SciELO - Scientific Electronic Library Online

 
vol.66 número6Characterization of the internal state of nitrogen-vacancy centerin diamond and second quantization formalismThe investigation of a classical particle in the presence of fractional calculus índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.66 no.6 México nov./dic. 2020  Epub 31-Ene-2022

https://doi.org/10.31349/revmexfis.66.824 

Research

Thermodynamics and Statistical Physics

Solutions of Schrödinger equation and thermal properties of generalized trigonometric Pöschl-Teller potential

C.O. Edeta 

P.O. Amadia 

U.S. Okoriea  b 

A. Taşc 

A.N. Ikotd  a 

G. Ramphod 

aDepartment of Physics, Theoretical Physics Group, University of Port Harcourt, Choba, Nigeria. e-mail: collinsokonedet@gmail.com

bDepartment of Physics, Akwa Ibom State University, Ikot Akpaden, P.M.B. 1167, Uyo. Nigeria.

cOpticianry Programme, Health Services Vocational College, Harran University, Şanlıurfa, Turquey.

dDepartment of Physics, University of South Africa, South Africa.


Abstract

Analytical solutions of the Schrödinger equation for the generalized trigonometric Pöschl-Teller potential by using an appropriate approximation to the centrifugal term within the framework of the Functional Analysis Approach have been considered. Using the energy equation obtained, the partition function was calculated, and other relevant thermodynamic properties. More so, we use the concept of superstatistics to evaluate the thermodynamics properties of the system. It is noted that the well-known normal statistics results are recovered in the absence of the deformation parameter (q = 0), and this is displayed graphically for the clarity of our results. We also obtain the normalized wave function in terms of the hypergeometric function. The numerical energy spectra for different values of the principal and orbital quantum numbers are obtained. To show the accuracy of our results, we discuss some special cases by adjusting some potential parameters and also compute the numerical eigenvalue of the trigonometric Pöschl-Teller potential for comparison sake. However, it was found out that our results agree excellently with the results obtained via other methods.

Keywords: Trigonometric Pöschl-Teller potential; factorization method; superstatistics; Schrödinger equation

1.Introduction

The solutions of the radial Schrödinger equation is of immense importance in nonrelativistic quantum mechanics because it is well established that the wave function contains all the necessary information required to describe a quantum system 1-3. From the early days of quantum mechanics, the study of exactly solvable problems has attracted considerable attention in many branches of physics. In particular, the applications of quantum mechanics to nuclear physics, information theory, molecular physics, and particle physics need not be overemphasized 4,5.

It is well known that exact solutions of this equation are only possible for a few potential models, such as the Kratzer 6-7, Eckart potential 8-10, shifted Deng-Fan 11-14, Molecular Tietz potential 15-18, etc. The exact analytical solutions of the Schrödinger equation with some of these potentials are only possible for l=0. For l0 states, one has to employ some approximations, such as the Pekeris approximation 17,18, to deal with the orbit centrifugal term or solve numerically 19,20. Several mathematical approaches have been developed to solve differential equations arising from these considerations. They include the supersymmetric approach 21-24, Nikiforov-Uvarov method 25-27, asymptotic iteration method (AIM) 28-30, Feynman integral formalism 31-34, factorization formalism 35,36, Formula Method37 exact quantization rule method 38-43, proper quantization rule44-48, Wave Function Ansatz Method49 etc...

The trigonometric Pöschl-Teller potential was proposed by Pöschl and Teller 50 in 1933, and it has been used in describing diatomic molecular vibration. This potential can be written as

V(r)=V1cosec2(αr)+V2sec2(αr), (1)

where parameters V1 and V2 describe the property of the potential well, whereas the parameter α is related to the range of this potential 51.

This potential has been applied to study diatomic molecular vibration. Ever since it was proposed in 1933, researchers have given much attention to the molecular potential. For example, Liu et al.51 carried out a fermionic analysis with this potential. The bound state solutions have also been carried out in the relativistic regime by Falaye and Ikhdair 52, Chen 53, Candemir 54. and Hamzavi 55.

Very recently, Hamzavi and Rajabi 56 also studied the s-wave solutions of the Schrödinger equation for this potential using the Nikiforov-Uvarov method. Hamzavi and Ikhdair 57 obtained the approximate solutions of the radial Schrödinger equation for the rotating trigonometric PT potential using the Nikiforov-Uvarov method. The energy eigenvalues and their corresponding eigenfunctions were calculated for arbitrary l -states in closed form.

Motivated by Ref. 50-57, we propose a modification to the trigonometric Pöschl-Teller potential, called the Generalized trigonometric Pöschl-Teller potential. This potential is given as:

Vr=V1cosec2ar+V2sec2ar+V3tan2ar+V4cot2ar, (2)

where parameters V1, V2, V3, and V4 describe the property of the potential well, whereas the parameter α is related to the range of this potential. For what obtains in previous studies of the molecular potential, we modified the potential to allow for more physical application and comparative analysis to existing studies of the molecular potential. Besides, in molecular physics, it has also been established that potential energy functions with more parameters tend to fit experimental data than those with fewer parameters, and researchers have recently paid great attention to obtaining modified version of potential functions by employing dissociation energy and equilibrium bond length for molecular systems as explicit parameters. This model will be an important tool for spectroscopists to represent experimental data, verify measurements, and make predictions.

The first step in obtaining the thermodynamics properties of a given system is to calculate its vibrational partition function. The partition function, which explicitly depends on temperature, aids us to obtain other thermodynamics properties. The vibrational partition function for certain potential models can easily be obtained by calculating the rotation-vibrational energy levels of the system whose applications are widely used in statistical mechanics and molecular physics 58,59. Different mathematical approaches have been employed by many researchers in evaluating partition functions, such as Poisson the summation formula 60, commulant expansion method 61, standard method 62, and Wigner-Kirkwood formulation 63. Superstatistics is the topic of interest in statistical mechanics.

Superstatistics is a superposition of different statistics: One given by ordinary Boltzmann factor and another given by the fluctuation of the intensive parameter such as the inverse temperature. Superstatistics describe non-equilibrium systems with a stationary state and intensive parameter fluctuations and contains Tsallis statistics as a special case 64-72.

Therefore, it is the primary objective of the present work to study the Schrödinger equation for non-zero angular momentum with the generalized trigonometric Pöschl-Tellerpotential using the Functional Analysis Approach. We will also use the resulting energy equation to find the partition function, which will enable us to calculate other thermodynamics properties via statistical mechanics and superstatistics mechanics approach.

This paper is organized as follows. In Sec. 2, we derive the bound states of the Schrödinger equation with the generalized trigonometric PT potential using the FAA. In Sec. 3, we obtain the thermodynamic properties, which will be calculated using the expression for the partition function. In Sec. 4, we calculate the effective Boltzmann factor considering modified Dirac delta distribution in the deformed formalism. We obtain the statistical properties of the systems by using the superstatistics. In Sec. 5, we obtain the rotational-vibrational energy spectrum for some diatomic molecules with numerical results and discussion. In Sec. 6, we present special cases of the potential under consideration. Finally, in Sec. 7, we give a concluding remark.

2.Energy levels and wavefunctions

The radial part of the Schrödinger equation is given by 60;

d2Rnl(r)dr2+2μ2Enl-Vr-2ll+12μr2Rnlr=0 (3)

Considering the generalized trigonometric Pöschl-Teller potential (Eq. (2)), we obtain the radial Schrödinger equation, Eq. (3) is rewritten as follows:

d2Rnl(r)dr2+2π2Enl-V1cosec2ar+V2sec2ar+V3tan2ar+V4cot2ar-2ll+12μr2Rnlr=0 (4)

This equation cannot be solved analytically for l0 due to the centrifugal term. Therefore, we must use an approximation to the centrifugal term. We use the following approximation 57

1r2a2d0+1sin2(ar) (5)

where d0 = 1/12 is a dimensionless shifting parameter, and α is the screening parameter. It is noted that for a short-range potential, the relation Eq. (5) is a good approximation to 1/r2 as proposed by Greene and Aldrich 19,53 approximation. This implies that Eq. (5) is not a good approximation to the centrifugal barrier when the screening parameter becomes large. Thus, the approximation is valid when αr=1.

Inserting Eqs. (5) into Eq. (4), we have:

d2Rnl(r)dr2+2μ2Enl-V1cosec2ar+V2sec2ar+V3tan2ar+V4cot2ar-2ll+1a22μ×d0+1sin2arRnlr=0 (6)

Using the coordinate transformation ρ=sin2(αr), Eq. (6) translates into,

4ρ1-ρd2Rnlρdρ2+2-4ρd2Rnl(ρ)dρ+1ρ(1-ρ)×-ε+η3+η4-γd0ρ2+ε+η1-η2+2η4-γd0+γρ-η1+η4+γRnlρ=0 (7)

For Mathematical simplicity, let us introduce the following dimensionless notations:

ε=2μEnla2,   ηi=2μVi2α2,  i=1,2,3,4,    γ=l(l+1) (8)

To solve Eq. (6), we propose the physical wave function as:

Rnl(ρ)=ρβ(1-ρ)δf(ρ), (9)

where

β=14+116+(η1+η4+γ)4 (10)

and

δ=14+116+(η3+η2)4. (11)

On substitution of Eq. (9) into Eq. (7) leads to the following hypergeometric equation:

ρ1-ρf´´ ρ+2β+12-2β+2δ+1ρf´ρ-β+δ2-ε+η3+η4-γd04fρ=0 (12)

whose solutions are the hypergeometric functions

f(ρ)=2F1(a,b;c;ρ), (13)

where

a=(β+δ)-ε+η3+η4-γd02,b=(β+δ)+ε+η3+η4-γd02,c=2β+12. (14)

By considering the finiteness of the solutions, the quantum condition is given by

(β+δ)-ε+η3+η4-γd02=-nn=0,1,2... (15)

from which we obtain, the energy expression as

ε=γd0-η3-η3+144n+2+1+4η3+η2+1+4(η1+η4+γ)2 (16)

Thus, if one substitutes the value of the dimensionless parameters in Eq. (8) into Eq. (16), we obtain the energy eigenvalues as:

Enl=2α2l(l+1)d02μ-V3-V42α28μ×4n+2+1+8μV32α2+8μV42α2+8μV12α2+8μV42α2+2l+122 (17)

The corresponding unnormalized wave function is obtained as

Rnlρ=Nnlρβ1-ρδ2F1×-n,n+2β+δ,2β+12,ρ (18)

where Nnl is the normalization constant. Nnl can be calculated by the normalization conditions of the wave function:

0|Rnl(r)|2dr=1, (19)

Putting Eq. (18) into the Eq. (19) yields

|Nnl(r)|2αIn=1, (20)

where

In=01ρ2β-(1/2)1-ρ2δ-(1/2)×2F1-n,n+2β+2δ,12+2β,ρ2dρ. (21)

The integral I n is calculated for different n values using the Mathematica software program for Re[β]>-(1/4) and Re[δ]>-(1/4) as follows:

n=0I0=Γ12+2βΓ12+2β2(β+δ)Γ2β+2β,n=1I1=2Γ32+2βΓ32+2δ1+4β2β+δ+1Γ2β+2β+1,  n=2I2=16Γ52+2βΓ52+2β1+4β23+4β2β+δ+2Γ2β+2δ+2,  n=3I3=192Γ72+2βΓ72+2β1+4β23+4β25+4β2β+δ+3Γ2β+2δ+3, n=mIm=m!4m-1Γm+12+2βΓm+72+2δΓm+2βΓ4β2β+δ+mΓ2β+2δ+mΓ2βΓ2m+4β2 (22)

Hence, we find

Nnl=αβ+δ+nΓ2β+2δ+nΓ2βΓ2n+4β2n!24n-1Γn+12+2βΓn+72+2δΓn+2βΓ4β21/2 (23)

By using Eqs. (23) and (18) one can plot the radial wave functions for arbitrary quantum states through the Mathematica software program.

3.Thermal Properties of generalized trigonometric Pöschl-Teller potential

We consider the contribution of the bound state to the vibrational partition function at a given temperature T 58,60

Z(β)=n=0nmaxe-βEnl,β=1kBT. (24)

Here, kB is the Boltzmann constant, and Enl is the rotational-Vibrational energy of the nth bound state.

We can rewrite Eq. (17) to be of the form

Enl=σ1+2α28μ(4n+σ2)2, (25)

where

σ1=2α2ll+1d02μ-V3-V4; σ2=2+1+8μV32α2+8μV22α2+8μV12α2+8μV42α2+2l+12 (26)

We substitute Eq. (25) into Eq. (24) to have

Z(β)=n=0nmaxe-β[σ1+(2α2/8μ)(4n+σ2)2] (27)

where

nmax=σ24. (28)

Replacing the sum in Eq.(27) by an integral in the classical limit, we obtain

Z(β)=0nmaxe-β(An2+Bn+C)dn, (29)

where

A=22α2μ;B=2α2σ2μ;C=2α2σ228μ. (30)

Therefore, we use the mathematica software to evaluate the integral in Eq. (29), thus obtaining the partition function for generalized trigonometric Pöschl-Teller potential model.

Zβ=πe(βB2/4A)Erfβ2Anmax+B2βA-ErfβB2βAe-βC2βA (31)

The imaginary error function can be defined as 62

erfi(z)=ierf(z)=2π0zeu2du. (32)

Thermodynamic functions such as; free energy, entropy, internal energy, and specific heat capacity functions can be obtained from the partition function (31) as follows 20.

3.1.Helmholtz free energy

Fβ=-1β=-1βIn zβ, (33a)

Fβ=IneβB24A-βCπErfβ(2Anmax+B)2βA-ErfβB2βA2βAβ (33b)

3.2.Entropy

Sβ=-kBFββ, (34a)

Sβ=0-1+2+32-ErfBB2A+EfrβB+2Anmax2A (34b)

where

0=IneβB24A-βCπEfrβ2Anmax+B2βA-EfrβB2βA2βA, 1=EfrBβ2A-EfrβB+2Anmax2A, 2=2B24A-Cβ-EfrBβ2A+EfrβB+2Anmax2A,3=e-βB+2Anmax2/2AβB-BeβnmaxB+Anmax+2AnmaxAπ (34c)

3.3.Internal energy

Uβ=-(InZ(β))β (35a)

Uβ=18A3/2β3/2e-βC+nmaxB+Anmax2/4Aπ-B2β+A2+4Cβ×-ErfBB2A+ErfβB+2Anmax2A-2Aβ(B-BeβnmaxB+Anmax+2Anmax) (35b)

3.4.Specific heat capacity

Cu=kβU(β)β, (36a)

Cv=132A5/2eB2β/4A-CβH0+2Ae-βB+2Anmax2/4AH1+H2 (36b)

H0=π12A2+4A-B2+4ACβ+B2-4AC2β2EfrBB2A-EfrβB+2Anmax2Aβ (36c)

H1=Beβnmax(B+Anmax)B2β-2A3+4Cβ,

H2=B+2Anmax-B2β+A6+8Cβ+4AβnmaxB+Anmax

4.Superstatistics mechanics

In this section, we introduce the necessary conditions of superstatistics. The effective Boltzmann factor of the system can be written as 73,74

B(E)=0e-β'Ef(β',β)dβ', (37)

where

f(β',β)=δ(β'-β), (38a)

is the probability density. Besides we state here the modified form of Dirac delta function used in this study as 75:

fβ´,β=a´δβ´-β+b´β´β´δβ´-β+c´β´22β´2δβ´-β (38b)

Finally, we find the generalized Boltzmann factor as in Ref. 75

BE=e-βE1+q2β2E2 (39)

where 𝑞 is the deformation parameter. Details of Eq. (39) can be found in Appendix A of Ref. 75 and references therein.

The partition function for the modified Dirac delta distribution has the following form 75:

ZS=0B(E)dn. (40)

We substitute Eq. (25) into Eq. (40) to have

ZS=0e-βσ1+2α2/8μ4n+σ22×1+q2β2σ1+2α28μ4n+σ222dn (41)

Therefore, we use Mathematica software to evaluate the integral in Eq. (41), thus obtaining the partition function with generalized trigonometric Pöschl-Tellerpotential model in superstatistics as follows:

Zqβ=e-βσ1+λσ22eβλσ22π8+3q+4qβσ11+βσ1-βλξσ2+4qβλ3/2σ3264βλ (42a)

where

ξ=-6q-8qβσ1+eβλσ22πErf[βλσ2]βλσ2. (42b)

Other thermodynamic functions such as Helmholtz free energy, FS(β), entropy, SS(β), internal energy, US(β), and specific heat, CS(β), functions can be obtained from the partition function (42a) as follows:

4.1.Helmholtz free energy

The Helmholtz free energy is obtained in superstatistics formalism with the aid of Eq. (33a) as follows:

Fqβ=1βIn164βλe-βσ1+λσ22N0-βλ-6q-8qβσ1+N1σ2+4qβλ3/2σ32 (43a)

where

N0=e-βλσ22π8+2q+4qβσ11+βσ1, N1=e-βλσ22πEfrβλσ28+3q+4qβσ11+βσ1βλσ2 (43b)

4.2.Entropy

The entropy is obtained in superstatistics formalism with the aid of Eq. (34a) as follows:

Sq(β)=Ω0+Ω1+Ω2-Ω3+Ω4(2(Ω5+Ω6)) (44a)

where

Ω0=In164βλe-βσ1+λσ22eβλσ22π8+3q+4qβσ1-βλ-6q-8qβσ1+N1σ2+4qβλ3/2σ23,

Ω1=eβλσ22π8+3qβλ-βλErfβλσ2+8eβλσ22πqβ3βλ-βλErfβλσ2σ12,

Ω2=28+3qβλβλσ2+4qβ3/2λ3/2βλσ23+8qβ5/2λ5/2βλσ25,

Ω3=4qβ2σ12eβλσ22πβλ-βλErfβλσ2-6βλβλσ2,

Ω4=2βσ1eβλσ22π8+qβλ-βλErfβλσ2-2qβλβλσ2+12qβ3/2λ3/2βλσ23,

Ω5=eβλσ22π8+3qβλ-βλEfrβλσ2+4eβλσ22πqβ2βλ-βλEfrβλσ2σ12,

Ω6=6qβλβλσ2+4qβ3/2λ3/2βλσ23+4qβσ1eβλσ22πβλ-βλEfrβλσ2+2βλβλσ2 (44b)

4.3.Internal energy

The internal energy is obtained in superstatistics formalism with the aid of Eq. (35a) as follows:

Uqβ=1128βλ3/2e-βσ1+λσ22βλ3/2eβλσ22π8+3qβλ-βλEfrβλσ2+8eβλσ22πqβ3βλ-βλEfrβλσ2σ13-4qβ2σ12eβλσ22πβλ-βλEfrβλσ2-6βλβλσ22βλβλσ28+3q+2qβλσ221+2βσ22+2βσ1eβλσ22π8+qβλ-βλEfrβλσ2+2qβλβλσ21+6βλσ22 (45)

4.4.Specific heat capacity

The specific heat is obtained in superstatistics formalism with the aid of Eq. (36a) as follows:

Cq=1256βλ3/2e-βσ1+λσ22βλΞ0-Ξ1-68+3qβλβλσ2-48+3qβ32λ32βλσ23+8qβ52λ52βλσ25-Ξ2-Ξ3-Ξ4 (46a)

where

Ξ0=-3eβλσ22π8+3qβλ-βλEfrβλσ2,

Ξ1=16eβλσ22πqβ4βλ-βλEfrβλσ2σ14,

Ξ2=16qβ7/2λ7/2βλσ27+32qβ3σ13eβλσ22πβλ-βλEfrβλσ2-2βλβλσ2,

Ξ3=8βσ1eβλσ22π4+qβλ-βλEfrβλσ2-6βλβλσ2+12qβ3/2λ3/2βλσ23

Ξ4=8βσ1eβλσ22π4+qβλ-βλEfrβλσ2+24+qβλβλσ2-4qβ32λ32βλσ23+8qβ5/2λ5/2βλσ25 (46b)

5.Numerical results and applications

To show the accuracy of our work, we calculate the energy eigenvalues using Eq. (18) for different quantum numbers n and l with parameters V1=5fm-1, V2=3fm-1, V3=0.5, V4=0.5, and μ=10fm-1. In Table I, it is observed that the energy decreases for a fixed value of the principal quantum number for varying orbital angular momentum. Furthermore, we have computed the energy eigenvalues of the trigonometric Pöschl-Teller potential using the reduced energy equation given in Eq. (33) and Eq.(34) as a special case. Our results, shown in Tables II- V,, are in good agreement with the results given in Ref. 56-57,76.

Table I Bound state energy levels Enf for the Generalised trigonometric Pöschl-Teller potential obtained with parameters V1 = 5 f m−1, V2 = 3 f m−1, V3 = 0.5, V4 = 0.5, and µ = 10 f m−1 

States α = 0.002 α = 0.02 α = 0.2 α = 0.4 α = 0.8 α = 1.2
1s 18.50038334 18.61121709 19.73743352 21.0271324 23.72899708 26.59648864
2s 18.50858178 18.69348948 20.58899614 22.79449204 27.52159072 32.67406160
2p 18.50858258 18.69357133 20.59752395 22.83011829 27.67609429 33.04821322
3s 18.51678180 18.77592188 21.45655875 24.62585164 31.57018435 39.32763454
3p 18.51678262 18.77600388 21.46523908 24.66269723 31.73441612 39.73447216
3d 18.51678425 18.77616788 21.48259499 24.73630368 32.06125854 40.53875474
4s 18.52498345 18.85851426 22.34012135 26.52121126 35.87477799 46.55720749
4p 18.52498425 18.85859642 22.34895421 26.55927615 36.04873794 46.99673112
4d 18.52498588 18.85876072 22.36661499 26.63531596 36.39487055 47.86516178
4f 18.52498834 18.85900721 22.39309395 26.7491527 36.90974960 49.14313806

Table II Comparison of s-wave energy eigenvalues (in eV) obtained by using the Functional Analysis Approachwith other methods for the trigonometric Pöschl-Teller potential with other methods obtained with parameters V1 = 5 f m−1, V2 = 3 f m−1, and µ = 10 f m−1

n Present AIM [64] NU [56] Present AIM [64] NU [56] Present AIM [64] NU [56]
α= 0:2 α= 0:2 α= 0:02 α= 0:02 α= 0:002 α= 0:002
0 16.10494172 16.104 941 73 16.104 941 72 15.78149898 15.781 498 98 15.781 498 98 15.7495163 15.749 516 29 15.749 516 29
1 16.83082621 16.830 826 21 16.830 826 21 15.8526429 15.852 642 89 15.852 642 89 15.75661628 15.756 616 28 15.756 616 28
2 17.5727107 17.572 710 70 17.572 710 70 15.9239468 15.923 946 80 15.923 946 80 15.76371788 15.763 717 86 15.763 717 86
3 18.33059519 18.330 595 18 18.330 595 18 15.99541072 15.995 410 71 15.995 410 71 15.77082105 15.770 821 05 15.770 821 05
4 19.10447968 19.104 479 67 19.104 479 67 16.06703462 16.067 034 63 16.067 034 63 15.77792584 15.777 925 84 15.777 925 84
5 19.89436415 19.894 364 16 19.894 364 16 16.13881855 16.138 818 54 16.138 818 54 15.78503222 15.785 032 22 15.785 032 22
6 20.70024864 20.700 248 64 20.700 248 64 16.21076245 16.210 762 45 16.210 762 45 15.79214021 15.792 140 21 15.792 140 21

Table III Comparison of s-wave energy eigenvalues (in eV) obtained by using the Functional Analysis Approach with other methods for the trigonometric Pöschl-Teller potential with other methods obtained with parameters V1 = 5 f m−1, V2 = 3 f m−1, and µ = 10 f m−1

n Present NU [56] α = 1.2 Present NU [56] α = 0.8 Present NU [56] α = 0.4
0 18.02560022 18.02560022 17.23163309 17.23163309 16.47211972 16.47211973
1 22.87051711 22.8705171 20.32991862 20.32991862 17.95616358 17.95616357
2 28.29143400 28.29143398 23.68420415 23.68420415 19.50420741 19.50420742
3 34.28835088 34.28835086 27.29448969 27.2944896 21.11625128 21.11625126
4 40.86126776 40.86126774 31.16077521 31.16077522 22.79229512 22.7922951
5 48.01018464 48.01018462 35.28306075 35.28306074 24.53233896 24.53233894
6 55.73510152 55.7351015 39.66134628 39.66134628 26.33638282 26.33638278

Table IV Comparison of l-state energy eigenvalues (in eV) obtained by using the Functional Analysis Approach with other methods for the trigonometric Pöschl-Teller potential with other methods obtained with parameters V1 = 5 f m−1, V2 = 3 f m−1, and µ = 10 f m−1

States Present NU [57] α = 1.2 Present NU [57] α = 0.8 Present NU [57] α = 0.4 Present
1s 22.87051711 22.87051710 20.32991862 20.32991862 17.95616358 17.95616357 16.83082621
2s 28.29143400 28.29143398 23.68420415 23.68420415 19.50420741 19.50420742 17.57271070
2p 28.64395420 28.64395419 23.82847893 23.82847894 19.53712285 19.53712286 17.58054181
3s 34.28835088 34.28835086 27.29448969 27.2944896 21.11625128 21.11625126 18.33059519
3p 34.67512504 34.67512504 27.44896379 27.44896381 21.15044541 21.15044543 18.33858624
3d 35.43921159 35.43921159 27.75631555 27.75631556 21.21875332 21.2187533 18.35456400
4s 40.86126776 40.86126774 31.16077521 31.16077522 22.79229512 22.7922951 19.10447968
4p 41.28229588 41.28229584 31.32544867 31.32544868 22.82776799 22.8277680 19.11263069
4d 42.11348591 42.11348590 31.65300784 31.65300783 22.89862722 22.89862721 19.12892818
4f 43.33519178 43.33519178 32.14003976 32.14003977 23.00470172 23.00470171 19.15336296

Table V Comparison of l-state energy eigenvalues (in eV) obtained by using the Functional Analysis Approach with other methods for the trigonometric Pöschl-Teller potential with other methods obtained with parameters V1 = 5 f m−1, V2 = 3 f m−1, and µ = 10 f m−1

States Present NU [57] α = 0.2 Present NU [57] α = 0.02 Present NU [57] α = 0.002
1s 16.83082621 16.83082621 15.8526429 15.85264289 15.75661628 15.75661628
2s 17.5727107 17.5727107 15.9239468 15.9239468 15.76371788 15.76371786
2p 17.58054181 17.58054181 15.92402152 15.92402153 15.76371861 15.76371860
3s 18.33059519 18.33059518 15.99541072 15.99541071 15.77082105 15.77082105
3p 18.33858624 18.33858626 15.99548559 15.9954856 15.77082179 15.77082179
3d 18.35456400 18.35456399 15.99563535 15.99563534 15.77082329 15.77082328
4s 19.10447968 19.10447967 16.06703462 16.06703463 15.77792584 15.77792584
4p 19.11263069 19.1126307 16.06710967 16.06710967 15.77792658 15.77792658
4d 19.12892818 19.12892817 16.06725975 16.06725974 15.77792808 15.77792806
4f 19.15336296 19.15336297 16.06748486 16.06748485 15.77793030 15.77793030

In Fig. 1a) and b), we plot the shape of the potential for clarity and understanding of the system we are studying. Figure 1a) we plot the shape of the generalized trigonometric Pöschl-Tellerpotential against the interatomic distance. Figure 1b) shows a comparative plot of the shapes of the trigonometric Pöschl-Tellerpotential model and generalized trigonometric Pöschl-Tellerpotential. However, we note that our generalized model fits appropriately with the trigonometric Pöschl-Tellerpotential.

Figure 1 a) Shape of the generalized trigonometric Pöschl- Tellerpotential for different values of the screening parameter a. We chose V1 = 5 f m-1 , V2 = 3 f m-1 , V3 = 2 f m-1 , and V4 = 0:5 f m-1 . b) Shape of the trigonometric Pöschl-Tellerpotential model and generalized trigonometric Pöschl-Tellerpotential. We chose V1 = 5 f m-1 , V2 = 3 f m-1 , V3 = 2 f m-1 , V4 = 0:5 f m-1 , and a = 0:3. 

Figures 2 a)-f) clearly shows the energy eigenvalues variation with parameters V1, V2, V3, V4, μ and α for various quantum states. It can be easily observed from these Figs. 2a)-d) that the parameters increase directly as the energy increases. Figure 2e) shows the energy eigenvalues variation with the particle’s reduced mass μ for different quantum states. It is seen that in the region μ0-0.1a.m.u, the energy eigenvalue is at its maximum, beyond this region, there is a drop and this continues in a linear trend. The energy is only high in the region where the mass is low but decreases as the particle’s mass increases monotonically. The energy is very similar for 0.2<μ<1.0. Figure 2f) shows the energy eigenvalues variation with screening parameter α for different quantum states. It can be seen explicitly that in all the quantum states, the representation curves spreads out uniformly from the origin. It is shown that the energy eigenvalue increases as the screening parameter increases.

Figure 2 Energy eigenvalues variation with (a) parameter for various quantum states (b) parameter for various quantum states. (c) with parameter for various quantum states. (d) with parameter for various quantum states (e) with particle’s mass for various quantum states. (f) with screening parameter for quantum states. 

In Figs. 3a)-e), we show a graphical representation of the thermal properties obtained via the standard Boltzmann-Gibbs statistical mechanical approach. We analyze how these properties vary with β for different discrete values of nmax. Figure 3(a) shows the partition function variation with β for various values of nmax. It can be seen that the partition function decreases as the temperature increases. It is also shown that in the high temperature limits, there’s a uniform convergence of all the curves and the partition function reaches its minimum. Figure 3(b) shows the mean free energy variation with β for different values of nmax. Again, it is seen that the free energy reduces monotonically with β. Figure 3(c) shows the entropy variation with β for different values of nmax. It is seen that the entropy declines as temperature increases. Figure 3(d) shows the mean energy variation with β for various values of nmax. The mean energy decreases as β increases. It is also observed that the mean energy has its minimum in the high β region. Figure 3(e) clearly shows the specific heat capacity variation with β for different values of nmax. An asymmetric shaped formed for increasing value of nmax. At nmax = 300, its trough is reached and heat capacity monotonically growth with β. We see that at some point in β, the values of nmax might become invariant.

In Fig 4(a-e), we graphically display the thermal properties obtained via the standard Boltzmann-Gibbs statistical mechanical approach. We analyze how these properties vary with nmax for different values of β. Figure 4a) clearly shows the Partition Function variation with nmax for various values of β. From this plot, we observe that there is spread from the zero point; the partition function increases as nmax increases. It is also observed that the partition function has its maximum in the high region of nmax. Figure 4b) clearly shows the free energy variation with 𝑛 max for different values of β. It is clearly shown that the mean free energy rises logarithmically as nmax rises. Figure 4c) shows a plot of entropy variation with different values of β. It is seen that the entropy up-surges monotonically with nmax. Figure 4d) displays the plot of mean energy variation with nmax for different values of β. The mean energy surges in an linear-monotonic pattern. Figure 4e) presents the plot of specific heat capacity variation with nmax nmax for different values of β. As predicted in Fig. 3e), it clearly shows for the different values of β, at some point in nmax, heat capacity becomes invariant. We can deduce that for the values of nmax, specific heat and β is invariant.

Figure 4 a) Partition Function variation with nmax for various values of β. b) Free energy variation with nmax for different values of β. c) Entropy variation with nmax for different values of β. d) Mean energy variation with nmax for different values of β. e) Specific heat capacity variation with nmax for different values of β. 

In Fig 5(a-e), we show graphically the thermal properties obtained via the superstatistical mechanical approach. We analyze how these properties vary with β for different values of the deformation parameter q. Figure 5a) shows a plot of the partition function variation with β for various values of q. It is seen that the partition function decreases as β increases. More so, the partition function increases as q increases. Figure 5b) shows the variation of mean free energy with β for various values of q . The mean free energy decreases monotonically as β increases. A plot of entropy variation with β for different values of q is shown in Fig. 5c). The entropy of the system reduces as β rises. For different values of the deformation parameter, q, the entropy of the system increases with increasing 𝑞. Figure 5d) shows the variation of the mean energy with β for various values of q. The mean energy decreases with increasing β and increases with increasing q. Figure 5e) depicts a plot of specific heat capacity variation with β for different values of q. It is seen explicitly that the specific heat capacity of the system increases monotonically with increasing β but decreases with increasing q.

Figure 5 Superstatistics plots of: a) Partition Function variation with β for various values of q. b) Free energy variation with β for different values of q. c) Entropy variation with β for different values of q. d) Mean energy variation with β for different values of q. e) Specific heat capacity variation with β for different values of q. 

It is interesting to note also that when q = 0, normal statistics or the conventional Boltzmann-Gibbs statistics is recovered from the superstatistics. However, to further strengthen this claim. We show a graphical comparative plot in Figs. 6a)-e) of all thermal properties obtained via the superstatistics at q = 0 and B-G statistics at maximum quantum number. It is interesting to see that there’s no discernable difference in the curves as they’re both adequately fitted.

Figure 6 Comparison of superstatistics at q = 0 and normal statistics; a) Partition Function variation with β. b) Free energy variation with β. c) Entropy variation with β. d) Mean energy variation with β. e) Specific heat capacity variation with ¯. 

The shape of the radial wave functions is shown in Fig. 7 for 2p, 3d, and 4f quantum states. If we examine the shapes of Fig. 7 carefully, we see that the wave functions have different number of radial nodes and different amplitudes.

Figure 7 Variation of the bound states radial wave functions according to distance from nucleus r for different quantum states with V1 = 5 f m-1 , V2 = 3 f m-1 , V3 = 0:5 f m-1 , V4 = 0:5 f m-1 , a = 0:2, and μ = 10 f m-1

6.Special Cases

In this section, we shall study one special case of the Generalized Trigonometric Pöschl-Teller potential and its energy eigenvalues, respectively

6.1.Trigonometric Pöschl-Teller potential

Choosing V3 = V4 = 0, the Generalized Trigonometric Pöschl-Tellerpotential takes 76,56

V(r)=V1sin2(αr)+V2cos2(αr), (47)

and the energy eigenvalue becomes

Enl=2α2ll+1d02μ+2α28μ4n+2+1+8μV22α2+8μV12α2+2l+122 (48)

This is in excellent agreement with Eq. (3) of Ref. 76 and Eq. (19) of Ref. 57.

By setting l, we obtain the s-wave energy equation for the potential understudy as:

En0=2α28μ[4n+2+1+8μV22α2+8μV12α2+1]2. (49)

This is in excellent agreement with Eq. (15) of Ref. 56.

7.Conclusion

In this article, we have solved the Schrödinger equation using the Functional Analysis Approach and suitable approximation to overcome the centrifugal barrier. We have also presented the rotational-vibrational energy spectra with the Generalized Trigonometric Pöschl-Teller potential. We have expressed the solutions by the generalized hypergeometric functions 2F1(a,b,cp). Results have been discussed extensively using plots. We discussed some special cases by adjusting the potential parameters and compute the numerical energy spectra for the trigonometric Pöschl-Teller potential for both the l=0 and l0 cases, respectively. It was found that our results agree with the existing literature. In detail, we evaluated the vibrational partition functions Z(β), which we used to study the thermodynamics properties of vibrational mean energy U(β), vibrational entropy S(β), vibrational mean free energy F(β) and vibrational specific heat capacity C(β). Besides, the effective Boltzmann factor is calculated by using superstatistics, and the results is compared with the case where the deformation parameter vanished. It is noted that the results, in the special case of the vanished deformation parameter, are in agreement with the ordinary statistics. Finally, this study has many applications in different areas of physics, and chemistry such as atomic physics, molecular physics and chemistry amongst others.

References

1. S. Dong, G. H. Sun, B. J. Falaye and S. H. Dong, Semi-exact solutions to position-dependent mass Schrödinger problem with a class of hyperbolic potential V0tanh(ax). Eur. Phys. J. Plus 131 (2016) 176. https://doi.org/10.1140/epjp/i2016-16176-5 [ Links ]

2. A. N. Ikot et al., Superstatistics of Schrödinger equation with pseudo-harmonic potential in external magnetic and Aharanov-Bohm fields, Heliyon 6 (2020) e03738. https://doi.org/10.1016/j.heliyon.2020.e03738 [ Links ]

3. S. Dong, G. H. Sun, and S. H. Dong, Arbitrary l-Wave Solutions of the Schrödinger Equation For The Screen Coulomb Potential, Int. J. Mod Phys E. 22 (2013) 1350036. https://doi.org/10.1142/S0218301313500365 [ Links ]

4. A.N. Ikot et al., Bound state solutions of the Schrödinger equation with energy dependent molecular Kratzer potential via asymptotic iteration method, Eclet. Quim. J. 45 (2020) 65. https://doi.org/10.26850/1678-4618eqj.v45.1.p65-76 [ Links ]

5. H. Louis et al., Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and Coulomb-Like Tensor Interaction Using Nikiforov-Uvarov Method, Intl. J. Chem. 10 (2018) 99. https://doi.org/10.5539/ijc.v10n3p99 [ Links ]

6. C.O. Edet, U.S. Okorie, A.T. Ngiangia and A.N. Ikot, Bound state solutions of the Schrödinger equation for the modified Kratzer potential plus screened Coulomb potential, Ind. J. Phys. 94 (2019) 425. https://doi.org/10.1007/s12648-019-01467-x [ Links ]

7. C. O. Edet, K. O. Okorie, H. Louis and N. A. Nzeata-Ibe, Any l-state solutions of the Schrödinger equation interacting with Hellmann-Kratzer potential model, Indian J Phys 94 (2020) 243. https://doi.org/10.1007/s12648-019-01477-9 [ Links ]

8. C. S. Jia, P. Guo and X. L. Peng, Exact solution of the Dirac-Eckart problem with spin and pseudospin symmetry J. Phys. A: Math. Gen. 39 (2006) 7737. https://doi.org/10.1088/0305-4470/39/24/010 [ Links ]

9. A. N. Ikot, S. Zarrinkamar, B. H. Yazarloo, and H. Hassanabadi, Relativistic symmetries of Deng-Fan and Eckart potentials with Coulomb-like and Yukawa-like tensor interactions. Chin. Phys. B 23 (2014) 100306. https://doi.org/10.1088/1674-1056/23/10/100306 [ Links ]

10. B. J. Falaye, Any l-state solutions of the Eckart potential via asymptotic iteration method. Centr. Eur. J. Phys. 10 (2012) 960. https://doi.org/10.2478/s11534-012-0047-6 [ Links ]

11. H. Louis et al., l-state Solutions of the Relativistic and Non-Relativistic Wave Equations for Modified Hylleraas-Hulthen Potential Using the Nikiforov-Uvarov Quantum Formalism, Oriental J. Phys. Sci. 3 (2018) 1. http://www.orientjphysicalsciences.org/Links ]

12. W. A. Yahya, B. J. Falaye, O. J. Oluwadare and K. J. Oyewumi, Solutions of The Dirac Equation With The Shifted Deng-Fan Potential Including Yukawa-Like Tensor Interaction, Intl. J. of Mod. Phys E 22 (2013) 1350062. https://doi.org/10.1142/S0218301313500626 [ Links ]

13. K. J. Oyewumi, B. J. Falaye, C. A. Onate, O. J. Oluwadare and W. A. Yahya, Thermodynamic properties and the approximate solutions of the Schrödingerequation with the shifted Deng-Fan potential model, Mol. Phys, 112 (2014) 127. https://doi.org/10.1080/00268976.2013.804960 [ Links ]

14. H. Boukabcha, M. Hachama and A. Diaf, Ro-vibrational energies of the shifted Deng-Fan oscillator potential with Feynman path integral formalism. Appl. Math. Comput. 321 (2018) 12. https://doi.org/10.1016/j.amc.2017.10.044 [ Links ]

15. R. Khordad and B. Mirhosseini, Application of Tietz potential to study optical properties of spherical quantum dots. Pramana J. Phys. 85 (2015) 723. https://doi.org/10.1007/s12043-014-0906-3 [ Links ]

16. H. Nikoofard, E. Maghsoodi, S. Zarrinkamar, M. Farhadi, and H. Hassanabadi, The nonrelativistic molecular Tietz potential, Turk J Phys 37 (2013) 74. https://doi.org/10.3906/fiz-1207-1 [ Links ]

17. G. J. Rampho, A. N. Ikot, C. O. Edet, and U. S. Okorie, Energy spectra and thermal properties of diatomic molecules in the presence of magnetic and AB fields with improved Kratzer potential, Mol. Phys, (2020) https://doi.org/10.1080/00268976.2020.1821922 [ Links ]

18. C. O. Edet, P. O. Okoi, A. S. Yusuf, P. O. Ushie and P. O. Amadi, Bound state solutions of the generalized shifted Hulthe’n potential, Indian J. Phys. (2019) https://doi.org/10.1007/s12648-019-01650-0 [ Links ]

19. R. L. Greene, C. Aldrich, Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14 (1976) 2363. https://doi.org/10.1103/PhysRevA.14.2363 [ Links ]

20. A. N. Ikot, C. O. Edet, P. O. Amadi, U. S. Okorie, G. J. Rampho, and H. Y. Abdullah, Thermodynamic properties of Aharanov-Bohm (AB) and magnetic fields with screened Kratzer potential, Eur. Phys. J. D 74 (2020) 159, https://doi.org/10.1140/epjd/e2020-10084-9 [ Links ]

21. H. Fakhri and J. Sadeghi, Supersymmetry Approaches to The Bound States of The Generalized Woods-Saxon Potential. Mod Phys Lett A, 19 (2004) 615. https://doi.org/10.1142/S0217732304013313 [ Links ]

22. C. N. Isonguyo, I. B. Okon, A. N. Ikot, and H. Hassanabadi, Solution of Klein Gordon Equation for Some Diatomic Molecules with New Generalized Morse-like Potential Using SUSYQM, Bull. Kor. Chem. Soc. 35 (2014) 3443. https://doi.org/10.5012/bkcs.2014.35.12.3443 [ Links ]

23. A. Arai, J. Math. Exactly solvable supersymmetric quantum mechanics, Anal. Appl., 158 (1991) 63. https://doi.org/10.1016/0022-247X(91)90267-4 [ Links ]

24. A. N. Ikot, B. H. Yazarloo, E. Maghsoodi, S. Zarrinkamar, and H. Hassanabadi, Effects of tensors coupling to Dirac equation with shifted Hulthen potential via SUSYQM, J. Assoc. Arab Uni. Basic Appl. Sci., 18 (2015) 46. https://doi.org/10.1016/j.jaubas.2014.03.005 [ Links ]

25. C. O. Edet, P. O. Okoi, and S. O. Chima, Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential, Rev. Bras. Ens. Fis. 42 (2019) e20190083. https://doi.org/10.1590/1806-9126-RBEF-2019-0083 [ Links ]

26. P. O. Okoi, C. O. Edet and T. O. Magu, Relativistic treatment of the Hellmann-generalized Morse potential, Rev. Mex. Fis. 66 (2020) 1, https://doi.org/10.31349/RevMexFis.66.1 [ Links ]

27. C. O. Edet and P. O. Okoi, Any l-state solutions of the Schrödinger equation for q-deformed Hulthen plus generalized inverse quadratic Yukawa potential in arbitrary dimensions Rev. Mex. Fis. 65 (2019) 333. https://doi.org/10.31349/RevMexFis.65.333 [ Links ]

28. B. J. Falaye, Arbitrary 𝑙-State Solutions of the Hyperbolical Potential by the Asymptotic Iteration Method, Few-Body Syst. 53 (2012) 557. https://doi.org/10.1007/s00601-012-0440-0 [ Links ]

29. H. Çiftçi, R. L. Hall, and N. Saad, Asymptotic iteration method for eigenvalue problems, J. Phys. A Math Gen. 36 (2003) 11807. https://stacks.iop.org/JPhysA/36/11807Links ]

30. H. Çiftçi, R. L. Hall, and N. Saad, Perturbation theory in a framework of iteration methods, Phys. Lett. A 340 (2005) 388. https://doi.org/10.1016/j.physleta.2005.04.030 [ Links ]

31. F. Chafa, A. Chouchaoui, M. Hachemane, and F. Z. Ighezou, The quasi-exactly solvable potentials method applied to the three-body problem. Ann. Phys. 322 (2007) 1034. https://doi.org/10.1016/j.aop.2006.07.007 [ Links ]

32. A. N. Ikot, L. E. Akpabio and A. D. Antia, Path Integral of Time-Dependent Modified Caldirola-Kanai Oscillator. Arab. J. Sci. Eng. 37 (2012) 217. https://dx.doi.org/10.1007/s13369-011-0160-7 [ Links ]

33. A. Diaf and A. Chouchaoui, l-states of the Manning-Rosen potential with an improved approximate scheme and Feynman path integral formalism. Phys. Scr. 84 (2011) 015004. https://doi.org/10.1088/0031-8949/84/01/015004 [ Links ]

34. A. Khodja, F. Benamira, and L. Guechi, Path integral discussion of the improved Tietz potential. J. Math. Phys. 59 (2018) 042108. https://doi.org/10.1063/1.5022285 [ Links ]

35. C. O. Edet, U. S. Okorie, G. Osobonye, A. N. Ikot, G. J. Rampho and R. Sever, Thermal properties of Deng-Fan-Eckart potential model using Poisson summation approach, J. Math. Chem. 58 (2020) 989. https://doi.org/10.1007/s10910-020-01107-4 [ Links ]

36. U. S. Okorie, A. N. Ikot, C. O. Edet, I. O. Akpan, R. Sever and R. Rampho, Solutions of the Klein Gordon equation with generalized hyperbolic potential in D-dimensions, J. Phys. Commun. 3 (2019) 095015. https://doi.org/10.1088/2399-6528/ab42c6 [ Links ]

37. B. J. Falaye, S. M. Ikhdair, and M. Hamzavi, Formula Method for Bound State Problems. Few-Body Syst 56 (2015) 63. https://doi.org/10.1007/s00601-014-0937-9 [ Links ]

38. B. I. Ita, H. Louis, O. U. Akakuru, N. A. Nzeata-Ibe, A. I. Ikeuba, T. O. Magu, P. I. Amos and C. O. Edet, Approximate Solution to the SchrödingerEquation with Manning-Rosen plus a Class of Yukawa Potential via WKBJ Approximation Method, Bulg. J. Phys. 45 (2018) 323. https://www.bjp-bg.com/paper1.php?id=914Links ]

39. X. Y. Gu, S. H. Dong, and Z. Q. Ma, Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties. J. Phys. A: Math. Theor. 42 (2009) 035303. https://doi.org/10.1007/s10910-011-9931-3 [ Links ]

40. S.M. Ikhdair and J. Abu-Hasna, Quantization rule solution to the Hulthén potential in arbitrary dimension with a new approximate scheme for the centrifugal term. Phys. Scr. 83 (2011) 025002. https://doi.org/10.1088/0031-8949/83/02/025002 [ Links ]

41. B. J. Falaye, S. M. Ikhdair and M. Hamzavi, Shifted Tietz-Wei oscillator for simulating the atomic interaction in diatomic molecules. J. Theor. Appl. Phys. 9 (2015) 151. https://doi.org/10.1007/s40094-015-0173-9 [ Links ]

42. S.H. Dong, D. Morales, and J. Garcia-Ravelo, Exact Quantization Rule and Its Applications to Physical Potentials. Int. J. Mod. Phys. E, 16 (2007) 189. https://doi.org/10.1142/S0218301307005661 [ Links ]

43. W. C. Qiang and S. H. Dong, Proper quantization rule. Europhys. Lett. 89 (2010) 10003. https://doi.org/10.1209/0295-5075/89/10003 [ Links ]

44. B.J. Falaye, S.M. Ikhdair, and M. Hamzavi, Spectroscopic study of some diatomic molecules via the proper quantization rule. J Math Chem 53 (2015) 1325. https://doi.org/10.1007/s10910-015-0491-9 [ Links ]

45. S. H. Dong and M. Cruz-Irisson, Energy spectrum for a modified Rosen-Morse potential solved by proper quantization rule and its thermodynamic properties. J. Math. Chem. 50 (2012) 881. https://doi.org/10.1007/s10910-011-9931-3 [ Links ]

46. O. J. Oluwadare, and K. J. Oyewumi, Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential. Eur. Phys. J. Plus 133 (2018) 422. https://doi.org/10.1140/epjp/i2018-12210-0 [ Links ]

47. X. Y. Gu and S. H. Dong, Energy spectrum of the Manning-Rosen potential including centrifugal term solved by exact and proper quantization rules. J. Math. Chem. 49 (2011) 2053. https://doi.org/10.1007/s10910-011-9877-5 [ Links ]

48. F. A. Serrano, X. Y. Gu, and S. H. Dong, Qiang-Dong proper quantization rule and its applications to exactly solvable quantum systems. J. Math. Phys. 51 (2010) 082103. https://doi.org/10.1063/1.3466802 [ Links ]

49. M. Hamzavi and A. A. Rajabi, Solution of Dirac equation with Killingbeck potential by using wave function ansatz method under spin symmetry limit. Commun. Theor. Phys. 55 (2011) 35. https://doi.org/10.1088/0253-6102/55/1/07 [ Links ]

50. G. Pöschl and E. Teller, Bemerkungen zur Quantenmechanik des anharmonischen Oszillators. Z. Phys. 83 (1933) 143. https://doi.org/10.1007/BF01331132 [ Links ]

51. X. W. Liu, G. F. Wei, X. W. Cao, and H. G. Bai, Spin Symmetry for Dirac Equation with the Trigonometric Pöschl-Teller Potential, Int. J. Theor. Phys. 49 (2010) 343. https://doi.org/10.1007/s10773-009-0207-7 [ Links ]

52. B. J. Falaye and S. M. Ikhdair, Relativistic symmetries with the trigonometric Pöschl-Teller potential plus Coulomb-like tensor interaction, Chin. Phys. B, 22 (2013) 060305, https://doi.org/10.1088/1674-1056/22/6/060305 [ Links ]

53. M. Hamzavi, A. A. Rajabi, and M. Amirfakhrian, Approximate Solution of the Spin-0 Particle Subject to the Trigonometric Pöschl-Teller Potential with Centrifugal Barrier. Z. Naturforsch. 68a (2013) 524. https://doi.org/10.5560/ZNA.2013-0030 [ Links ]

54. N. Candemir Spin and Pseudospin, Symmetries in Relativistic Trigonometric Pöschl-Teller Potential with Centrifugal Barrier. Intl J. Mod Phys E 21 (2012) 1250097. https://doi.org/10.1142/S0218301312500978 [ Links ]

55. M. Hamzavi and A. A. Rajabi, Spin and Pseudospin Symmetries with Trigonometric Pöschl-Teller Potential including Tensor Coupling. Adv. High Energy Phys 2013 (2013) 196986, http://dx.doi.org/10.1155/2013/196986 [ Links ]

56. M. Hamzavi and A.A. Rajabi, Exact S-wave solution of the trigonometric Pöschl-Teller potential, Int. J. Quant. Chem. 112 (2012) 1592. https://doi.org/10.1002/qua.23166 [ Links ]

57. M. Hamzavi and S. M. Ikhdair, Approximate l-state solution of the trigonometric Pöschl-Teller potential. Mol. Phys 110 (2012) 3031. https://doi.org/10.1080/00268976.2012.695029 [ Links ]

58. A. N. Ikot, E. O. Chukwuocha, M. C. Onyeaju, C. A. Onate, B. I. Ita. and M. E. Udoh, Thermodynamics properties of diatomic molecules with general molecular potential, Pramana. J. Phys. 90 (2018) 22. https://doi.org/10.1007/s12043-017-1510-0 [ Links ]

59. U. S. Okorie, C. O. Edet, A. N. Ikot, G. J. Rampho and R. Sever, Thermodynamic functions for diatomic molecules with modified Kratzer plus screened Coulomb potential. Ind. J. Phys. (2020). https://doi.org/10.1007/s12648-019-01670-w [ Links ]

60. A. N. Ikot et al., Exact and Poisson summation thermodynamic properties for diatomic molecules with shifted Tietz potential, (2019). Indian J. Phys, https://doi.org/10.1007/s12648-019-01375-0 [ Links ]

61. G. Herzberg, Molecular spectra and molecular structure II, Infared and Raman spectra of polyatomic molecules (Van Nostrand, New York, 1945). [ Links ]

62. A. N. Ikot, B. C. Lutfuoglu, M. I. Ngwueke, M. E. Udoh, S. Zare and H. Hassanabadi, Klein-Gordon equation particles in exponential-type molecule potentials and their thermodynamic properties in D dimensions, Eur. Phys. J. Plus 131 (2016) 419. https://doi.org/10.1140/epjp/i2016-16419-5 [ Links ]

63. H. J. Korsch, A new semiclassical expansion of the thermodynamic partition function, J. Phys. A: Math. Gen. 12 (1979) 1521. https://doi.org/10.1088/0305-4470/12/9/019 [ Links ]

64. G. Wilk and Z. Wlodarczyk, Interpretation of the Nonextensivity Parameter q in Some Applications of Tsallis Statistics and Lévy Distributions, Phys. Rev. Lett. 84 (2000) 2770. https://doi.org/10.1103/PhysRevLett.84.2770 [ Links ]

65. H. Touchette and C. Beck, Asymptotics of superstatistics Phys. Rev. E 71 (2005) 016131. https://doi.org/10.1103/PhysRevE.71.016131 [ Links ]

66. C. Beck and E. G. D. Cohen, Superstatistics, Physica A 322 (2003) 267. https://doi.org/10.1016/S0378-4371(03)00019-0 [ Links ]

67. D. Bonatsos and C. Daskaloyannis, Quantum Groups in Nuclear Spectra and in Metal Clusters, Prog. Part. Nucl. Phys. 43 (1999) 537. http://dx.doi.org/10.12681/hnps.2209 [ Links ]

68. H. Hassanabadi, S. Sargolzaeipor, and W. S.Chung, Superstatistics properties of -deformed Morse potential in one dimension, Physica A, 508 (2018) 740. https://doi.org/10.1016/j.physa.2018.05.125 [ Links ]

69. S. Sargolzaeipor, H. Hassanabadi and A. Boumali, Morse potential of the q-deformed in the Duffin-Kemmer-Petiau equation, Int. J. Geom. Methods Mod. Phys. 14 (2017) 1750112. https://doi.org/10.1142/S0219887817501122 [ Links ]

70. S. Sargolzaeipor, H. Hassanabadi and W. S. Chung, The q-deformed Dirac oscillator in the presence of a magnetic field in (1+2)-dimensions in Noncommutative phase space, J. Korean Phys. Soc. 70 (2017) 557. https://doi.org/10.3938/jkps.70.557 [ Links ]

71. C. Beck, Dynamical Foundations of Nonextensive Statistical Mechanics, Phys. Rev. Lett. 87 (2001) 180601. https://doi.org/10.1103/PhysRevLett.87.180601 [ Links ]

72. C. Tsallis and A. M. C. Souza, Constructing a statistical mechanics for Beck-Cohen superstatistics, Phys. Rev. E 67 (2003) 026106. https://doi.org/10.1103/PhysRevE.67.026106 [ Links ]

73. C. Beck, Superstatistics: theory and applications. Continuum Mech. Thermodyn. 16 (2004) 293. https://doi.org/10.1007/s00161-003-0145-1 [ Links ]

74. C. Tsallis, Possible generalization of Boltzmann-Gibbs statistics, J. Stat. Phys. 52 (1988) 479. https://doi.org/10.1007/BF01016429 [ Links ]

75. S. Sargolzaeipor, H. Hassanabadi and W. S. Chung, Superstatistics of two electrons quantum dot, Mod. Phys Lett A. 34 (2018) 1950023. https://doi.org/10.1142/S0217732319500238 [ Links ]

76. B. J. Falaye, Corrigendum: Energy spectrum for trigonometric Pöschl-Teller potential solved by the asymptotic iteration method, Can. J. Phys. 91 (2013) 365. https://dx.doi.org/10.1139/cjp-2013-0011 [ Links ]

Received: August 19, 2020; Accepted: August 30, 2020

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License