737888 Attention Rbp_P8 0.01922771 0.867165619 Attention 

Tbr_P7 0.027892137 45.20699485 Attention Tbr_P8 0.033203085 46.58142716 Attention 

Tar_P7 0.009788323 34.1572323 Attention Tar_P8 0.044500332 25.36725644 Attention 

Tbar_P7 0.020384922 9.249887846 Attention Tbar_P8 0.021512409 13.44706619 Attention 

 

 

 

 

 

 

Table 4. Results of the parameters of the evaluated M-L algorithms. Source: self-made. 

TABLE 3. Dataset example for the 24 features used. Source: self-made.

RESULTS AND DISCUSSION
After training ML models on the datasets, we evaluate 

using the parameters listed in Table 4. True Positive 
values range from 7027 for Naive Bayes to 14968 for 
Random Forest. True Negative values range from a 
high of 17219 in Naive Bayes to a low of 12682 in 
Decision Trees. Again, Naive Bayes had the highest 
False Positives value at 13818, while Random Forest 
had the lowest at 5877. False Negatives ranged from a 
high of 7797 for Decision Trees to a low of 3260 for 
Naive Bayes. Accuracy was maximized by Random 

Forest (0.7392) and minimized by Naive Bayes (0.088). 
Random Forest achieved an F1 Score of 0.7430, while 
SGD managed only 0.6215 %. Random Forest had the 
highest Specificity/Accuracy (0.7261), while Naive 
Bayes (0.5547) had the lowest. Naive Bayes had the 
greatest Sensitivity/Recall score of 0.8408, while 
Decision Trees had the lowest at 0.6192.

Table 5, shows the results of the parameters of the 
evaluated ML algorithms. Table 5, also included in, 
presents the performance metrics obtained with the 
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ML algorithms evaluated. Random Forest obtains the 
highest AUC value with 0.7394, and Naïve Bayes has 
the lowest with 0.5889. The highest Cohen's Kappa 
coefficient was for Random Forest with 0.4787, while 
the lowest was 0.1771 for Naïve Bayes. Naïve Bayes had 
the highest Hamming Loss with 0.41327, and Random 
Forest had the lowest with 0.2607. Random Forest had 
Matthew's Correlation Coefficient of 0.4792, while 
Naive Bayes and Support Vector Machine had values as 
low as 0.2057.

Table 5 shows how the Area Under the Curve (AUC) of 
the ML models used in this paper for Attention 

 

 Machine Learning algorithms 

Results of the 
evaluated parameters 

Naive 
Bayes SGD Decision 

Trees 
(SVM)-

rbf KNN MLP- 
NN 

Random 
Forest 
(RF.) 

Extra 
trees 

True positives 7027 12384 13296 12318 13807 14423 14968 14905 
True negatives 17219 13049 12682 14758 14767 13675 15582 15400 
False positives 13818 8461 7549 8527 7038 6422 5877 5940 
False negatives 3260 7430 7797 5721 5712 6804 4897 5079 

Accuracy 0.5867 0.6154 0.6286 0.6552 0.6914 0.6804 0.7392 0.7333 
F1 Score 0.6684 0.6215 0.6230 0.6744 0.6984 0.6740 0.7430 0.7365 

Specificity/Accuracy 0.5547 0.6066 0.6268 0.6337 0.6772 0.6804 0.7261 0.7216 
Sensitivity/Recall 0.8408 0.6371 0.6192 0.7206 0.7210 0.668 0.76087 0.7519 

 
TABLE 5. Performance metrics of the evaluated M-L algorithms. Source: self-made.

 
 Performance metrics 
 

Machine-Learning 
Algorithm 

 
AUC 

Cohen's Kappa 
coefficient 

Hamming 
loss 

Matthew's correlation 
coefficient 

Naive Bayes 0.5889 0.1771 0.41327 0.2057 
Stochastic Gradient 

Descent 0.6156 0.2311 0.3845 0.2314 

Decision trees 0.6285 0.2571 0.3713 0.2571 
Support Vector Machine 

(SVM) -rbf 0.6557 0.3111 0.4132 0.2057 

KNN 0.6917 0.3832 0.3085 0.3840 
Extra trees 0.7335 0.4668 0.2666 0.4672 
MLP- NN 0.6798 0.3597 0.3200 0.3597 

Random Forest (RF) 0.7394 0.4787 Random 0.4792 

 

TABLE 4. Results of the parameters of the evaluated M-L algorithms. Source: self-made.

Classification behaves. It is noticed that Random Forest 
presents the best performance among the evaluated 
models with a 0.7394 value. The second best AUC was 
for Extra Trees, with 0.7335, followed by K-NN, with 
0.6917. The worst performance was for Naïve Bayes, 
with a 0.5889 value. Comparing the results obtained 
from this research with those obtained in [11], we 
observe that the ML model performance is lower due to 
the use of several individuals in the dataset elabora-
tion. Using many test individuals for dataset conforma-
tion reduces the performance of the ML models evalu-
ated compared to the same models trained with data-
sets from one individual. 
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CONCLUSIONS
In this research, it is observed that when forming the 

dataset with ten users, the results are lower than when 
working with only one user. However, the results 
obtained are considered acceptable. It is observed that 
the Random Forest model presented the best perfor-
mance for the parameters: F1 Score, Accuracy, Area 
Under the Curve, and Specificity/Precision. In 
Sensitivity/Recall, Naive Bayes had the best results. We 
also conclude that using several individuals for dataset 
conformation reduces the performance compared to a 
single-user dataset. Increasing the number of test sub-
jects is necessary to increase the dataset. We conclude 
that this kind of ML system is better if personalized for 
a specific user than making it general for more users 
because the ML models tested performance decreases. 
This performance reduction is caused by the variability 
of the data obtained from different users. So it is better 
to obtain personalized features for the training data-
sets than to obtain generalized features for more than 
one user.

In future work, it is necessary to perform more tests to 
compare the performance of the ML models trained 
with datasets formed with single-user samples or per-
sonalized and other datasets made with the samples of 
more users and compare the performance of the trained 
models. Also, it is important to program these models 
on embedded systems and evaluate their performance.
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