SciELO - Scientific Electronic Library Online

 
vol.68 número1Nuclear adiabatic effects of electron-positron pairs on the dynamical instability of very-massive starsCorrosion resistance evaluation of boron-carbon coating on ASTM A-36 steel índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.68 no.1 México ene./feb. 2022  Epub 23-Jun-2023

https://doi.org/10.31349/revmexfis.68.011404 

Research

Other areas in Physics

A different approach for the fractional chemical model

Khaled M. Saada  * 

a Department of Mathematics, College of Arts and Sciences, Najran University, Najran, Kingdom of Saudi Arabia. Department of Mathematics, Faculty of Applied Science, Taiz University, Taiz, Yemen.


Abstract

This article analyzes and compares the two algorithms for the numerical solution of fractional isothermal chemical equations (FICEs) based on mass action kinetics for autocatalytic feedback. The chemical reaction involves the conversion of a reactant in the Liouville-Caputo sense. The first method is based on the spectral collocation method (SCM), for which properties of Legendre polynomials are utilized to reduce the FICEs to a set of algebraic equations. We then use the Newton-Raphson method (NRM) to solve the resulting set of algebraic equations. The second method is based on properties of Newton polynomial interpolation (NPI) and the fundamental theorem of fractional calculus. We utilize both methods to construct numerical solutions of FICEs. The accuracy and effectiveness of both methods are verified by calculating the absolute error with numerical solutions and good agreement is found in all cases.

Keywords: Liouville-Caputo operator; fractional isothermal chemical; Legendre polynomials; spectral collocation method; Newton polynomial interpolation; Newton-Raphson method

1. Introduction

In the past few decades, the topic of the fractional differential equations has been the attention of many studies and scientists. This is because many models related to the real world can not be modeled with classical differential equations. Therefore, the fractional differential equations can be used in simulation and modeling of many problems. For example, in electrical, electronic, mechanical, biological and other areas of application related to the real world. For more details see [1,2]. Unfortunately, it is difficult to find an exact solution for most of these models. As a result, the numerical and approximate methods have won the interest of many researchers. Using these methods, researchers were able to study and analyze the dynamic systems that govern these models. There are many such methods including He's variational iteration method [3,4], homotopy analysis [5-7], Fourier spectral methods [8], Adomian's decomposition method [9,10], collocation methods [11-13,15], finite difference schemes [16] and spectral methods [17,18]. Also, there are various other methods that have been applied to many applied models, see for example [19-22]. The model with three types of isothermal chemical reactions is an extension of the model that Scott [23] and colleagues studied. The triple model includes three types of isothermal chemical reactions which incorporate the thermal response capable of supporting complex periodic reactions as well as non-cyclical responses. The relatively stable reactant P is converted into a final product D through the chemical reaction of this model that contains three intermediate chemical species, U, V and W. These chemical reactions are

PU,rate=K0p, (1)

P+WU+W,rate=kwpw, (2)

UV,rate=kau, (3)

U+2V3V,rate=k1uv2, (4)

VW,rate=k2V, (5)

WD,rate=k3w. (6)

The governing rate equations for these reactions can be obtained by applying a mass action analysis to (1)-(6),

dpdτ=-k0p-kwpw, (7)

dudτ=k0p-kwpw-kau-k1uv2, (8)

dvdτ=kau+k1uv2-k2v, (9)

dwdτ=kau+k1uv2-k2v. (10)

In dimensionless form, these equations are

dβ1dt=-αβ1ϑ+β4, (11)

dβ2dt=β1ϑ+β4-β2β32-β2, (12)

γdβ3dt=β2β32+β2-β3, (13)

θdβ4dt=β3-β4, (14)

Where

β1=kcPk3,β2=k1kuk1212a,β3=k1k412,β4=k1k32k4k2212,

are the dimensionless concentrations of the four chemical species and t=kaτ is the dimensionless time. In addition, the dimensionless reaction rates are

ϑ=k0k3k2kck1ka12,θ=k4k3,γ=kak2,α=kwk2k3k1ka12.

The importance and novelty of this work is to establish numerical approximate formulas in order to obtain numerical solutions for the proposed model of main importance in chemical applications. These formulas enable many researchers in applied sciences to benefit from them in studying the behavior and characteristics of these systems. After studying the accuracy of these numerical methods presented in this paper, a strong correlation can be made for the numerical results as well as the laboratory results. Also, the strong impetus for this study is due to the fact that many fractional systems do not have exact solutions, so that the behavior of the solutions can be studied, and then the need to create schemes and iterative solutions is required.

In this section, we present the definitions and properties that will be used in this work, [24,25].

Definition 1. For λ > 0, and βtL1a,b, with L1(a, b) the space of all integrable functions on (a, b), then the Riemann-Liouville fractional integral of order λ, denoted by J0λ is given by

J0λβt=1Γλ0tt-χβ-1βχdχ. (15)

Definition 2. For λ> 0, the Liouville-Caputo fractional derivative of order λ, denoted by D0λLC is defined by

Dtλβt=1Γn-λ0tt-χn-λ-1Dnβχdχ,0LCn-1<λ<n;nN=1,2,3,. (16)

Replacing the derivatives d/dt in the dimensionless chemical reaction Eqs. (11)-(14) by the fractional derivatives Dtλ,0<λ1,t>0,0 we obtain the fractional isothermal chemical model in the Liouville-Caputo sense as

Dtλ0β1t=-αβ1ϑ+β4, (17)

Dtλ0β2t=β1ϑ+β4-β2β32-β2, (18)

Dtλγ0β3t=β2β32+β2-β3, (19)

θ0Dtλβ4t=β3-β4. (20)

In this paper, the numerical scheme and solutions for the fractional isothermal chemical model in the Liouville-Caputo sense are constructed in the second and third sections. For the numerical results presented in the fourth section. The conclusion is presented in the fifth section.

2. Legendre spectral collocation method

Orthogonal functions play a very important role in the development of many numerical methods to address many real-world problems, where the solutions are approximated. By converting fractional differential models into a set of algebraic equations, one of the known numerical methods is used to find an approximate solution to the resulting set of algebraic equations. By using well-known mathematical software, such as Mathematica or Matlab, we can easily find the Legendre coefficients, thereby creating numerical solutions of the fractional model presented in this paper (see [?]).

2.1. Numerical scheme and convergence analysis

We begin by defining the shifted Legendre polynomials on the interval [0,1] with the variable z = 2t - 1. These polynomials have the following property:

Gkt=Gk2t-1=G2kt,

where the set {Gk (z) : k = 0,1, 2, …} forms a family of orthogonal Legendre polynomials on the interval [-1,1] (see, for details [30]). The analytic form of the shifted Legendre polynomials of degree s is given by

G-kt=k=0s(-1)s+ks+k!k!2s-k!tkG-0t=1;G-1t=2t-1;s=2,3,4,. (21)

The function β(t)L20,1 can be expressed and approximated as a linear combination of the first (m + 1) terms of G-t, as follows:

βtβmt=i=0maiG-kt,m=1,2,3,4,, (22)

where the coefficients are given by

ai=2i+101β(t)G-ktdti=0,1, 2,.

Now, we state the following useful theorem.

Theorem 1. [31] Let β(t) be approximated by the shifted Legendre polynomials in Eq. (22). Suppose also that λ > 0. Then

Dλβt=i=λmk=λiaiHi,k(λ)tk-λ (23)

where

Hi,k(λ)=i+k!Γ(k+1)k!2i-k!Γ(k-λ+1).

2.2. Construction the LSCM

We will now implement the Legendre spectral collocation method to solve numerically the FICEs are given by (17)-(20) as follows [32]

β1,mt=k=0mβ1,kG-kt,β2,mt=k=0mβ2,kG-kt,β3,mt=k=0mβ3,kG-kt,and

β4,mt=k=0mβ4,kG-kt. (24)

Substituting these expansions into the FICEs (17)-(20) and using (23), we obtain

i=λmk=0i-λβ1,iHi,k(λ)ti-k-λ=-αk=0mβ1,iG-ktϑ+k=0mβ4,iG-kt, (25)

i=λmk=0i-λβ2,iHi,k(λ)ti-k-λ=k=0mβ1,iG-ktϑ+k=0mβ4,iG-kt-k=0mβ2,iG-ktk=0mβ3,iG-kt2-k=0mβ2,iG-kt, (26)

i=λmk=0i-λβ3,iHi,k(λ)ti-k-λ=k=0mβ2,iG-ktk=0mβ3,iG-kt2+k=0mβ2,kG-kt-k=0mβ3,iG-kt, (27)

i=λmk=0i-λβ4,iHi,k(λ)ti-k-λ=k=0mβ3,kG-kt-k=0mβ4,iG-kt. (28)

The Eqs. (25)-(28) are collocated at m nodes tp, p = 0,1,..., m - 1, as follows

i=λmk=0i-λβ1,iHi,k(λ)tpi-k-λ=-αk=0mβ1,iG-ktpϑ+k=0mβ4,iG-ktp, (29)

i=λmk=0i-λβ2,iHi,k(λ)tpi-k-λ=k=0mβ1,iG-ktpϑ+k=0mβ4,iG-ktp-k=0mβ2,iG-ktpk=0mβ3,iG-ktp2-k=0mβ2,iG-ktp, (30)

i=λmk=0i-λβ3,iHi,k(λ)tpi-k-λ=k=0mβ2,iG-ktpk=0mβ3,iG-ktp2+k=0mβ2,kG-ktp-k=0mβ3,iG-ktp, (31)

i=λmk=0i-λβ4,iHi,k(λ)tpi-k-λ=k=0mβ3,kG-ktp-k=0mβ4,iG-ktp. (32)

In addition, the associated initial conditions can be obtained by using the expansions Eqs. (24). We thus have

i=0m-1iβ1,i=β1,0, (33)

i=0m-1iβ2,i=β2,0, (34)

i=0m-1iβ3,i=β3,0, (35)

i=0m-1iβ4,i=β4,0, (36)

Finally, using the Newton-Raphson iteration method, we can solve this system of algebraic equations and get the unknowns β1,i,β2,i,β3,i,β4,i,i=0,1,,m.

3. Newton polynomial interpolation

In this section, the numerical solutions of the proposed fractional system will be investigated by establishing the iterative formulas and employing them to find the numerical solutions [33]. We apply the fundamental theorem of fractional calculus on (17)-(20) to obtain the following iterative formulas

β1t-β10=1Γ(λ)0t-αβ1(χ)ϑ+β4(χ)t-χλ-1dχ, (37)

β2t-β20=1Γ(λ)0tβ1(χ)ϑ+β4χ-β2(χ)β32(χ)-β2(χ)t-χλ-1dχ, (38)

β3t-β30=1Γ(λ)0tβ2χβ32χ+β2χ-β3(χ)t-χλ-1dχ, (39)

β4t-β40=1Γ(λ)0tβ3χ-β4χt-χλ-1dχ. (40)

These Eqs. (37)-(40) can be reformulated as

β1tn+1-β10=1Γ(λ)m=2tmtm+1-αβ1(χ)ϑ+β4(χ)tm+1-χλ-1dχ, (41)

β2tn+1-β20=1Γ(λ)m=2tmtm+1β1(χ)ϑ+β4χ-β2(χ)β32(χ)-β2(χ)tm+1-χλ-1dχ, (42)

β3tn+1-β30=1Γ(λ)m=2tmtm+1β2χβ32χ+β2χ-β3(χ)tm+1-χλ-1dχ, (43)

β4tn+1-β40=1Γ(λ)m=2tmtm+1β3χ-β4χtm-χλ-1dχ. (44)

Using Newton polynomial interpolation as in Ref. [33], we obtain

β1tn+1=β10+1Γ(λ)m=2-αβ1(tm-2)ϑ+β4(tm-2)tmtm+11tn+1-χ1-λdχ+1hΓ(λ)m=2n×-αβ1(tm-1)ϑ+β4(tm-1)--αβ1(tm-2)ϑ+β4(tm-2)tmtm+1χ-tm-2tn+1-χ1-λdχ+12h2Γ(λ)m=2n-αβ1(tm)ϑ+β4(tm)-2-αβ1(tm-1)ϑ+β4(tm-1)+-αβ1(tm-2)ϑ+β4(tm-2)tmtm+1χ-tm-2χ-tm-1tn+1-χ1-λdχ, (45)

β2tn+1=β20+1Γ(λ)m=2nβ1tm-2ϑ+β4tm-2-β2(tm-2)β32tm-2-β2(tm-2)×tmtm+11tn+1-χ1-λdχ+1hΓ(λ)m=2nβ1tm-1ϑ+β4tm-1-β2tm-1β32tm-1-β2tm-1-β1tm-2ϑ+β4tm-2-β2tm-2β32tm-2-β2tm-2tmtm+1χ-tm-2tn+1-χ1-λdχ+12h2Γ(λ)m=2nβ1tmϑ+β4tm-β2tmβ32tm-β2tm-2β1tm-1ϑ+β4tm-1-β2tm-1β32tm-1-β2tm-1+β1tm-2ϑ+β4tm-2-β2tm-2β32tm-2-β2tm-2tmtm+1χ-tm-2χ-tm-1tn+1-χ1-λdχ, (46)

β3tn+1=β30+1Γ(λ)m=2nβ2tm-2β32tm-2+β2tm-2-β3tm-2tmtm+11tn+1-χ1-λdχ+1hΓ(λ)m=2nβ2tm-1β32tm-1+β2tm-1-β3tm-1-β2tm-2β32tm-2+β2tm-2-β3tm-2tmtm+1χ-tm-2tn+1-χ1-λdχ+12h2Γ(λ)m=2nβ2tmβ32tm+β2tm-β3tm-2β2tm-1β32tm-1+β2tm-1-β3tm-1+β2tm-2β32tm-2+β2tm-2-β3tm-2tmtm+1χ-tm-2χ-tm-1tn+1-χ1-λdχ, (47)

β4tn+1=β40++1Γ(λ)m=2nβ3tm-2-β4tm-2tmtm+11tn+1-χ1-λdχ+1hΓ(λ)m=2nβ3tm-1-β4tm-1-β3tm-2-β4tm-1tmtm+1χ-tm-2tn+1-χ1-λdχ12h2Γ(λ)m=2nβ3tm-β4tm-2β3tm-1-β4tm-1+β3tm-2-β4tm-2tmtm+1χ-tm-2χ-tm-1tn+1-χ1-λdχ. (48)

The integrals in these Newton interpolation formulae are evaluated directly. The numerical solutions of (17)-(20) involving the LC derivative are then given by

β1tn+1=β10+hλΓ(1+λ)m=2n-αβ1(tm-2)ϑ+β4(tm-2)Λ1+hλΓ(2+λ)m=2n-αβ1(tm-1)ϑ+β4(tm-1)--αβ1(tm-2)ϑ+β4(tm-2)Λ2+hλ2Γ(3+λ)m=2n-αβ1(tm)ϑ+β4(tm)-2-αβ1tm-1ϑ+β4tm-1+-αβ1(tm-2)ϑ+β4(tm-2) (49)

β2tn+1=β20+hλΓ(1+λ)m=2nβ1(tm-2)ϑ+β4(tm-2)-β2tm-2β32tm-2-β2tm-2Λ1+hλΓ(2+λ)m=2nβ1tm-1ϑ+β4tm-1-β2tm-1β32tm-1-β2tm-1-β1tm-2ϑ+β4tm-2-β2tm-2β32tm-2-β2tm-2Λ2+hλ2Γ(2+λ)m=2nβ1(tm)ϑ+β4(tm)-β2tmβ32tm-β2tm-2β1tm-1ϑ+β4tm-1-β2tm-1β32tm-1-β2tm-1+β1tm-2ϑ+β4tm-2-β2tm-2β32tm-2-β2tm-2Λ3, (50)

β3tn+1=β30+hλΓ(1+λ)m=2nβ2tm-2β32tm-2+β2tm-2-β3tm-2Λ1+hλΓ(2+λ)m=2n×β2tm-1β32tm-1+β2tm-1-β3tm-1-β2tm-2β32tm-2+β2tm-2-β3tm-2Λ2+hλ2Γ(3+λ)m=2nβ2tmβ32tm+β2tm-β3tm-2β2tm-1β32tm-1+β2tm-1-β3tm-1+β2tm-2β32tm-2+β2tm-2-β3tm-2Λ3, (51)

β4tn+1=β40+hλΓ(1+λ)m=2nβ3tm-2-β4tm-2Λ1+hλΓ(2+λ)m=2nβ3tm-1-β4tm-1-β3tm-2-β4tm-2Λ2+hλ2Γ(3+λ)m=2nβ3tm-β4tm-2β3tm-1-β4tm-1+β3tm-2-β4tm-2Λ3, (52)

where

Λ1=n-m+1λ-n-mλ, (53)

Λ2=n-m+1λn-m+3+2λ-n-mλn-m+3+3λ (54)

Λ3=n-m+1λ2(n-m)2+3λ+10n-m+2λ2+9λ+12-n-mλ2n-m2+5λ+10n-m+6λ2+18λ+12. (55)

4. Numerical results and discussion

In this section, the numerical results of the FICEs will be compared through the propped methods in this work. It will be illustrated the comparison of numerical solutions through the figures and tables for different values of λ. Figures 1a)-d) show the comparison of the numerical solutions of FICEs by two proposed methods for λ = 1, m = 21, h = 0.003, L = 10, α = 0.5, ϑ = 0.1, γ = 0.05 and θ = 2. It can be seen from Fig. 1 that the two numerical solutions of FICEs agree in terms of behavior and they are close to each other. In Fig. 2, the absolute errors between the two solutions are shown for the same parameter values as in Fig. 1. It is evident from this figure that the absolute error is very small and the error between the two solutions decreases with the use of more terms in the first method and the use of more iterations in the second method. In Figs. 3 and 4 the calculations are repeated for the same values as in Figs. 1 and 2 but in this case λ = 0.8 was set. This case is very important since the goal of this work is to compare the two different methods of the numerical solutions of FICEs. Also, we notice in these figures that the numerical solutions for the two methods are very close to each other and exhibit the same behavior. Additionally, in Tables I-VIII, the numerical solutions are calculated using the two methods presented in this work, where the calculations of the absolute error in the cases of integer and noninteger order for FICEs were done. From these Tables we also note the accuracy and efficacy of numerical solutions, given the order of the absolute error, where, it ranges between 10-3 and 10-7. The numerical results obtained in this paper agree with the numerical results obtained in Ref. [35].

Figure 1 Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0-05, θ = 2, m = 21, h = 0.003, L = 10, λ = 1. 

Figure 2 Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 1. 

Figure 3 Comparison between the numerical solutions for α = 0.05, ϑ = 2, γ = 0.05, θ = 0.2, m = 21, h = 0.003, L = 10, λ = 0.8. (Blue dashed line: NPI; Red solid line: SCM). 

Figure 4 Absolute error between the numerical solutions for α = 0.5, ϑ = 2, γ = 0.05, θ = 0.2, m = 21, h = 0.003, L = 10, λ = 0.8. 

Table I Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 1. 

n β1, SCM(t) β1, NPI |β1, SCM(t)-β1, NPI(t)|
0 0.2 0.2 3.19162 × 10-18
200 0.162359 0.162662 3.03478×10-4
400 0.137154 0.137364 2.09480×10-4
600 0.119369 0.11952 1.51060×10-4
800 0.106315 0.106428 1.12920×10-4
1000 0.0964151 0.096502 8.69248×10-5
1200 0.0886838 0.0887527 6.88986×10-5
1400 0.0824808 0.0825367 5.59788×10-5
1600 0.0773756 0.0774223 4.66744×10-5
1800 0.073073 0.0731128 3.97719×10-5
2000 0.0693664 0.0694011 3.46306×10-5
2200 0.0661096 0.0661403 3.07003×10-5
2400 0.0631978 0.0632255 2.76781×10-5
2600 0.0605554 0.0605807 2.52558×10-5
2800 0.0581273 0.0581506 2.33462×10-5
3000 0.0558729 0.0558947 2.17804×10-5

Table II Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 1. 

n Β2, SCM(t) Β2, NPI |β2, SCM(t)-β2, NPI(t)|
0 0.1 0.1 6.64074 × 10-19
200 0.104424 0.104521 9.68429 × 10-5
400 0.0891975 0.0893786 1.81056 × 10-4
600 0.0710369 0.0712117 1.74852 × 10-4
800 0.0550999 0.0552427 1.42801 × 10-4
1000 0.0424772 0.0425876 1.1044 × 10-4
1200 0.0329242 0.0330062 8.20209 × 10-4
1400 0.0258433 0.025904 6.07221 × 10-4
1600 0.02064 0.0206844 4.44039 × 10-5
1800 0.0168194 0.0168521 3.26876 × 10-5
2000 0.014003 0.0140272 2.42145 × 10-5
2200 0.0119112 0.0119292 1.80192 × 10-5
2400 0.0103409 0.0103545 1.36329 × 10-5
2600 0.00914671 0.00915729 1.05799 × 10-5
2800 0.00822487 0.00823305 8.1831 × 10-6
3000 0.00750075 0.00750716 6.41186 × 10-6

Table III Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 1. 

n Β3, SCM(t) Β3, NPI |β3, SCM(t)-β3, NPI(t)|
0 0.08 0.08 6.93889 × 10-18
200 0.106587 0.106335 2.51509 × 10-4
400 0.0915829 0.0915039 7.90304 × 10-5
600 0.0724219 0.0729348 5.12911 × 10-4
800 0.0566815 0.0565243 1.57174 × 10-4
1000 0.0431098 0.0435182 4.08387 × 10-4
1200 0.033895 0.0336778 2.17171 × 10-4
1400 0.0260243 0.026389 3.64716 × 10-4
1600 0.0212759 0.0210359 2.3997 × 10-4
1800 0.0168213 0.0171086 2.87229 × 10-4
2000 0.0144162 0.014216 2.00189 × 10-4
2200 0.0118207 0.0120696 2.48862 × 10-4
2400 0.0107311 0.0104603 2.7080 × 10-4
2600 0.00881768 0.00923811 420430 × 10-4
2800 0.00813945 0.00829586 1.56405 × 10-4
3000 0.00759008 0.00755687 3.32133 × 10-5

Table IV Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 1. 

n Β4, SCM(t) Β4, NPI |β4, SCM(t)-β4, NPI(t)|
0 0.6 0.6 7.24247 × 10-17
200 0.459588 0.460777 1.18848 × 10-3
400 0.357414 0.358309 8.94975 × 10-4
600 0.279207 0.279887 6.80213 × 10-4
800 0.218143 0.218691 5.47852 × 10-4
1000 0.17028 0.170696 4.15683 × 10-4
1200 0.132766 0.133105 3.38834 × 10-4
1400 0.103528 0.103778 2.49804 × 10-4
1600 0.0807937 0.0810007 2.06965 × 10-4
1800 0.063239 0.0633866 1.47547 × 10-4
2000 0.0496907 0.0498149 1.2425 × 10-4
2200 0.0393028 0.0393879 8.50452 × 10-5
2400 0.0313156 0.0313926 7.6974 × 10-5
2600 0.0252256 0.0252684 4.27996 × 10-5
2800 0.0205407 0.0205778 3.70776 × 10-5
3000 0.0169492 0.0169816 3.24183 × 10-5

Table V Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 0.8. 

n Β1, SCM(t) Β1, NPI |β1, SCM(t)-β1, NPI(t)|
0 0.2 0.2 6.071532×10-18
200 0.159387 0.159618 2.30538×10-4
400 0.140645 0.140746 1.00463×10-4
600 0.128397 0.128448 5.08711×10-5
800 0.119538 0.119614 7.53509×10-5
1000 0.112869 0.112891 2.21489×10-5
1200 0.107517 0.107565 4.81515×10-5
1400 0.103194 0.103212 1.81214×10-5
1600 0.0995369 0.0995646 2.77116×10-5
1800 0.0964235 0.0964438 2.03372×10-5
2000 0.093711 0.0937263 1.52962×10-5
2200 0.0913054 0.091324 1.85645×10-5
2400 0.0891566 0.0891726 1.59665×10-5
2600 0.0872193 0.0872242 4.89773×10-6
2800 0.0854236 0.0854423 1.86806×10-5
3000 0.0837683 0.0837989 3.06043×10-5

Table VI Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 0.8. 

n Β2, SCM(t) Β2, NPI |β2, SCM(t)-β2, NPI(t)|
0 0.1 0.1 2.168404 × 10-18
200 0.100177 0.10021 3.34464 × 10-5
400 0.0862051 0.0862899 8.48489 × 10-5
600 0.0734054 0.0735147 1.09363 × 10-5
800 0.0630386 0.0630745 3.59705 × 10-5
1000 0.0546495 0.0547271 7.75792 × 10-5
1200 0.0480308 0.0480499 1.91111 × 10-5
1400 0.0426172 0.0426683 5.1118 × 10-5
1600 0.0382718 0.0382874 1.56726 × 10-5
1800 0.0346542 0.0346832 2.90497 × 10-5
2000 0.0316701 0.0316866 1.64846 × 10-5
2200 0.029152 0.0291699 1.7855 × 10-5
2400 0.0270286 0.0270359 7.23923 × 10-6
2600 0.0251817 0.02521 2.82558 × 10-5
2800 0.0236307 0.0236344 3.72900 × 10-6
3000 0.0222676 0.0222641 3.52774 × 10-6

Table VII Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 0.8. 

n Β3, SCM(t) Β3, NPI |β3, SCM(t)-β3, NPI(t)|
0 0.08 0.08 3.469447 × 10-18
200 0.102461 0.101539 9.22728 × 10-4
400 0.088632 0.0878293 8.02756 × 10-4
600 0.0737625 0.0748701 1.10762 × 10-3
800 0.0650606 0.0642195 8.41055 × 10-4
1000 0.0547668 0.0556929 926154 × 10-4
1200 0.0497238 0.0488716 8.52278 × 10-4
1400 0.0424371 0.0433749 9.37781 × 10-4
1600 0.0397346 0.0389017 8.32905 × 10-4
1800 0.0344243 0.0352226 7.9836 × 10-4
2000 0.0328434 0.0321648 6.78616 × 10-4
2200 0.0288634 0.0295975 7.34043 × 10-4
2400 0.0282892 0.0274212 8.68008 × 10-4
2600 0.0243502 0.0255596 1.20941 × 10-3
2800 0.0234221 0.0239537 5.31656 × 10-4
3000 0.0237056 0.0225574 1.14814 × 10-3

Table VIII Absolute error between the numerical solutions for α = 0.5, ϑ = 0.1, γ = 0.05, θ = 2, m = 21, h = 0.003, L = 10, λ = 0.8. 

n Β4, SCM(t) Β4, NPI |β4, SCM(t)-β4, NPI(t)|
0 0.6 0.6 7.806256×10-18
200 0.445779 0.446702 922925×10-4
400 0.365854 0.366332 4.77962×10-4
600 0.309166 0.309406 2.39652×10-4
800 0.265732 0.2661 3.68341×10-4
1000 0.231844 0.231963 1.18446×10-4
1200 0.204193 0.204444 2.51442×10-4
1400 0.181822 0.181901 7.94219×10-4
1600 0.163035 0.163197 1.61688×10-4
1800 0.147437 0.147512 7.43729×10-5
2000 0.134137 0.134236 9.88674×10-5
2200 0.122846 0.122905 5.93385×10-5
2400 0.113066 0.113162 9.57111×10-5
2600 0.104737 0.104725 1.24414×10-5
2800 0.0973151 0.0973716 5.65149×10-5
3000 0.0907919 0.0909248 1.32908×10-4

5. Conclusion

In this paper, two numerical methods are presented to evaluate the numerical solutions of the fractional isothermal chemical equations. The first method is based on the use of the properties of Legrendre polynomials and collocation method, whereas the second method is constructed with Newton polynomial interpolation and the fundamental theorem of fractional calculus. These two methods are employed to find numerical solutions of the fractional isothermal chemical equations. The numerical solutions were compared by combining the solutions together, as well as calculating the amount of absolute error between the numerical solutions. We found a good compatibility and a very small error order. In future works, we will focus on the use of Newton interpolating polynomial, several special functions (Chebyshev, Bernstein, etc), and the spectral collocation method, besides studying the effects of the fractal-fractional order on the dynamics of isothermal chemical equations. We will also repeat all the above discussions and calculations via to the new operators with nonsingular kernels (see [36-41]).

References

1. R. Caponetto and G. Dongola and L. Fortuna and I. PetráS, Fractional order systems: modeling and control applications, (World Scientific, 2010). [ Links ]

2. C. A. Monje, Y. Chen, B. M. Vinagre, D. Xue, and V. Feliu-Batlle, Fractional-order Systems and Controls: Fundamentals and Applications (Springer Science and Business Media, 2010), https://doi.org/10.1007/978-1-84996-335-0. [ Links ]

3. J. H. He, Variational iteration method-a kind of nonlinear analytical technique: some examples, Int. J. Non-Linear Mech. 34 (1999) 699. https://doi.org/10.1016/S0020-7462(98)00048-1. [ Links ]

4. K. M. Saad, E. H. F Al-Sharif, Analytical study for time and time-space fractional Burgers equation, Advances in Difference Equations, 2017 (2017) 300. https://doi.org/10.1186/s13662-017-1358-0. [ Links ]

5. K. M. Saad, E. H. Al-Shareef, M. S. Mohamed, X. J. Yang, Optimal q-homotopy analysis method for time-space fractional gas dynamics equation, The European Physical Journal Plus, 132 (2018) 23. https://doi.org/10.1140/epjp/i2017-11303-6. [ Links ]

6. S.-J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004) 499. https://doi.org/10.1016/S0096-3003(02)00790-7. [ Links ]

7. K. M. Saad, E. H. F AL-Shareef, A. K. Alomari, D. Baleanu, J. F. Gmez-Aguilar, On exact solutions for timefractional Korteweg-de Vries and Korteweg-de Vries-Burgers equations using homotopy analysis transform method, Chinese Journal of Physics 63 (2020) 149. https://doi.org/10.1016/j.cjph.2019.11.004. [ Links ]

8. A. Bueno-Orovio, D. Kay, K. Burrage, Fourier spectral methods for fractional-in-space reaction-diffusion equations, Bit Numer Math, 54 (2014) 937. https://doi.org/10.1007/s10543-014-0484-2. [ Links ]

9. X.-C. Shi, L.-L. Huang, Y. Zeng, Fast Adomian decomposition method for the Cauchy problem of the time-fractional reaction diffusion equation, Adv. Mech. Eng. 8 (2016) 1. https://doi.org/10.1177/1687814016629898. [ Links ]

10. H. M. Srivastava, and K. M. Saad, New approximate solution of the time-fractional Nagumo equation involving fractional integrals without singular kernel, Appl. Math. Inf. Sci, 14 (2020) 1, http://dx.doi.org/10.18576/amis/140101. [ Links ]

11. Y. Cenesiz, Y. Keskin, A. Kurnaz, The solution of the Bagley-Torvik equation with the generalized Taylor collocation method, J. Franklin Inst. 347 (2010) 452. https://doi.org/10.1016/j.jfranklin.2009.10.007. [ Links ]

12. M. M. Khader, K. M. Saad, D. Baleanu, and S. Kumar, A spectral collocation method for fractional chemical clock reactions, Computational and Applied Mathematics, 39 (2020) 324. https://doi.org/10.1007/s40314-020-01377-3. [ Links ]

13. H. M. Srivastava, K. M. Saad, and M. M. Khader, An efficient spectral collocation method for the dynamic simulation of the fractional epidemiological model of the Ebola virus, Chaos, Solitons & Fractals, 140 (2020) 110174. https://doi.org/10.1016/j.chaos.2020.110174. [ Links ]

14. M. M. Khader and K. M. Saad, A numerical approach for solving the problem of biological invasion (fractional Fisher equation) using Chebyshev spectral collocation method, Chaos Solitons & Fractals 110 (2018) 169, https://doi.org/10.1016/j.chaos.2018.03.018. [ Links ]

15. M. M. Khader, K. M. Saad, and Z. Hammouch, A spectral collocation method for solving fractional KdV and KdV-Burgers equations with non-singular kernel derivatives, Applied Numerical Mathematics, 161 (2021) 137, https://doi.org/10.1016/j.apnum.2020.10.024. [ Links ]

16. Y. Takeuchi, Y. Yoshimoto, and R. Suda, Second order accuracy finite difference methods for space-fractional partial differential equations, J. Comput. Appl. Math. 320 (2017) 101, https://doi.org/10.1016/j.cam.2017.01.013. [ Links ]

17. S. Kazem, S. Abbasbandy, and S. Kumar, Fractional-order Legendre functions for solving fractional-order differential equations, Applied Mathematical Modelling, 37 (2013) 5498, https://doi.org/10.1016/j.apm.2012.10.026. [ Links ]

18. M. M. Khader and K. M. Saad, On the numerical evaluation for studying the fractional KdV, KdV-Burgers and Burgers equations, The European Physical Journal Plus 133 (2018) 1, https://doi.org/10.1140/epjp/i2018-12191-x. [ Links ]

19. A. Arafa, A different approach for conformable fractional biochemical reaction-diffusion models, Appl. Math. J. Chin. Univ. 35 (2020) 452, https://doi.org/10.1007/s11766-020-3830-5. [ Links ]

20. M. Yaseen and M. M. Abbas, An efficient cubic trigonometric B-spline collocation scheme for the time-fractional telegraph equation, Appl. Math. J. Chin. Univ. 35 (2020) 359, https://doi.org/10.1007/s11766-020-3883-y. [ Links ]

21. K. Maleknejad, M. S. Dehkordi, Numerical solutions of two-dimensional nonlinear integral equations via Laguerre Wavelet method with convergence analysis, Appl. Math. J. Chin. Univ. 36 (2021) 83. https://doi.org/10.1007/s11766-021-3656-2. [ Links ]

22. O. Tasbozan, A popular reaction-diffusion model fractional Fitzhugh-Nagumo equation: analytical and numerical treatment, Appl. Math. J. Chin. Univ. , 36 (2021) 218. https://doi.org/10.1007/s11766-021-3810-x. [ Links ]

23. S. K. Scott, Transient chaos in a closed chemical system, J. Chem. Phys. 94 (1991) 1134, https://doi.org/10.1063/1.460019. [ Links ]

24. A. A. Kilbas, H. M. Srivastava, and J. J. Trujillo, Theory and Applications of Fractional Differential Equations, (Vol. 204, Elsevier, 2006). [ Links ]

25. I. Podlubny, Fractional Differential Equations, (Academic Press, New York 1993). [ Links ]

26. H. Khalil, R. A. Khan, M. H. Al-Smadi, A. A. Freihat and N. Shawagfeh, New Operational matrix for shifted Legendre polynomials and fractional differential equations with variable coefficients, Punjab Univ. J. Math. 47 (2015) 1, [ Links ]

27. F. Mohammadi and C. Cattani, A generalized fractional-order Legendre wavelet Tau method for solving fractional differential equations, J. Comput. Appl. Math. 339 (2018) 306. https://doi.org/10.1016/j.cam.2017.09.031. [ Links ]

28. F. Mohammadi and S. T. Mohyud-Din, A fractional-order Legendre collocation method for solving the Bagley-Torvik equations, Punjab Univ. J. Math. 269 (2016) 2. https://doi.org/10.1186/s13662-016-0989-x. [ Links ]

29. H. M. Srivastava, and K. M. Saad, Comparative Study of the Fractional-Order Clock Chemical Model, Mathematics 8 (2020) 1436. https://doi.org/10.3390/math8091436. [ Links ]

30. N. N. Lebedev, Special Functions and Their Applications (Translated from the Russian by R. A. Silverman), Prentice-Hall Incorporated, Englewood Cliffs, New Jersey, 1965; Dover Publications, New York, 1972. [ Links ]

31. M. M. Khader and A. S. Hendy, The approximate and exact solutions ofthe fractional-order delay differential equations using Legendre pseudo-spectral method, Internat. J. Pure Appl. Math. 74 (2012) 287. [ Links ]

32. N. H. Sweilam, A. M. Nagy, A. A. El-Sayed, Second kind shifted Chebyshev polynomials for solving space fractional order diffusion equation, Chaos, Solitons & Fractals 73 (2015) 141. https://doi.org/10.1016/j.chaos.2015.01.010. [ Links ]

33. A. Atangana, S. I. Araz, New Numerical Scheme with Newton Polynomial: Theory, Methods, and Applications, (Academic Press, 2021). [ Links ]

34. H. Safdari, Y. E. Aghdam, and J. F. Gomez-Aguilar, Shifted Chebyshev collocation of the fourth kind with convergence analysis for the space-time fractional advection-diffusion equation, Engineering with Computers, (2020) 1, https://doi.org/10.1007/s00366-020-01092-x. [ Links ]

35. K. M. Saad, Comparative study on Fractional Isothermal Chemical Model, Alexandria Engineering Journal, 60 (2021) 3265. https://doi.org/10.1016/j.aej.2021.01.037. [ Links ]

36. Huitzilín Yepez-Martinez, J. F. Gomez-Aguilar, Laplace Variational Iteration Method for Modified Fractional Derivatives with Non-singular Kernel, Journal of Applied and Computational Mechanics, 6 (2020) 684. https://doi.org/10.22055/JACM.2019.31099.1827. [ Links ]

37. C. J. Zuniga-Aguilar, J. F. Gomez-Aguilar, R. F. Escobar-Jiménez, and H. M. Romero-Ugaldec, A novel method to solve variable-order fractional delay differential equations based in lagrange interpolations, Chaos, Solitons & Fractals , 126 (2019) 266. https://doi.org/10.1016/j.chaos.2019.06.009. [ Links ]

38. V. F. Morales-Delgado, J. F. Gómez-Aguilar, K. M. Saad, M. A. Khan, and P. Agarwal, Analytic solution for oxygen diffusion from capillary to tissues involving external force effects: a fractional calculus approach, Physica A: Statistical Mechanics and its Applications, 523 (2019) 48. https://doi.org/10.1016/j.physa.2019.02.018. [ Links ]

39. H. Yépez-Martínez, J. F. Gómez-Aguilar, A new modified definition of Caputo-Fabrizio fractional-order derivative and their applications to the Multi Step Homotopy Analysis Method (MHAM), Journal of Computational and Applied Mathematics , 346 (2019) 247. https://doi.org/10.1016/j.cam.2018.07.023. [ Links ]

40. S. Abuasad, A. Yildirim, I. Hashim, S. A. Abdul Karim, and J. F. Gómez-Aguilar, Fractional multi-step differential transformed method for approximating a fractional stochastic sis epidemic model with imperfect vaccination, International journal of environmental research and public health, 16 (2019) 973. https://doi.org/10.3390/ijerph16060973. [ Links ]

41. J. E. Solís-Pérez, J. F. Gómez-Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos, Solitons & Fractals 114 (2018) 175. https://doi.org/10.1016/j.chaos.2018.06.032. [ Links ]

Received: September 10, 2021; Accepted: September 24, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License