SciELO - Scientific Electronic Library Online

 
vol.48 número4Universal relations for three-dimensional thermal, electric and magnetic propertiesDebye potentials adapted to cylindrical coordinates índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.48 no.4 México ago. 2002

 

Investigación

 

On Casimir forces for media with arbitrary dielectric properties

 

W. L. Mochán1, C. Villarreal2 and R. Esquivel-Sirvent2

 

1 Centro de Ciencias Físicas, Universidad Nacional Autónoma de México Av. Universidad S/N, Cuernavaca, Morelos 62210, México.

2 Instituto de Física, Universidad Nacional Autónoma de México Ciudad Universitaria, D.F. 04510, México.

 

Recibido el 19 de febrero de 2002.
Aceptado el 1 de abril de 2002.

 

Abstract

We derive an expression for the Casimir force between slabs with arbitrary dielectric properties characterized by their reflection coefficients. The formalism presented here is applicable to media with a local or a non-local dielectric response, an infinite or a finite width, inhomoge-neous dissipative, etc. Óur results reduce to the Lifshitz formula for the force between semi-infinite dielectric slabs by replacing the reflection coefficients by the Fresnel amplitudes.

Keywords: Casimir forces; dielectrics; Lifshitz formula.

 

Resumen

Se presenta una deducción para la expresión de la fuerza de Casimir entre placas con propiedades dieléctricas arbitrarias caracterizadas por sus coeficientes de reflección. El formalismo que presentamos es válido para medios con una respuesta dieléctrica local, no local, placas de ancho finito o semi-infinito, inhomogéneos, disipativos, etc. Nuestros resultados se reducen a la fórmula de Lifshitz para la fuerza entre placas dieléctricas semi-infinitas substituyendo los coeficientes de reflección por las amplitudes de Fresnel.

Descriptores: Fuerzas de Casimir; dieléctricos; fórmula de Lifshitz.

 

PACS: 12.20.D.s; 03.70.+k; 77.55.+f; 78.67.-n

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgments

This work was partially supported by NASA Breakthrough Propulsion Physics Project, and by DGAPA-UNAM Project IN-110999.

 

References

1. H. B. G. Casimir, Proc. Kon. Ned. Akad. Wet. 51 (1948) 793.         [ Links ]

2. B. V. Derjaguin, I. I. Abrikosova, Vestnik Akad. Nauk. SSSR 6 (1951) 125.         [ Links ]

3. P. W. Milonni and Mei-Li Shih, Contemporary Physics 33 (1992)313.         [ Links ]

4. S. K. Lamoreaux, Phys. Rev. Lett. 78 (1997) 5.         [ Links ]

5. H. B. Chan, V. A. Aksyuk, R. N. Kliman, D. J. Bishop and F. Capasso, Science 291 (2001) 1942.         [ Links ]

6. U. Mohideen and Anushree Roy, Phys. Rev. Lett. 81 (1998) 4549.         [ Links ]

7. B. W. Harris, F. Chen, and U. Mohideen, Phys. Rev. A 62 (2000) 052109.         [ Links ]

8. H. B. Chan, V. A. Aksyuk, R. N. Kliman, D. J. Bishop and F. Capasso, Science 291 (2001) 1942.         [ Links ]

9. F. M. Serry, D. Walliser and G. J. Maclay, J. Appl. Phys. 84 (1998)2501.         [ Links ]

10. R. Esquivel-Sirvent, C. Villarreal y G. H. Cocoletzi, Phys. Rev. A 64 (2001)052108 .         [ Links ]

11. C. Villarreal, R. Esquivel-Sirvent and G. H. Cocoletzi, Int. J. Mod. Phys. A (in press).

12. R. Esquivel-Sirvent, C. Villarreal, G. H Cocoletzi and W. L. Mochan, Phys. Stat. Sol. (in press).

13. M. Bordag, B.Geyer, G.L. Klimchitskaya, and V.M. Mostepa-nenko, Phys. Rev. Lett. 85 (2000) 503;         [ Links ] G.L. Klimchitskaya, and V.M. Mostepanenko, Phys. Rev. 63 (2001) 062108.         [ Links ]

14. E. M. Lifshitz, Sov. Phys. JETP 2 (1956) 73.         [ Links ]

15. Yu. S. Barash and V.L. Ginzburg, Sov. Phys.-Usp., 18 (1975) 305.         [ Links ]

16. N. G. Van Kampen, B. R. A. Nijboer, and K. Schram, Phys. Lett. 26a (1968)307.         [ Links ]

17. P. Candelas, Ann. Phys. (N.Y.) 143 (1982) 241.         [ Links ]

18. R. Matloob, Phys. Rev. A 60 (1999) 50.         [ Links ]

19. D. Kupiszewska and J. Mostowski, Phys. Rev. A 41 (1990) 4636.         [ Links ]

20. D. Kupiszewska, Phys. Rev. A 46 (1992) 2286.         [ Links ]

21. R. Matloob, A. Keshavaraz, and D. Sedighi, Phys. Rev. A, 60 (1999) 3410.         [ Links ]

22. E. I. Kats, Sov. Phys. JETP 46 (1977) 109.         [ Links ]

23. V. M. Mostepanenko and N. N. Trunov, Sov. J. Nucl. Physics 42 (1985)818.         [ Links ]

24. V. B. Bezerra, G. L. Klimchitskaya and C. Romero, Phys. Rev. A 65 (2001)012111.         [ Links ]

25. See the review books Photonic Probes of Surfaces, edited by P. Halevi (Elsevier, Amsterdam, 1995) and Spatial Dispersion in Solids and Plasmas,         [ Links ] Electromagnetic Waves, Vol. 1, ed. by P. Halevi (North-Holland, Amsterdam, 1992).         [ Links ] For an example of a nontrivial application of the surface impedance to non-local excitonic semiconductor superlattices see G. H. Cocoletzi and W. Luis Mochan, Phys. Rev. B 39 (1989) 8403.         [ Links ]

26. M. T. Jaekel and S. Reynaud, J. Phys. I France 1 (1991) 1395;         [ Links ] R. Matloob, A. Keshavaraz, and D. Sedighi, Phys. Rev. A 60 (1999) 3410.         [ Links ]

27. G. Plunien, B. Müller and W. Greiner, Phys. Rep. 134 (1986) 87.         [ Links ]

28. A. E. González, Physica A 131 (1985) 228.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons