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Abstract 

In Mexico, it is necessary to exploit water resources to cover different needs 

and to control them to prevent damage caused by extreme events. The 

objective of this study was to model and calibrate hydrographs calculated with 

rainfall data measured with GPM-IMERG satellite images in the Huaynamota 

River watershed and compare the results with a hydrological model fed rainfall 

data from automated meteorological stations. The research was conducted in 

a tributary of the Huaynamota River, which is part of the Lerma-Chapala-

Santiago hydrological region. The watershed is located in the states of 

Zacatecas, Durango, Jalisco and Nayarit. For analysis of the hydrographs at 

the basin outlet, maximum rainfall events occurring in the periods July 21 to 

26, 2016, August 14 to 24, 2017, and September 1 to 16, 2017, were 

evaluated. The model was developed in HEC-HMS, using methods such as the 

runoff curve number and the Clark unit hydrograph. Comparison of the 

measured and simulated hydrographs showed good fit of the simulation with 

reality. In most of the modeled events, the Nash-Sutcliffe coefficient was 

above 0.5, which is considered acceptable. We concluded that hydrological 

modeling using satellite meteorological images is a good option that can be 
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implemented in regions where hourly rainfall data gauged with land 

instruments are not available.  

Keywords: Rainfall GPM-IMERG satellite images, Clark unit hydrograph, 

distributed model, lumped model. 

 

Resumen 

En México es necesaria la explotación y el control de los recursos hídricos, ya 

sea para cubrir las diversas carestías o para protegerse del daño causado por 

eventos extremos. Esta investigación tuvo como objetivo modelar y calibrar 

los hidrogramas de una cuenca, calculados con datos de lluvia y medidos con 

imágenes de satélite GPM-IMERG en la cuenca del río Huaynamota, México, 

así como comparar los resultados con un modelo hidrológico alimentado con 

datos de lluvia de estaciones meteorológicas automáticas. Esta investigación 

se realizó en un tributario de la cuenca del río Huaynamota, el cual es parte 

de la región hidrológica Lerma-Chapala-Santiago. La cuenca se ubica en los 

estados de Zacatecas, Durango, Jalisco y Nayarit. Para el análisis de los 

hidrogramas a la salida de la cuenca se evaluaron eventos de lluvia máximos 

ocurridos en los periodos del 21 al 26 de julio de 2016, del 14 al 24 de agosto 

de 2017, y del 1° al 16 de septiembre de 2017. El modelo se desarrolló en 

HEC-HMS, con base en métodos como el número de curva de escurrimiento y 

el hidrograma unitario de Clark. La comparación de los hidrogramas medidos 

y aparentados mostró un buen ajuste de lo simulado con la realidad. En la 

mayoría de los eventos modelados, el coeficiente de Nash-Sutcliffe fue mayor 

a 0.5, que se considera aceptable. Se concluyó que la modelación hidrológica 

a partir de imágenes de satélites meteorológicos es una buena opción para su 
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implementación en regiones donde se carece de datos de lluvia horaria medida 

con instrumentos en tierra. 

Palabras clave: imagen de satélite para lluvia GPM-IMERG, hidrograma 

unitario de Clark, modelo distribuido, modelo agregado. 
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Introduction 

 

 

Understanding the physical behavior of storms is of great importance for the 

solution of diverse problems associated with precipitation, such as floods, 

weather prediction, agriculture, cloud physics, etc. (Ioannidou, Kalogiros, & 

Stavrakis, 2016). The scarcity of hourly rainfall data is a problem faced by 

hydrologists in modeling watersheds for prediction purposes. Reliability of the 

results of modeling depends largely on the availability of meteorological 

information: hydrometric information to calibrate and validate a hydrological 

model (Magaña-Hernández, Ba, & Guerra-Cobián, 2013. Moreover, temporal 

and spatial data must be sufficient since, if these required data are hourly and 
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if there are requirements in terms of spatial distribution, the complexity 

increases. 

 Méndez-Antonio et al. (2013) point out that technologies such as radar 

and weather satellites are capable of estimating spatial variability of 

precipitation in real time and can be very useful in hydrological modeling. With 

GIS (Geographic Information System) applications, it is possible to generate 

information with very little temporal variability at the moment the event 

occurs.  

With advances in computational systems and launching of different 

space missions, a wide variety of products have been developed to monitor 

physical changes in the atmosphere and the earth’s surface. This has 

permitted important developments in different areas of tele-detection (Olivera 

& Maidment, 1999). 

Rainfall data from satellite images are uniformly distributed in space. 

This makes them an alternative for hydrological modeling (Zubieta, Getirana, 

Espinoza, Lavado-Casimiro, & Aragon, 2017).  

These products reduce the limitations often faced in terms of availability 

and acquisition of data, making it possible to implement distributed models, 

which consider spatial variability of the physical characteristics of the 

watershed and of rainfall and divide the watershed into subbasins or cells 

(Méndez-Antonio, Soto-Cortés, Rivera-Trejo, & Caetano, 2014). 

According to Mendez Antonio et al. (2014), one of the advantages of 

these models is that they permit analysis of different elements that affect 

hydrological response, such as vegetation and land use. These elements make 
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it possible to obtain flows at different points of the watershed. This is possible 

since spatial variation of precipitation, infiltration, losses and runoff are 

explicitly considered, while in lumped models these variations are averaged or 

ignored.  

Lumped models, according to Vieux (2004), have some disadvantages. 

a) Deriving parameters at the sub-basin scale is complicated because runoff 

is not available at each outlet. b) Precision of the calculation of flows is affected 

by the number of sub-basins. c) Variations of the properties in the sub-basins 

are ignored or averaged.  

The objective of this study was to simulate the flows in the Huaynamota 

River watershed, Mexico, using the modified Clark Unit Hydrograph method 

(ModClark) integrated in HEC-HMS fed with precipitation data estimated from 

Global Precipitation Measurement GPM (IMERG) satellite images and to 

calibrate and validate the model. In the following section, details of the options 

used in this study to calculate HEC-HMS will be explained.  

 

 

Materials and methods 
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Study area 

 

 

The Huaynamota River watershed ―up to the Chapalagana hydrometric 

station― forms part of the Lerma-Chapala-Santiago hydrological region 12, 

which includes parts of the states of Zacatecas, Durango, Nayarit and Jalisco. 

It is located between 104° 35’ and 103° 20’ W and between 23° 25’ and 21° 

23’ N. The watershed covers an area of 12 080 km2 to the gauging station 

Chapalagana (Figure 1). The study area is bounded by the watershed of the 

Atengo River (also known as the Chapalagana River), a tributary of the 

Huaynamota River. The Huaynamota River has two main tributaries: the Jesús 

María and the Atengo Rivers. Downstream, the Huaynamota River joins the 

Santiago River which flows into the Pacific Ocean at the town of Santiago 

Ixcuintla, Nayarit. The watershed was delimited with HEC-GeoHMS 10.1 (in 

the ArcMap 10.3 platform) using the digital elevation model (INEGI, 2017c), 

with a resolution of 15 m; the range of elevations is 2500 to 220 m. The mean 

slope of the watershed is 28%, the river slope is 0.68% and concentration 

time is 38 hours. Average yearly rainfall is 600 mm, concentrated in the period 

from July to October. The watershed contributes runoff to the Aguamilpa 

reservoir located approximately 29 km downstream from the Chapalagana 

gauging station, which is the outlet of the watershed under study.  
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Figure 1. Location of the Huaynamota River watershed up to the 

Chapalagana station. 
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Sources of information 

 

 

GPM (IMERG) GIS images are available free at https://pmm.nasa.gov/data-

access/downloads/gpm. These images have a spatial resolution of 0.1° x 0.1° 

with a temporality of 30 min (Huffman et al., 2017).  

The hourly hydrometric data from the Chapalagana station and of 

precipitation from the Automated Meterological Stations (AMS) (Table 1) were 

obtained from the Comisión Federal de Electricidad (CFE, 2018).  

 

Table 1. Automated Meteorological Stations in the Huaynamota River 

watershed up to the Chapalagana station. 

Administrator Name Longitude Latitude 

CFE Florida -103.6036° 22.6864° 

CFE Platanitos -104.063° 22.5680° 

CFE Bolaños -103.7833° 21.8250° 

CFE Jesús María -104.5160° 22.2550° 

CFE Chapalagana -104.5080° 21.9450° 

    

https://pmm.nasa.gov/data-access/downloads/gpm
https://pmm.nasa.gov/data-access/downloads/gpm
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To construct the digital map raster that shows spatial variation of the 

runoff curve number (CN), we used a set of vectoral data of land use and 

vegetation of the Instituto Nacional de Estadística y Geografía (INEGI), scale 

1:250,000 series V, 2011-2012 (INEGI, 2017a) and the set of edaphological 

vectoral data scale 1:250,000 series II, 2002-2007 (INEGI, 2017b). 

 

 

 

Procedure 

 

 

The runoff production function derived from the runoff curve number method 

(CN) of the Soil Conservation Service of the Department of Agriculture of the 

United States is one of the most used methods because of its simplicity in 

estimating excess precipitation as a function of accumulated precipitation, soil 

type, vegetation and antecedent moisture (Ponce & Hawkins, 1996).  

The procedure is based on the water balance equation and on two 

fundamental hypotheses, according to Sithara (2015). The first establishes 

that the ratio between direct runoff volume and maximum potential runoff on 

an impermeable surface is equal to the ratio between real infiltration and 

maximum potential infiltration. The second hypothesis establishes that initial 
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infiltration is a fraction of potential retention. Equations (1), (2) and (3) 

represent this pair of hypotheses:  

 

𝑃 =  𝐼𝑎 + 𝐹 + 𝑄           (1) 

 

𝑄

𝑃−𝐼𝑎
=

𝐹

𝑆
            (2) 

 

𝐼𝑎 = 𝜆𝑆            (3) 

 

where Q = direct runoff or effective precipitation (mm); P = total precipitation 

(mm); Ia = Initial abstractions (mm); F = accumulated infiltration excluding 

Ia; S = retention or maximum potential infiltration (mm). For practical 

application, Ia = 0.2 S. 

As initial abstractions, five categories are considered (Ponce & Hawkin, 

1996): (1) interception by vegetation foliage; (2) interception in reservoirs; 

(3) infiltration into subsoil; (4) evaporation from bodies of water and soil, and 

(5) evapotranspiration of the vegetation.  

Combining Equation (1) and Equation (2), we have:  

 

𝑄 =
(𝑃−𝐼𝑎 )2

(𝑃−𝐼𝑎+𝑆)
            (4) 
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Substituting Ia = 0.2 S in Equation (4): 

 

𝑄 =
(𝑃−0.2𝑆)2

(𝑃+0.8 𝑆)
            (5) 

 

where Q = 0 for P ≤ 0.2 S, and S in terms of CN is represented with Equation 

(6): 

 

𝑆 =
25400

𝐶𝑁
− 254           (6) 

 

where CN = runoff curve number. To illustrate the variation range of CN 

values, CN=98 represents an impermeable surface, and CN=30 is for 

permeable soils with high rates of infiltration (USACE, 2000).  

The function of runoff transfer is performed with the modified Clark unit 

hydrograph method. According to Kull and Feldman (1998), the method 

consists of routing the runoff produced in each cell to the outlet of the 

watershed after a lapse of time equal to the run time from the cell to the outlet 

(Equation 7): 

 

𝑡𝑐𝑒𝑙𝑙 = 𝑡𝑐 (
𝑑𝑐𝑒𝑙𝑙

𝑑𝑚𝑎𝑥
)          (7) 
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where tcell is the travel time of the cell in hours, tc is the concentration time of 

the watershed in hours, dcell is the travel distance from a cell to the watershed 

outlet in meters, and dmax is the distance from the farthest cell to the outlet. 

The results of each cell are combined to produce the final hydrograph, as 

shown conceptually in Figure 2.  

 

 

Figure 2. Conceptual modified unit hydrograph model of Clark (Kull & 

Feldman, 1998). 

 

To calculate the produced hydrograph of the watershed, the ModClark 

method requires estimation of the parameters concentration time (t c) and 

reservoir coefficient (R).  

According to McCuen, Wong and Rawls (1984), there are two accepted 

definitions of concentration time (tc). The first defines tc as the time a drop of 
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water requires to arrive at the farthest point of the watershed, its outlet. The 

second is based on the hyetograph of the storm and the hydrograph, while 

concentration time is the time between the center of the excess rain mass and 

the point of inflection in the recession of the hydrograph of direct runoff. We 

used the equation of Kirpich expressed in equation (8) (Chow, Maidment, & 

Mays, 1988): 

 

𝑡𝑐 = 0.000325
𝐿0.77

𝑆0.385          (8) 

 

where tc is the concentration time in h; L is the length of the main channel of 

the watershed in m, and S is the slope of the main channel (m/m).  

The reservoir coefficient is estimated from an observed hydrograph. It 

represents the ratio between the low volume of the hydrograph after the 

second inflection point (recession curve) and the value of the flow at this point 

(USACE, 1982). Equation (9) estimates this coefficient:  

 

𝑅 =
∫ 𝑄(𝑡)

∞
𝑃𝐼

𝑄𝑃𝐼
𝑑𝑡           (9) 

 

where R is the storage coefficient; ∫ 𝑄(𝑡)
∞

𝑃𝐼
 is the low volume of the hydrograph 

after the second inflection point, and QPI is the value at the inflection point. 

The literature indicates that the storage coefficient, R, is c times the 

concentration time, as indicated in Equation (10): 
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𝑅 = 𝑐 ×  𝑡𝑐            (10) 

 

 Domínguez et al. (2008) point out that c can be equal to 0.6, but the 

US Army Corps of Engineers, cited by Magaña-Hernández et al. (2013), 

recommends that c should be equal to 0.8. In our study, it was calculated with 

0.75·tc, since this value generated the best results in the calibration process.  

Runoff routing was calculated with the Muskingum method using the 

following equation: 

 

𝑆 = 𝐾[𝑥𝐼] + (1 − 𝑥)𝑂         (11) 

 

Equation (11) relates storage (S), inputs (I) and outputs (O) of the 

analyzed section (Bedient, Huber, & Vieux, 2013), where S is the storage in 

the section of the current; I is the input flow; O is the output flow; K is a 

constant of time the current takes to pass through the section; x is a weight 

factor that relates inputs and outputs of the storage of the section of current.   

To evaluate the model, we used two measures: the Nash-Sutcliffe 

efficiency coefficient, NSE (Nash & Sutcliffe, 1970), and the root square mean 

of the error (RSME) (Vargas-Castañeda, Ibáñez-Castillo, & Arteaga-Ramírez, 

2015): 
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𝑁𝑆𝐸 = 1 − [
∑ (𝑌𝑖

𝑜𝑏𝑠−𝑌𝑖
𝑠𝑖𝑚 )

2
𝑛
𝑖=1

∑ (𝑌𝑖
𝑜𝑏𝑠−𝑌𝑚𝑒𝑑 )

2𝑛
𝑖=1

]        (12) 

 

𝑅𝑆𝑀𝐸 = √
1

𝑛
∑ (𝑌𝑖

𝑜𝑏𝑠 − 𝑌𝑖
𝑠𝑖𝑚)

2𝑛
𝑖=1         (13) 

 

where Yobs is the observed value, Ysim is the simulated value, Ymean is the mean 

of the observed data.  

The coefficient of NSE evaluates the magnitude of residual variance 

between observed and modeled data (Equation 12). The coefficient varies 

from -∞ to 1. NSE = 1 is the optimal value, between 0 and 1 is acceptable, 

while for values ≤ 0 the mean is considered a better predictor than the 

simulated value and thus model performance is considered inacceptable. 

Moriasi et al. (2007) propose the NSE ranges presented in Table 2.  

 

Table 2. Criteria for evaluation of hydrologic models using the Nash-Sutcliffe 

efficiency index (NSE).  

Interval Classification 

NSE < 0.5 Unsatisfactory 

0.5 < NSE < 0.65 Satisfactory 

0.65 < NSE < 0.75 Good 

0.75 < NSE < 1.0 Very good 
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The coefficient RSME (Equation (13)) measures the mean error, in 

absolute terms, between observed and simulated data and has the hydrograph 

units of the flows, which are compared: in this case m3/s. 

To implement the model, the following was necessary:  

Physiographic characteristics were determined (Figure 3) using a digital 

model of elevation (MDE) downloaded from Continuo de Elevaciones Mexicano 

3.0 (CEM 3.0), which has a resolution of 15 m. This delimited the watershed 

and sub-basins, identified the main channel, and provided physiographic 

parameters, with the HEC-GeoHMS extension, which is distributed free by 

USACE (2013) for ArcMap 10.3. 
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Figure 3. Sub-basins of the Huaynamota River up to the Chapalagana 

station, Nayarit. 

 

Spatial variation of the runoff curve number, CN (Figure 4), was 

determined with the vectoral edaphology layers of series II and land use and 

vegetation series V of INEGI (2017a), with the procedure proposed by USACE 

(2013) in HEC-GeoHMS for ArcMap 10.3.  
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Figure 4. a) Land use and vegetation; b) texture type; c). curve number in 

the Huaynamota River watershed. 

 

 

The process of calibrating the hydrological model in HEC-HMS 

version 4.2 

 

 

Observed flows can be used to optimize model functioning by estimating or 

improving parameter values. The process of optimization begins with initial  

parameter values, and these parameters are adjusted so that simulated 

results approximate observed flows as closely as possible. HEC-HMS version 

4.2 uses two search algorithms of the parameters that minimize this 
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difference, or error. These algorithms begin with the initial value they are 

given and continue until they find the optimal value. The objective of this 

search algorithm is to minimize the difference between observed and 

simulated values. If the observed and simulated hydrographs were totally 

identical, this error or difference, would be zero.  

Search algorithm: The two search algorithms that HEC-HMS version 

4.2 can use are the univariate gradient method and the Nelder and Mean 

method (USACE, 2015). The univariate gradient method evaluates and fits a 

parameter, while the rest are left constant. The Nelder and Mead method uses 

a simplex algorithm to evaluate all the parameters simultaneously and 

determines which parameter to adjust. HEC-HMS uses the univariate gradient 

method by default. 

Objective function: The objective function measures the goodness of 

fit between calculated and observed flows. HEC-HMS 4.2 gives the option of 

selecting among eight different objective functions (USACE, 2015): (1) RMSE 

error function, calculates the root mean square error; (2) the weighted RMSE 

error function is like the previous objective function, but it gives more weight 

to flows that are above the mean and less weight to flows that are below the 

mean; the HEC-HMS user manual does not give details of how much it is 

weighted; (3) RMSE error function is applied to flow logarithms to emphasize 

the differences between small and large flows; (4) the function SSR, sum of 

square residuals, gives greater weight to large errors than to small errors; (5) 

the absolute sum of residuals function gives equal weight to large and small 

errors; (6) the function of error percentage in the maximum flow only 

emphasizes this value; (7) the function volume error ignores maximum flows 
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or the considerations of the real moment in which the flows occur, in favor of 

considering optimizing volume; (8) the function occurrence time gives greater 

emphasis to errors that occur at the end and less to those that occur at the 

beginning, favoring a “warm-up” stage for the model. By default, HEC-HMS 

selects function #2, which gives more importance to not erring when 

calculating flows that are above the mean.  

Calibration of this model: This study was conducted in HEC-HMS 

version 4.2. The univariate gradient model was used as a search algorithm to 

find the optimal value, and the objective function considered was that that 

most penalized mistakes in calculating a flow above the mean. The latter was 

selected because we expected this model to be useful in predicting floods to 

enable alerting the populations, and the threat is greater with flows above the 

mean. The HEC-HMS model reports the root square mean of the error (RSME) 

and the Nash-Sutcliffe (NS) coefficient as coefficients of fit. The user has the 

option of automatically giving HMS groups of parameters to be optimized, for 

example, all the runoff curve numbers by sub-basin, or the delay times or 

concentration times, or all the parameters of channel routing, etc. Another 

option would be adding parameters and, by trial and error, see how sensitive 

the objective function is to these changes. In our study, we did several tests, 

by trial and error, adding parameters to determine how sensitive the 

optimization process was since HEC-HMS, for each optimized parameter, 

reports what it calls “objective function sensitivity”. The literature reports  that, 

of the superficial hydrological models, one of the most sensitive parameters is 

the runoff curve number (Moriassi et al., 2007), and this can be demonstrated. 

However, we began from a CN value obtained from soil type and vegetation 
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cover; it permitted this parameter to vary only up to ± 20% when calibrating. 

The other parameter that was found to be sensitive was the storage coefficient 

R (Equation (10)), which is c times the concentration time. Values between 

0.6 and 0.75 were tested, as reported in the literature (Domínguez et al., 

2008; Magaña-Hernández et al., 2013). There was better response when the 

value of c was 0.75. Flood channel routing parameters were tested with 

Muskingum, K and x, but there was no notable improvement in reducing the 

error between observed and simulated flows. We did not select the automatic 

mode of HEC-HMS calibration because it arbitrarily modifies hydrological 

parameters notably to force the fit between observed and simulated data. 

Three final summarized comments regarding procedure:  

 

 Two hydrological models were run in the environment of HEC-HMS version 

4.2: (1) a hydrological model lumped with the Original Clark UH with hourly 

meteorological information from the CFE automated meteorological stations 

(AMS), (2) a hydrological model distributed with the Modified Clark UH, with 

hourly meteorological information derived from GPM-IMERG satellite images. 

Both models used the runoff curve number methodology to calculate runoff 

depths, and both models routed channel floods with the Muskingum method.  

 In the construction of the rainfall database from satellite images, a time series 

was generated with GPM-IMERG images for each selected event. Image pre-

processing was carried out in ArcMap to later convert them to *.dss format 

with the tool asc2dssGrid.exe (USACE, 2016) included in the HEC-GeoHMS 

extension.  
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 The rainfall events considered in the modeling were three: (1) July 21 to 26, 

2016; (2) August 14 to 24, 2017; and (3) September 1 to 16, 2017. During 

these periods, rainfall data from GPM-IMERG satellite images and hourly 

rainfall and flow data from the CFE AMS were available.  

 

 

Results 

 

 

Table 3 shows the results of the hydrological models executed with information 

from CFE weather stations and with rainfall data from satellite images. In 

Table 3, the best results were obtained from those hydrological models fed 

directly with rainfall data registered by the CFE AMS. The fit of hydrological 

models fed rainfall data estimated from satellite images was poor, as 

measured with the Nash-Sutcliffe (NSE) efficiency index and with the root 

square mean of the error (RSME). It is likely that the data from images had 

not been calibrated by NASA with temporal and spatial information as detailed 

as that of the CFE. But it is worth mentioning that data from the CFE, unlike 

the Servicio Meteorológico Nacional (SMN), is not open to the public. However, 

in Mexico, in places were data from CFE or SMN automated weather stations 

do not exist or are not distributed spatially as desired, the NASA images are a 

good alternative for development of hydrological models. Moreover, of the 
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three events modeled in this study, only that of July 21 to 26, 2016, had poor 

fit, as measured with NSE efficiency index and with RSME.  

 

Table 3. Results of the calibrated hydrological models.  

Date of 

the event 

Source 

of 

rainfall 

data 

 

Qcalc 

(m3 s-1) 

Qobs 

(m3 s-1) 

Vcalc 

(mm) 

Vobs 

(mm) 

RSME 

(m3 s-1) 

NSE 

21-26 July 

2016 

AMS 440.2 641.9 4.52 3.73 73.0 0.625 

 Satellite 

images 

373.6 641.9 3.33 3.73 129.3 -0.159 

 

14-24 

August 

2017 

 

AMS  

 

439.5 

 

465.9 

 

5.06 

 

5.18 

 

23.0 

 

0.932 

 Satellite 

images 

462.0 465.9 6.26 5.18 60.5 0.531 

 

1-16 

September 

2017 

 

AMS 

 

624.7 

 

1171.0 

 

32.44 

 

35.22 

 

186.7 

 

0.567 

(Longest 

event of 

Satellite 

images 

969.4 1171.0 44.16 35.22 194.3 0.530 
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2017) 

 

Figure 5 shows the processed rainfall data from satellite images for the 

June 21 to 26, 2016, event, and Figure 6 shows the model runs with AMS data 

and with data from satellite images. Regarding maximum flows, it can be 

observed that the model fed AMS data obtains better results in predicting both 

value and the hour it occurred.  

 

 

Figure 5. Accumulated precipitation, data from GPM-IMERG images for the 

event of July 21 to 26, 2016. 
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Figure 6. Observed and simulated flows at the Chapalangana station for the 

events that occurred from July 21 to 26, 2016.  

 

Figure 7 shows processed rainfall data from satellite images for August 

14 to 24, 2017, and Figure 8 shows the model runs with both AMS data and 

data from satellite images. In terms of maximum flows, the model fed AMS 

data resulted in better and very good results (NSE=0.932). The observed 

hydrograph can almost be superimposed onto the hydrograph simulated with 

AMS data (Figure 8). The model fed satellite image data ran very well until a 

two-day period, between August 19 and 21, decreased its fit to an NSE of 

0.531. The AMS model is almost perfect with respect to flow values and 

volumes and in terms of temporal prediction of flows.  
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Figure 7. Accumulated precipitation. Data from GPM-IMERG images for the 

event that occurred August 14 to 24, 2017. 
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Figure 8. Observed and simulated flows at the Chapalagana station for the 

event that occurred August 14 to 24, 2017. 

 

Figure 9 shows the processed rainfall data from satellite images for 

September 1 to 16, 2017, and Figure 10 shows the model runs with AMS data 

and satellite image data. With respect to maximum flows, the model fed AMS 

data obtained the better results, with NSE = 0.567., while the model fed data 

from images has an NSE of 0.530. It should be noted that, although the AMS 

model, measured with NSE and RSME, is slightly superior, the model fed 

rainfall data from images had an error of 17% in estimating maximum flow, 

while the model with AMS data had an error of approximately 50%. In terms 

of volumes, the model fed AMS data also had better results.  
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Figure 9. Accumulated precipitation. Data from GPM-IMERG images for the 

event that occurred September 1 to 16, 2017. 
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Figure 10. Observed and simulated flows at the Chapalagana station for the 

event of September 1 to 16, 2017. 

 

If this work is compared with other previous studies conducted in 

Mexico, the comparison perhaps pertains to radar rainfall data. In the models 

fed by radar, the size of the watershed varies from 35 to 3 242 km2 (Magaña-

Hernández et al., 2013; Méndez-Antonio et al., 2014), while in our study we 

have a watershed of approximately 12 000 km2, making instrumentation and 

representation of spatial rainfall distribution more difficult.  

There are two relatively recent studies of hydrological models with 

satellite images (Zubieta et al., 2017; Zubieta, Laqui, & Lavado, 2018). Both 

studies use satellite images for rainfall, but one of the studies is at a daily time 

scale and the other is monthly. Our study is at an hourly scale.  

 

 

Discussion 

 

 

The Nash-Sutcliffe is observed to be more efficient in all of the events 

simulated with lumped models using the Clark Unit Hydrograph, which was 

supplied with precipitation data from five stations distributed over the 
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Huaynamota River watershed’s area of 12,075 km2, even though it did not 

represent uniform spatial rainfall distribution.  

This may have two reasons: (1) the flow velocity between cells was considered 

constant, affecting the parameters concentration time and storage coefficient; 

cell size for each of the grids used in the study was 2 km x 2 km; (2) data 

measured on land are definitively more reliable than image data. However, 

the NASA’s GMP-IMERG satellite images are a good option where there is no 

land meteorological information with sufficient spatial and temporal (hourly) 

distribution. 

 

 

Conclusions 

 

 

The rainfall data recorded by the automatic meteorological stations (AMS), 

compared to those of the satellite images GPM-IMERG, represented better the 

rainfall-runoff process. 

Because precipitation is the main input for hydrological modeling, the 

use of this new generation of images is of great interest in hydrological 

studies. However, future studies should consider calibration of the images with 

precipitation information from stations located in national territory.  
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It is concluded from the results of hydrological modeling with rainfall 

data estimated from images and compared with the model with data from AMS 

that satellite images are a good option for hydrological modeling, applicable 

where meteorological information measured on land is deficient.  
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