Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
Compartir
Revista mexicana de física
versión impresa ISSN 0035-001X
Rev. mex. fis. vol.52 no.2 México abr. 2006
Investigación
Wavelet analysis of chaotic time series
J.S. Murguía and E. Campos–Cantón
Departamento de Físico Matemáticas, Universidad Autónoma de San Luis Potosí, Alvaro Obregón 64, 78000 San Luis Potosí, S.L.P, México.
Recibido el 14 de noviembre de 2005
Aceptado el 8 de diciembre de 2005
Abstract
In this work we analyzed experimental chaotic time series data from three known chaotic systems using the orthogonal wavelet transform. The experimental electronic implementation of the chaotic systems was used to analyze them. The wavelet analysis of the experimental chaotic time series, with a simple statistical approach, gives us useful information of such systems through the energy concentration at specific wavelet levels.
Keywords: Chaotic time series; wavelets.
Resumen
En este trabajo analizamos información de series de tiempo caóticas experimentales de tres sistemas caóticos conocidos, usando la transformada ortogonal ondeleta. Se llevó a cabo la implementación experimental electrónica de los sistemas caóticos, para su respectivo análisis. El análisis ondeleta de las series de tiempo caóticas experimentales, con un simple enfoque estadístico, nos da información útil de dichos sistemas, mediante la concentración de energía en ciertos niveles ondeleta.
Descriptores: Series de tiempo caóticas; ondeletas.
PACS: 05.45.–a; 05.45.Tp
DESCARGAR ARTÍCULO EN FORMATO PDF
Acknowledgement
JSM received partial financial support from PROMEP under contract 103.5/03/1118, and FAI–UASLP under contract C03–FAI–04–23.24, and ECC received partial financial support from FAI–UASLP under contract C04–FAI–10–30.73.
References
1. H.D.I. Abarbanel, Analysis of Observed Chaotic Data (Springer, New York, 1996). [ Links ]
2. G.W. Wornell and A. V. Oppenheim, IEEE Trans. Inform. Theory 38 (1992) 785. [ Links ]
3. W. J. Staszewski and K. Worden, Int. Journal of Bif. and Chaos 3 (1999) 455. [ Links ]
4. T.L. Carroll, Am. J. Phys 63 (1995) 377. [ Links ]
5. E. Campos–Canton and J.S. Murguia, submitted to publication (2005). [ Links ]
6. L.O. Chua, L. Kocarev, K. Eckert, and M. Itoh, Int. J. Bif and Chaos 2 (1992) 705. [ Links ]
7. N.F. Rulkov, Chaos 6 (1996) 262. [ Links ]
8. J. Urias, Rev. Mex. Fis. 45 (1999) 331. [ Links ]
9. E. Ott, T. Sauer, and J.A. Yorke, Coping with Chaos (John Wiley & Sons, New York, 1994). [ Links ]
10. I. Daubechies, Ten lectures on Wavelets (SIAM, Philadelphia, PA, 1992). [ Links ]
11. S. Mallat, A Wavelet Tour of Signal Processing, 2nd. Edition (Academic Press, 1999). [ Links ]
12. S. Qian, Introduction to Time–Frequency and Wavelet Transforms (Prentice Hall PTR, 2002). [ Links ]
13. G. Strang and T. Nyugen, Wavelets and Filter Banks (Prentice Hall, 1996). [ Links ]