SciELO - Scientific Electronic Library Online

 
vol.68 número2Physical and technological analysis of the AlGaN-based UVC-LED: an extended discussion focused on cubic phase as an alternative for surface disinfection índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.68 no.2 México mar./abr. 2022  Epub 27-Mar-2023

https://doi.org/10.31349/revmexfis.68.020401 

RESEARCH

ATOMIC AND MOLECULAR PHYSICS

Application of Eckart-Hellmann potential to study selected diatomic molecules using Nikiforov-Uvarov-Functional analysis method

E. P. Inyanga  b   

E. S. Williamb 

E. Omugbec 

E. P. Inyangb 

E. A. Ibangaa 

F. Ayeduna 

I. O. Akpanb 

J. E. Ntibib 

aDepartment of Physics, National Open University of Nigeria, Jabi, Abuja.

bTheoretical Physics Group, Department of Physics, University of Calabar, P.M.B 1115, Calabar, Nigeria.

cDepartment of Physics, Federal University of Petroleum Resources, Effurun, Delta State, Nigeria.


Abstract

The energy levels of the Schrödinger equation under the Eckart-Hellmann potential (EHP) energy function are studied by the Nikiforov-Uvarov-Functional Analysis (NUFA) method. We obtained the analytic solution of the energy spectra and the wave function in closed form with the help of Greene-Aldrich approximation. The numerical bound states energy for various screening parameters at different quantum states and vibrational energies of EHP for CuLi, TiH, VH, and TiC diatomic molecules were computed. Four particular cases of this potential were achieved. To test the accuracy of our results, we computed the bound states energy eigenvalues of Hellmann potential which are in excellent agreement with the report of other researchers.

Keywords: Schrödinger equation; Nikiforov-Uvarov-Functional Analysis (NUFA) method; Eckart-Hellmann potential; diatomic molecule; Greene-Aldrich approximation

1. Introduction

The analytical methods for solving bound state problems that arise in physics and their applications have received much attention over the years. The development of these methods allows one to derive the analytic eigen-solutions of the relativistic and non-relativistic wave equations which play a crucial role in interpreting the behavior of quantum mechanical systems. The frequently used analytical methods are the Nikiforov-Uvarov method (NU) [1-30], Asymptotic iterative method (AIM) [31], Laplace transformation approach [32], ansatz solution method [33], super-symmetric quantum mechanics approach (SUSYQM) [34,35], exact and proper quantization methods [36,37], the series expansion method [38-45], and the recent study via the Heun function approach has been used widely to study those soluble quantum systems which could not be solved before, such as the systems including the Mathieu potential, rigid rotor problem, sextictype problem, or the Konwent potential, to name a few [46-54].

The Schrödinger equation (SE) can be studied for different quantum-mechanical processes with the above analytical methods [55-58]. The analytical solutions to this equation with a physical potential play an important role in our understanding of the foundations of a quantum system. This is because the eigenvalues and eigenfunctions contain vital information concerning the quantum system under study [59,60]. However, the exact bound state solutions of the SE of a number of these potentials are attainable in some cases for example, Coulomb potential [61]. To obtain the approximate solutions when the arbitrary angular momentum quantum number l is not equal to zero, one can solve the SE utilizing a reasonable approximation scheme like the Pekeris or Greene and Aldrich, among others [62-67].

The Eckart potential [68], presented by Eckart in 1930, is a diatomic molecular potential model. Because of its significance in physics and chemical physics, numerous authors in have considered the bound state solutions of the wave equations for this potential; see [69-74] and references therein.

The Hellmann potential [75] has been widely utilized by numerous authors to obtain bound state solutions in atomic, nuclear and particle physics [76-79], and applications in condensed matter physics [80].

Recent studies have focused on the combination of, at least, two potentials. The essence of combining two or more physical potential models is to take into account more physical phenomena into existing investigations of molecular physics [81-85].

With this in mind, we explore the approximate bound state analytical solutions to the SE with the Eckart plus Hellmann potential using Nikiforov-Uvarov-Functional Analysis (NUFA) method. The obtained energy equation will be applied to study the energy spectra of some selected diatomic molecules. The combined potential takes the form [68,75]

V(r)=-Ae-αr1-e-αr+Be-αr(1-e-αr)2-Cr+De-αrr, (1)

where A, B, C, and D are the strength of the potential, α is the screening parameter and r is inter molecular distance.

The paper is organized as follows: In Sec. 2, a brief introduction of the NUFA method is presented. In Sec. 3 we solve the SE with the EHP to obtain the energy equation and wave function. In Sec. 4, the derived energy equation will be used to obtain the numerical computation of energy eigenvalues at different states and selected diatomic molecules. In Sec. 4, we present the results and discussion. Conclusions are given in Sec. 5.

2. Nikiforov-Uvarov-functional analysis (NUFA) method

Using the concepts of the NU, parametric NU and the functional analysis methods [1,86,87], Ikot et al. [88] proposed a simple and elegant method for solving a second order differential equation of the hypergeometric type called Nikiforov-Uvarov-Functional Analysis method (NUFA) method. This method is easy and simple. The NU method is used to solve a second-order differential equation of the form [1]

ψ''(z)+τ~(z)σψ'(z)+σ~(z)σ2(z)ψ(z)=0, (2)

where σ~(z) are σ(z) polynomials of, at most, second degree and τ~(z) is a polynomial of, at most, fist degree. Tezcan and Sever [86] latter introduced the parametric form of NU method in the form

ψ''+α1-α2zz1-α3zψ'+1z21-α3z×(-ξ1z2+ξ2z-ξ3)ψ(s)=0, (3)

where α 1 are ξ i (i = 1,2,3) are all parameters. It can be observed in Eq. (3) that the differential equation has two singularities at z → 0 and z → 1, thus we take the wave function in the form,

ψ(z)=zλ(1-z)νf(z). (4)

Substituting Eq. (4) into Eq. (3) leads to the following equation,

z1-αzf''z+(α1+2λ-[2λα3+2να3+α2]zf'(z)-α3(λ+ν+α2α3-1+α2α3-12+ξ1α3)

    ×(λ+ν+α2α32-1+α2α3-12+ξ1α32)+(α2ν-α1α3ν+ν(ν-1)α3

    ×λ(λ-1)+α1λ-ξ3z+-ξ1α3+ξ2-ξ3α3(1-α3z))f(z)=0. (5)

Equation (5) can be reduced to a Gauss hypergeometric equation if and only if the following conditions are satisfied:

λ(λ-1)+α1λ-ξ3=0, (6)

α2ν-α1α3ν+ν(ν-1)α3-ξ1α3+ξ2-ξ3=0. (7)

Thus, Eq. (5) becomes

z(1-α1z)f''(z)+(α1+2λ-[2λα3+2να3+α2]zf'(z)-α3(λ+ν+α2α3-1+[α2α3-1]2+ξ1α3)×(λ+ν+α2α32-1+[α2α3-1]2+ξ1α32)  f(z)=0. (8)

Solving Eqs. (6) and (7) gives Eqs. (9) and (10),

λ=(1-α1)2±12(1-α1)2+4ξ3, (9)

ν=(α3+α1α3-α2)±(α3+α1α3-α2)2+(ξ1α3+α3ξ3-ξ2)2. (10)

Equation (8) is the hyper geometric equation of the form,

x(1-x)f''(x)+(c+[a+b+1]x)f1(x)-abf(x)=0. (11)

Using Eqs. (4),(8) and (11), we obtain the energy equation and the corresponding wave equation, respectively, for the NUFA method as follows:

λ2+2λ(ν+α2α1-1+nα3)+ν+α2α3-1+nα32-(α2α3-1)2-ξ1α3=0, (12)

ψ(z)=Nz(1-α1)+(1-α1)+4ξ32(1-α3z)×(α3+α1α3-α2)±α3+α1α3-α22+(ξ1α3+α3ξ3-ξ2)22F1(a,b,c,z), (13)

where α, b, are c given as follows;

a=α3(λ+ν+α2α3-1+α2α3-12+ξ1α3), (14)

b=α3(λ+ν+α2α3-1-[α2α3-1]2+ξ1α3), (15)

c=α1+2λ. (16)

3. Approximate solutions of the Schrödinger equation with Eckart plus Hellmann potential

The SE takes the form [2]

d2U(r)dr2+(2μ2[Enl-V(r)]-ll+1r2)U(r)=0, (17)

where E nl is the energy eigenvalues of the quantum system, l is the angular momentum quantum number, µ is the reduced mass of the system, ħ is the reduced Planck’s constant and r is radial distance from the origin.

Equation (17) cannot be solved exactly with the proposed potential. So we introduce an approximation scheme proposed by Greene-Aldrich [62] to deal with the centrifugal barrier. This approximation is a good approximation to the centrifugal term which is valid for α ≪ 1, and it becomes

1r2α2(1-e-αr). (18)

Substituting Eqs. (1) and (18) into Eq. (17) and (19) yields

d2U(r)dr2+(2μ2[Enl-Ae-αr1-e-αr-Be-αr1-e-αr2+Cα1-e-αr-De-αr1-e-αr]+ll+1α21e-αr2)U(r)=0, (19)

which can be further simplified using the change of variables given by

x=e-αr, (20)

for which we get

d2U(r)dr2+1-xx(1-x)dU(x)dx+1x21-x2(-ε-β0-β3x2+2ε-β0+β1-β2-β3x-ε-β2+γ)U(x)=0, (21)

where

-ε=2μEnlα22,   β0=2μAα22,   β1=2μBα22,   β2=2μCα22,   β3=2μDα22,   γ=l(l+1). (22)

Upon comparing Eqs. (3) and (21), we obtain the relevant polynomials as:

α1=α2=α3=1,   ξ1=ε-β0-β3,   ξ2=2ε-β0+β1-β2-β3,        ξ3=ε-β2+γ. (23)

Inserting the polynomials given by Eq. (23) into Eqs. (9) and (10), we have

λ=4(ε-β2+γ), (24)

ν=12±1+4(γ-β1). (25)

Substituting Eqs. (22-25) into Eqs. (12), we obtain the energy equation

Enl=α22(l+l2)2μ-A-Cα-2α28μ  ([ n+12+14+2Bμα22+l+l2 ]2

×-2Aμα22+2Bμα22-2Cμα22+2Dμα2+[l+l2]n+12+14+2Bμα22+[l+l2]2) . (26)

which is in agreement with Eq. (38) of Ref. [77].

3.1. Particular case

To test for the accuracy of our results, we set some parameters in Eqs. (1) and (26) to zero and obtain four particular cases of potential and energy equation.

  1. We set A = B = 0 and obtain the Hellmann potential and its energy equation, respectively, as Vr=-Ae-αr1-e-αr+De-αr1-e-αr2.      (27)

    Enl=α22(l+l2)2μ-Cα-α228μ([n+12+14+l+l2]2-2Cμα2+2Dμα2+(l+l2)n+12+14+(l+l2))2.      (28)

  2. We set C = D = 0 and obtain the Eckart potential and its energy equation, respectively, as V(r)=-Ae-αr1-e-αr+Be-αr(1-e-αr).      (29)

    Enl=α22(l+l2)2μ-A-2α28μ([n+12++2Bμα22+l+l2]2-2Aμα22+2Bμα22+(l+l2)n+12++2Bμα22+(l+l2))2.      (30)

  3. We set A = B = D = α = 0 and obtain the Coulomb potential and its energy equation, respectively, as V(r)=-Cr,      (31)

    Enl=-μC222(n_r+l+1)2,      (32)

where n_r + l + 1 = n is the principal quantum number.

The result of Eq. (32) is consistent with the result obtained in Eq. (36) in Ref. [21].

V(r)=-De-αrr, (33)

Enl=-α22l+l22μ-2α28μ([n+12+14+(l+l2)]2+2Dμα2+(l+l2)n+12+14+l+l2)2. (34)

The result of Eq. (34) is consistent with the result obtained in Eq. (38) in Ref. [24].

The corresponding wavefunction is given as

ψ(x)=N4(ε-β2+γ)2(1-z)4(4[γ-β1])2F1(a,b,c;z), (35)

where

a=4(ε-β2+γ)+12±1+4(γ-β1)+ε-β0-β3, (36)

b=4(ε-β2+γ)+12±1+4(γ-β1)-ε-β0-β3, (37)

c=1+24(ε-β2+γ). (38)

4. Results and discussion

To test the accuracy of our results, we computed the bound states energy eigenvalues of EHP with ħ = µ = 1 using arbitrary potential parameters as presented in Table I. The results show that as the screening parameter and potential strength increase there is a decrease in energy eigenvalues at different quantum states. We apply the experimental data obtained from Ref. [89] as presented in Table II and used the conversions: 1 amu = 931.494028 MeV/c2 and ħc = 1973.29 eVÅ [91] to compute the vibrational energies of EHP for CuLi, TiH, VH, and TiC diatomic molecules using Eq. (26). The numerical computation is given in Table III. It is observed that for each vibrational quantum number, the vibrational energies increase with increase in the rotational quantum number, for each of the selected diatomic molecules. The nummerical energy eigenvalues for Hellmann potential are also computed to check for the accuracy of the NUFA method as presented in Table IV. The results are in good agreement with the earlier studies of Ref. [76] with the NU, AP, and SUSY methods of Ref. [77] and the PT method of [78].

TABLE I Bound state energy eigenvalues (eV) of the Eckart-Hellmann potential with ħ= µ =1. 

State α A =0.01, B =0.5,
C =1, D =−1
A =0.005, B =0.25,
C =2, D =−2
A =0.0025, B =0.125,
C =4, D =−4
1s 0.025 -0.5263521625 -0.3104395873 -0.3041019021
0.050 -0.5563594522 -0.3923969578 -0.6301704138
0.075 -0.5898519860 -0.4938113093 -1.081923010
0.100 -0.6266198628 -0.6127403461 -1.640204160
0.150 -0.709198628 -0.8960512898 -3.009546904
2s 0.025 -0.5278462720 -0.3134850809 -0.3064758005
0.050 -0.5622260539 -0.4015176484 -0.6147211738
0.075 -0.6021935108 -0.5081767351 -1.004551117
0.100 -0.6469257426 -0.6289588255 -1.445599734
0.150 -0.7480659625 -0.8999476994 -2.405459656
2p 0.025 -0.5257258961 -0.3097912239 -0.3031052053
0.050 -0.5538354335 -0.3895266085 -0.6221624598
0.075 -0.5841024422 -0.4863981654 -1.050909737
0.100 -0.6162307409 -0.5974170774 -1.557847309
0.150 -0.6848372934 -0.8500952692 -2.695002862
3s 0.025 -0.5298392842 -0.3168335532 -0.3091243145
0.050 -0.5696640174 -0.4113242511 -0.6050340761
0.075 -0.6173762645 -0.5240248324 -0.9557836844
0.100 -0.6713937028 -0.6488631591 -1.331376322
0.150 -0.7939098630 -0.9203977116 -2.099855330
3p 0.025 -0.5272195493 -0.3128354399 -0.3055088368
0.050 -0.5596966036 -0.3986642162 -0.6077677944
0.075 -0.5964276548 -0.5009934106 -0.9806451254
0.100 -0.6365166896 -0.6146925374 -1.388641432
0.150 -0.7238605000 -0.8612543564 -2.224098580
3d 0.025 -0.5244733721 -0.3084948329 -0.3011225088
0.050 -0.5487880544 -0.3838064758 -0.606747212
0.075 -0.5726108402 -0.4717847684 -0.9945628778
0.100 -0.5954927171 -0.5678320312 -1.419102816
0.150 -0.6365278213 -0.7672835076 -2.251887755
4s 0.025 -0.5323000579 -0.3204668349 -0.3120277371
0.050 -0.5785157811 -0.4218033616 -0.5996463159
0.075 -0.6350697965 -0.5413329210 -0.9254852509
0.100 -0.6995504645 -0.6720273560 -1.263244881
0.150 -0.8462213682 -0.9524357106 -1.935504414
4p 0.025 -0.5292122102 -0.3161831200 -0.3081839761
0.050 -0.5671318525 -0.4084922092 -0.5988699390
0.075 -0.6116097382 -0.5170512012 -0.9364831796
0.100 -0.6610134522 -0.6354309818 -1.288956165
0.150 -0.7700398596 -0.8863990934 -1.980709322

TABLE II Parameters of selected diatomic molecules used in this study [89,90]. 

Molecules μ(MeV) α-1) μ (amu)
VH 0.09203207571 1.44370 0.988005
TiH 0.09197301899 1.32408 0.987371
TiC 0.8948005221 1.52550 9.606079
CuLi 0.58306812793 1.00818 6.259494

TABLE III Bound state energy spectra Enl (eV) of the Eckart plus Hellmann potential for VH, TiH, TiC and CuLi diatomic molecules 

n l E nl (eV) of VH E nl (eV) of TiH E nl (eV) of TiC E nl (eV) of CuLi
0 0 -4.388393324 -3.995461324 -4.687262254 -3.014649864
0 1 -4.363576420 -3.976563694 -4.684013156 -3.013313002
0 2 -4.315482766 -3.939708307 -4.677541581 -3.010644546
0 3 -4.246835875 -3.886588443 -4.667899981 -3.006654929
0 4 -4.160974946 -3.819343691 -4.655165101 -3.001359541
0 5 -4.061278595 -3.740228732 -4.639435781 -2.994778429
1 0 -4.351517256 -3.974290474 -4.665595573 -3.015347165
1 1 -4.329538507 -3.957243671 -4.662501668 -3.014042854
1 2 -4.286754140 -3.923883123 -4.656337945 -3.011439114
1 3 -4.225253356 -3.875536963 -4.647151876 -3.007545617
1 4 -4.147627936 -3.813899190 -4.635012960 -3.002376632
1 5 -4.056543954 -3.740778524 -4.620010768 -2.995950756
2 0 -4.330562184 -3964109406 -4.646784709 -3.016648024
2 1 -4.310755837 -3.948515786 -4.643830791 -3.015373953
2 2 -4.272055607 -3.917910429 -4.637944814 -3.012830346
2 3 -4.216096257 -3.873352684 -4.629169881 -3.009026184
2 4 -4.144926129 -3.816204629 -4.617569118 -3.003974719
2 5 -4.060681968 -3.747937031 -4.603223944 -2.997693235
3 0 -4.32179419 -3.962583306 -4.630535913 -3.018511506
3 1 -4.303698065 -3.948159012 -4.627708751 -3.017265610
3 2 -4.268227540 -3.919778876 -4.622074329 -3.014778033
3 3 -4.216682122 -3.878299314 -4.613671886 -3.011057130
3 4 -4.150704094 -3.824829161 -4.602558928 -3.006115232
3 5 -4.072027217 -3.760577424 -4.588809670 -2.999968427
4 0 -4.322668435 -3.968078354 -4.616595736 -3.020901395
4 1 -4.305952612 -3.954615747 -4.613883777 -3.019681816
4 2 -4.273099190 -3.928071892 -4.608478018 -3.017246588
4 3 -4.225154073 -3.889146536 -4.600414287 -3.013603491
4 4 -4.163448775 -3.838751163 -4.589745102 -3.008764019
4 5 -4.089403533 -3.777888034 -4.576538290 -3.002743168
5 0 -4.331402395 -3.979423541 -4.604744582 -3.023785550
5 1 -4.315825387 -3.966767477 -4.602137686 -3.022590621
5 2 -4.285139270 -3.9051768464 -4.596940511 -3.020204428
5 3 -4.240193658 -3.905002862 -4.589185844 -3.016634230
5 4 -4.182077111 -3.857225419 -4.578921771 -3.011890752
5 5 -4.111961137 -3.799272206 -4.566210430 -3.005987997

TABLE IV Comparison of energy eigenvalues (eV) for a special case of Hellmann potential as a function of the screening parameter α with ħ = 2μ = 1 for A = B = 0, B = 2, and D = -1. 

State Present method (NU) [76] (AP) [77] (PT) [78]
1S 0.001 -2.250500250 -2.250500 - 2.248 981 - 2.249 00
0.005 -2.252506250 -2.252 506 - 2.244 993 - 2.245 01
0.01 -2.255025000 -2.255 025 - 2.240 030 - 2.240 05
2S 0.001 -0.5630010000 - 0.563 001 - 0.561 502 - 0.561 502
0.005 -0.5650250000 - 0.565 025 - 0.557 549 - 0.557 550
0.01 -0.5676000000 - 0.567 600 - 0.552 697 - 0.552 697
2P 0.001 -0.5622502500 - 0.563 000 - 0.561 502 - 0.561 502
0.005 -0.5612562500 - 0.565 000 - 0.557 541 - 0.557 541
0.01 -0.5600250000 - 0.567 500 - 0.552 664 -0.552 664
3S 0.001 -0.2505022500 - 0.250 502 - 0.249 004 - 0.249 004
0.005 -0.2525562500 - 0.252 556 -0245 110 - 0.245 111
0.01 -0.2552250000 - 0.255 225 -0.240 435 - 0.240 435
3p 0.001 -0.2501680278 -0.250 501 - 0.249 004 - 0.249 004
0.005 -0.2508673611 -0.252 531 -0.245 102 -0.245 103
0.01 -0.2518027778 -0.255 125 -0.240 404 -0:240 404
3d 0.001 -0.2495002500 -0.250 833 -0.249 003 -0.249 003
0.005 -0.2475062500 -0.254 151 -0.245 086 -0.245 086
0.01 -0.2450250000 -0.258 269 -0.240 341 -0.240 341
4S 0.001 -0.1411290000 -0.141 129 -0.139 633 -0.139 633
0.005 -0.1432250000 -0.143 225 -0.135 819 -0.135 819
0.01 -0.1460250000 -0.146 025 -0.131 380 -0.131 381
4p 0.001 -0.1409405625 -0.141 128 -0.139 632 0.139 633
0.005 -0.1422640625 -0.143 200 -0.135 811 0.135 811
0.01 -0.1440562500 -0.145 925 -0.131 350 -0.131 351
4d 0.001 -0.1405640625 -0.141 314 -0.139 632 -0.139 632
0.005 -0.1403515625 -0.144 089 -0.135 795 -0.135 796
0.01 -0.1401562500 -0.147 606 -0.131 290 -0.131 290
4f 0.001 -0.1400002500 -0.141 686 -0.139 631 -0.139 631
0.005 -0.1375062500 -0.145 902 -0.135 772 -0.135 772
0.01 -0.1344000000 -0.151 106 -0.131 200 -0.131 200

In Figs. 1-4, we plotted the ground and excited states energy eigenvalues of the different quantum states as a function of the EHP strengths, respectively. We observed that there is a decrease in energy in both the ground and excited states as the potential strength, parametrized by A, B, C, and D, increases In Fig. 5a) and 5b), we plotted the energy eigenvalues of EHP versus the screening parameter. Here, the energy increases for l = 0,1,2 and 3 in the ground states and decreases in l = 4, as the screening parameter increases. We also observed increase in energy for l = 0,1 and 2 decrease in l = 3 and 4 as the screening parameter increases in the excited states.

FIGURE 1 a) Variation of the ground state energy spectra for different values of l as a function of a and b) The plot of the first excited state energy spectra for different l as a function of α. We choose A =1, B =−1, C =4, D =−4 and α =0.025 for the ground and excited states. 

FIGURE 2 a) Variation of the ground state energy spectra for different values of l as a function of b and b) The plot of the first excited state energy spectra for various l as a function of b. We choose A = 1, B = −1, C = 4, D = −4 and α = 0.025 for the ground and excited states. 

FIGURE 3 a) Variation of the ground state energy spectra for different values of l as a function of c and b) The plot of the first excited state energy spectra for various l as a function of c. We choose A = 1, B = −1, C = 4, D = −4 and α = 0.025 for the ground and excited states. 

FIGURE 4 a) Variation of the ground state energy spectra for different values of l as a function of d and b) The plot of the first excited state energy spectra for different values of l as a function of d. We choose A =1, B =−1, C =4, D =−4 and α =0.025 for the ground and excited states. 

FIGURE 5 a) Variation of the ground state energy spectra for different values of l as a function of the screening parameter α and b) Plot of the first excited state energy spectra for different l as a function of the screening parameter α. We choose A =1, B =−1, C =4, D =−4 and α =0.025 for the ground and excited states 

5. Conclusion

In this article, the bound state solutions to the Schrödinger equation with EHP have been studied within the Greene-Aldrich approximation scheme. The eigenvalues and the eigen functions are obtained using the NUFA method. We then apply the energy equation for four diatomic molecules by using the experimental values of each molecular parameter. The results show that the bound state energy spectra of these diatomic molecules increases as various quantum numbers also increase. To test the accuracy of our results, we computed the bound states energy (eV) eigenvalues of EHP and Hellmann potential, in agreement with previous studies.

We plotted the ground and excited states energy eigenvalues of the different quantum states as a function of the EHP strengths, respectively. We observed that there is a decrease in energy in both the ground and excited states as the potential strength increases.

References

1 S.K. Nikiforov, and V.B. Uvarov. Special functions of mathematical Physics (Birkhäuser, Boston, 1988). https://doi.org/10.1007/978-1-4757-1595-8. [ Links ]

2 E.P. Inyang, E.P. Inyang, I.O. Akpan, J.E. Ntibi, and E.S. William, Masses and thermodynamic properties of a Quarkonium system, Can. J. Phys. 99 (2021) 982, https://doi.org/10.1139/cjp-2020-0578. [ Links ]

3 I.O. Akpan, E. P. Inyang, E. P. Inyang, and E. S. William, Approximate solutions of the Schrödinger equation with Hulthén-Hellmann Potentials for a Quarkonium system. Rev. Mex. Fis. 67 (2021) 482, https://doi.org/10.31349/ RevMexFis.67.482. [ Links ]

4 E. P. Inyang, E. P. Inyang, J. E. Ntibi, E.E. Ibekwe and E. S. William, Analytical study on the Applicability of Ultra Generalized Exponential Hyperbolic potential to predict the mass spectra of the Heavy Mesons, arXiv:2101.06389. [ Links ]

5 J. E. Ntibi, E. P. Inyang, E. P. Inyang and E. S. William, Relativistic Treatment of D-Dimensional Klien-Gordon equation with Yukawa potential. J. Innov. Sci. Eng. Technol. 7 (2020) 28. [ Links ]

6 M. Abu-Shady, C.O. Edet and A.N. Ikot, Non-relativistic Quark model under external magnetic and Aharanov-Bohm(AB) fields in the Presence of temperature-dependent confined Cornell potential. Can. J. Phys. 99 (2021) 1024, https://doi.org/10.1139/cjp-2020-0101. [ Links ]

7 J. A. Obu, E. S. William, I. O. Akpan, E. A. Thompson, and E. P. Inyang, Analytical Investigation of the Single-Particle Energy Spectrum in Magic Nuclei of 56Ni and 116Sn, Eur. J. Appl. Phys. 2 (2020) 1, https://doi.org/10.24018/ejphysics.2020.2.6.28. [ Links ]

8 E. S. William, E. P. Inyang, and E. A. Thompson, Arbitrary solutions of the Schrödinger equation interacting with Hulthén-Hellmann potential model. Rev. Mex. Fisi. 66 (2020) 730, https://doi.org/10.31349/RevMexFis.66.730. [ Links ]

9 C. M. Ekpo et al., New Generalized Morse-Like Potential for studying the atomic interaction in diatomic molecules. arXiv:2012.02581. [ Links ]

10 I. B. Okon et al., Thermodynamic properties and Bound state solutions of Schrödinger equation with Mobius square plus¨ screened-Kratzer potential using Nikiforov-Uvarov method, Comput. Theor. Chem. 1196 (2021) 113132, https://doi.org/10.1016/j.comptc.2020.113132. [ Links ]

11 M. Abu-Shady, N-dimensional Schrödinger equation at finite temperature using the Nikiforov-Uvarov method. J. Egypt. Math. Soc. 25 (2017) 86, https://doi.org/10.1016/j.joems.2016.06.006. [ Links ]

12 P.O. Okoi, C. O. Edet, and T. O. Magu, Relativistic treatment of the Hellmann generalized Morse potential, Rev. Mex. Fis. 66 (2020) 1, https://doi.org/10.31349/RevMexFis.66.1. [ Links ]

13 C. O. Edet, and P.O. Okoi, Any l-state solutions of the Schrödinger equation for q-deformed Hulthén plus generalized inverse quadratic Yukawa potential in arbitrary dimensions, Rev. Mex. Fis. 65 (2019) 333, https://doi.org/10.31349/RevMexFis.65.333. [ Links ]

14 E. P. Inyang, E. S. William and J.A. Obu, Eigensolutions of the N-dimensional Schrödinger equation interacting with Varshni-Hulthén potential model, Rev. Mexi. Fis. 67 (2021) 193, https://doi.org/10.31349/RevMexFis.67.193. [ Links ]

15 E. P. Inyang et al., Thermodynamic properties and mass spectra of a quarkonium system with Ultra Generalized ExponentialHyperbolic potential. Commun. Phys. Sci. 7 (2021) 97. [ Links ]

16 E.P. Inyang, B.I. Ita and E.P. Inyang, Relativistic treatment of Quantum mechanical Gravitational-Harmonic Oscillator potential. Eur. J. Appl. Phys. 3 (2021) 42, https://doi.org/10.24018/ejphysics.2021.3.3.83. [ Links ]

17 E.P. Inyang, E. P. Inyang, J.E. Ntibi, E.E. Ibekwe, and E.S. William, Analytical study on the Applicability of Ultra Generalized exponential Hyperbolic potential to predict the mass spectra of the heavy mesons, arXiv:2101.06389. [ Links ]

18 E.P. Inyang, E.P. Inyang, E. S. William and E.E. Ibekwe, Study on the applicability of Varshni potential to predict the massspectra of the Quark-Antiquark systems in a non-relativistic framework. Jord. J. Phys. 14 (2021) 339. [ Links ]

19 P. Nwabuzor et al., Analyzing the effects of Topological defect(TD) on the Energy Spectra and Thermal Properties of LiH, TiC and I2 Diatomic molecules. Entropy 23 (2021) 1060. https://doi.org/10.3390/e23081060. [ Links ]

20 E.P. Inyang, E.P. Inyang, J. E. Ntibi, E. E. Ibekwe, and E. S. William, Approximate solutions of D-dimensional KleinGordon equation with Yukawa potential via Nikiforov-Uvarov method, Ind. J. Phys. 95 (2021) 2733, https://doi.org/10.1007/s12648-020-01933-x. [ Links ]

21 C. O. Edet, U. S. Okorie, A. T. Ngiangia, and A. N. Ikot, Bound state solutions of the Schrödinger equation for¨ the modified Kratzer plus screened Coulomb potential. Ind. J. Phys. 94 (2020) 425, https://doi.org/10.1007/s12648-019-01477-9. [ Links ]

22 M. Abu-Shady, N-dimensional Schrödinger equation at finite¨ temperature using the Nikiforov-Uvarov method. Journal of Egyptian Mathematical Society 23 (2016) 4. [ Links ]

23 P.O. Okoi, C.O. Edet, and T.O. Magu, Relativistic treatment of the Hellmann generalized Morse potential. Rev. Mex. Fis. 66 (2020) 10. [ Links ]

24 C. O. Edet, P. O. Okoi, A. S. Yusuf, P. O. Oshie, and P. O. Amadi,. Bound state solutions of the generalized shifted Hulthen potential. Ind. J. Phys 95 (2021) 471, https://doi.org/10.1007/s12648-019-01650-0. [ Links ]

25 U. S. Okorie, C. O. Edet, A. N. Ikot, G. J. Rampho, and R. Sever, Thermodynamic function for diatomic molecules with modified Kratzer plus screened Coulomb potential. Ind. J. Phys. 95 (2021) 411, https://doi.org/10.1007/s12648-019-01670-w. [ Links ]

26 E. Omugbe, Non-relativistic eigensolutions of molecular and heavy quarkonia interacting potentials via the Nikiforov-Uvarov method, Can. J. Phys. 98 (2020) 1125, https://doi.org/10.1139/cjp-2020-0039. [ Links ]

27 C.O. Edet, P.O. Okoi, and S.O. Chima, Analytic solutions of the Schrödinger equation with non-central generalized inverse quadratic Yukawa potential, Rev. Bras. Ensino Fis. 42 (2020) e20190083, https://doi.org/10.1590/1806-9126-RBEF-2019-0083. [ Links ]

28 L. Hitler, B.I. Ita, T.O. Magu, O.U. Akakuru, N.A. Nzeata-Ibe, A.I. Ikeuba, A.I. Pigweh, C.O. Edet, Solutions to the Dirac Equation for Manning-Rosen Plus Shifted Deng-Fan Potential and CoulombLike Tensor Interaction Using Nikiforov-Uvarov Method. Intl. J. Chem. 10 (2018) 99, https://doi.org/10.5539/ijc.v10n3p99. [ Links ]

29 A.I. Ahmadov, C. Aydin, and O. Uzun, Bound state solution of the Schrödinger equation at finite temperature, J. Phys.: Conf. Series 1194 (2019) 012001, https://doi.org/10.1088/1742-6596/1194/1/012001. [ Links ]

30 H. Hassanabadi, E. Maghsoodi, A.N. Ikot, and S. Zarrinkamar, Approximate arbitrary-state solutions of Dirac equation for modified deformed Hylleraas and modified Eckart potentials by the NU method. Appl. Math. Comput. 219 (2013) 9388, https://doi.org/10.1016/j.amc.2013.03.011. [ Links ]

31 R. Rani, S. B. Bhardwaj, and F. Chand, Mass Spectra of Heavy and Light Mesons Using Asymptotic Iteration Method, Commu. Theo. Phys. 70 (2018) 179, https://doi.org/10.1088/0253-6102/70/2/179. [ Links ]

32 M. Abu-Shady, T. A. Abdel-Karim, and E. M. Khokha, Exact Solution of the N-dimensional Radial Schrödinger Equation via¨ Laplace Transformation Method with the Generalized Cornell Potential, arXiv:1802.02092. [ Links ]

33 S.H. Dong, The Ansatz Method for Analyzing Schrödinger’s Equation with Three Anharmonic Potentials in D Dimensions. J. Genet. Couns. 15 (2002) 385. https://doi.org/10.1023/A:1021220712636. [ Links ]

34 F. Cooper, A. Khare, and U. Sukhatme, Supersymmetry and quantum mechanics, Phys. Rep. 251 (1995) 267, https://doi.org/10.1016/0370-1573(94)00080-M. [ Links ]

35 M. Abu-Shady and A. N. Ikot, Analytic solution of multidimensional Schrödinger equation in hot and dense QCD media using the SUSYQM method. Eur. Phys. J. Plus 134 (2019) 321, https://doi.org/10.1140/epjp/i2019-12685-y. [ Links ]

36 S.H. Dong, Wave Equations in Higher Dimensions (Springer, Dordrecht, 2011), pp. 129-148, https://doi.org/10.1007/978-94-007-1917-0. [ Links ]

37 E. P. Inyang, E. P. Inyang, E. S. William, E. E. Ibekwe, and I.O. Akpan, Analytical Investigation of Meson spectrum via Exact Quantization Rule Approach, arXiv:2012.10639. [ Links ]

38 E.P. Inyang, E.P. Inyang, J.E. Ntibi, and E.S. William, Analytical solutions of Schrödinger equation with Kratzer-screened Coulomb potential for a Quarkonium system, Bull. Pure Appl. Sci. 40 (2021) 14, https://doi.org/10.5958/2320-3218.2021.00002.6. [ Links ]

39 E.P. Inyang, E.A. Ibanga, F.A iyedun, J.E. Ntibi, and E.S. William, Non-relativistic study of generalized Yukawa potential to predict the mass-spectra of heavy quarkonium system, J. Nigerian Assoc. Math. Phys. 60 (2021) 3. [ Links ]

40 M. Abu-Shady, and H.M. Fath-Allah, The effect of extended Cornell potential on heavy and heavy-light meson masses using series method. J. Found. Appl. Phys. 6 (2019) 163. [ Links ]

41 E.E. Ibekwe, T.N. Alalibo, S.O. Uduakobong, A.N. Ikot and N.Y. Abdullah, Bound state solution of radial Schrödinger equation for the quark-antiquark interaction potential. Iran. J. Sci. Technol. Trans. A 44 (2020) 1191, https://doi.org/10.1007/s40995-020-00913-4. [ Links ]

42 A. Chouikh, T. Said, and M. Bennai, Alternative Approach for Quantum Computation in a cavity QED. Quant. Phys. Lett. 6 (2017) 65, https://doi.org/10.18576/qpl/060109. [ Links ]

43 E.E. Ibekwe, U.S. Okorie, J.B. Emah, E.P. Inyang, S.A. Ekong, Mass spectrum of heavy quarkonium for screened Kratzer potential(SKP) using series expansion method, Eur. Phys. J. Plus 136 (2021) 87, https://doi.org/10.1140/epjp/s13360-021-01090-y. [ Links ]

44 E. P. Inyang, E. P. Inyang, I. O. Akpan, J. E. Ntibi, and E. S. William, Analytical solutions of the Schrödinger equation with¨ class of Yukawa potential for a quarkonium system via series expansion method, Eur. J. Appl. Phys. 2 (2020) 26, https://doi.org/10.24018/ejphysics.2020.2.6.26. [ Links ]

45 E.P. Inyang, E.P. Inyang, J. Karniliyus, J.E. Ntibi, and E.S. William, Diatomic molecules and mass spectrum of Heavy Quarkonium system with Kratzer-screened Coulomb potential(KSCP) through the solutions of the Schrödinger equation, Eur. J. Appl. Phys. 3 (2021) 61, https://doi.org/10.24018/ejphysics.2021.3.2.61. [ Links ]

46 Q. Dong, H.I.G. Hernandez, G-H. Sun, M. Toutounji and SH. Dong, Exact solutions of the harmonic oscillator plus nonpolynomial interaction, Proc. R. Soc. A 476 (2020) 20200050, https://doi.org/10.1098/rspa.2020.0050. [ Links ]

47 Q. Dong, G-H. Sun, B. He and S-H. Dong, Semi-exact solutions of sextic potential plus a centrifugal term. J. Maths. Chem. 58 (2020) 2197, https://doi.org/10.1007/s10910-020-01169-4. [ Links ]

48 C-Y. Chan, X-H Wang, Y. You, G-H. Sun and S-H. Dong, Exact solutions of the rigid rotor in the electric field. Int. J. Quan. Chem. 120 (2020) e26336, https://doi.org/10.1002/qua.26336. [ Links ]

49 G-H. Sun, C-Y. Chen, H. Taud, C. Yáñez-Marquez, and S-H. Dong, Exact solutions of the 1D Schrödinger equation with the Mathieu potential. Phys. Lett. A 134 (2020) 126480, https://doi.org/10.1016/j.physleta.2020.126480. [ Links ]

N. Cheemaa, A.R. Seadawy and S. Chen, Some new families of solitary wave solutions of the generalized Schamel equation and their applications in plasma physics. Eur. Phys. J. Plus 134 (2019) 117, https://doi.org/10.1140/epjp/i2019-12467-7. [ Links ]

51 Q. Dong et al., Exact solutions of the sine hyperbolic type potential. J. Math. Chem. 57 (2019) 1924, https://doi.org/10.1007/s10910-019-01045-w. [ Links ]

52 Q. Dong, G-H. Sun, M.A. Aoki, C-Y. Chen and S-H. Dong, Exact solutions of a quartic potential. Mod. Phys. Lett. A 34 (2019) 1950208, https://doi.org/10.1142/S0217732319502080. [ Links ]

53 Q. Dong, G-H. Sun, J. Jing and S-H. Dong, New findings for two new type sine hyperbolic potentials. Phys. Lett. A 383 (2019) 270, https://doi.org/10.1016/j.physleta.2018.10.034. [ Links ]

54 Q. Dong et al., Semi-exact solutions of Konwent potential. Commun. Theor. Phys. 71 (2019) 231, https://doi.org/10.1088/0253-6102/71/2/231. [ Links ]

55 R. Horchani et al., Energy spectra and magnetic properties of diatomic molecules in the presence of magnetic and AB fields with the inversely quadratic Yukawa potential. Eur. Phys. J. D 75 (2021) 36, https://doi.org/10.1140/epjd/s10053-021-00038-2. [ Links ]

56 K.J. Oyewumi, O.J. Oluwadare, K.D. Sen, and O.A. Babalola, Bound state solutions of the Deng Fan molecular potential with the Pekeris-type approximation using the Nikiforov-Uvarov (N-U) method. J. Math. Chem. 51 (2013) 976, https://doi.org/10.1007/s10910-012-0123-6. [ Links ]

57 C.A. Onate, M.C. Onyeaju, E. Omugbe, I.B. Okon, and O.E. Osafile, Bound state solutions and thermal properties of the modifed Tietz-Hua potential. Sci Rep 11 (2021) 2129, https://doi.org/10.1038/s41598-021-81428-9. [ Links ]

58 A. N. Ikot et al., Exact and Poisson Summation thermodynamic properties for diatomic molecules with shifted Tietz potential, Ind. J. Phys. 93 (2019) 1171, https://doi.org/10.1007/s12648-019-01375-0. [ Links ]

59 U.M. Ukewuihe et al., Approximate solutions of Schrödinger equation in D Dimensions with the modified Mobius square plus Hulthén potential. Math. Comput. Sci. 2 (2021) 1, https://doi.org/10.30511/MCS.2021.527027.1020. [ Links ]

60 S. Dong, and S.H. Dong, Schrödinger equation with a coulomb¨ field in 2+1 dimensions. Phys. Scr. 66 (2002) 342, https://doi.org/10.1238/Physica.Regular.066a00342. [ Links ]

61 C. Berkdermir, A. Berkdemir, and R. Sever, Polynomial solutions of the Schrödinger equation for the generalized Woods-Saxon potential. Phys. Rev. C 72 (2008) 027001, https://doi.org/10.1103/PhysRevC.72.027001. [ Links ]

62 R.L. Greene, and C. Aldrich , Variational wave functions for a screened Coulomb potential, Phys. Rev. A 14 (1976) 2363, https://doi.org/10.1103/PhysRevA.14.2363. [ Links ]

63 C.S. Jia, T. Chen, and L.G. Cui, Approximate analytical solutions of the Dirac equation with the generalized Pöschl-Teller potential including the pseudo-centrifugal term, Phys. Lett. A 373 (2009) 1621, https://doi.org/10.1016/j.physleta.2009.03.006. [ Links ]

64 E.L. Hill, The Theory of Vector Spherical Harmonics, Am. J. Phys. 22 (1954) 211, https://doi.org/10.1119/1.1933682. [ Links ]

65 C.L. Pekeris, The Rotation-Vibration Coupling in Diatomic Molecules. Phys. Rev. 45 (1934) 98, https://doi.org/10.1103/PhysRev.45.98. [ Links ]

66 B.H. Yazarloo, H. Hassanabadi, and S. Zarrinkamar, Oscillator strengths based on the Mobius square potential under Schrödinger equation. Eur. Phys. J. Plus 127 (2012) 51, https://doi.org/10.1140/epjp/ i2012-12051-9. [ Links ]

67 C.O. Edet and A.N. Ikot, Analysis of the impact of external fields on the energy spectra and thermo-magnetic properties of N2, I2,CO,NO and HCL diatomic molecules. Mol. Phys. 119 (2021) e1957170, https://doi.org/10.1080/00268976.2021.1957170. [ Links ]

68 C. Eckart, The penetration of a potential barrier by electrons Phys. Rev. 35 (1930) 1303, https://doi.org/10.1103/PhysRev.35.1303. [ Links ]

69 B. J. Falaye, Any l-state solutions of the Eckart potential via asymptotic iteration method Central Euro. J. Phys. 10 (2012) 960, https://doi.org/10.2478/s11534-012-0047-6. [ Links ]

70 M. Abu-Shady, Analytic solution of Dirac Equation using the Nikiforov-Uvarov method. Boson J. Mod. Phys. 1 (2015) 16. [ Links ]

71 C.O. Edet, and A.N. Ikot, Shannon information entropy in the presence of magnetic and Aharanov-Bohm (AB) fields. Eur. Phys. J. Plus 136 (2021) 432, https://doi.org/10.1140/epjp/s13360-021-01438-4. [ Links ]

72 E.P. Inyang, J.E. Ntibi, E.P. Inyang, E.S. William, and C.C. Ekechukwu, Any L-state solutions of the Schrödinger equation interacting with class of Yukawa-Eckart potentials. Int. J. Innov. Sci. Eng. Technol. 7 (2020) 42. [ Links ]

73 S.H. Dong, W.C. Qiang, G.H. Sun, and V.B. Bezerra, Analytical approximations to the l-wave solutions of the Schrödinger equation with the Eckart potential. J. Phys. A 40 (2007) 10535, https://doi.org/10.1088/1751-8113/40/34/010. [ Links ]

74 L. H. Zhang and X. P. Li, and C.S. Jia, Analytical approximation to the solution of the Dirac equation with the Eckart potential including the spin-orbit coupling term, Phys. Lett. 372 (2008) 2201, https://doi.org/10.1016/j. physleta.2007.11.022. [ Links ]

75 H. Hellmann, A New Approximation Method in the Problem of Many Electrons, J Chem Phys 3 (1935) 61, https://doi.org/10.1063/1.1749559. [ Links ]

76 C. A. Onate, J. O. Ojonubah, A. Adeoti, E. J. Eweh, and M. Ugboja, Approximate Eigen Solutions of D.K.P. and Klein-Gordon Equations with Hellmann Potential, Afr. Rev. Phys, 9 (2014) 497. [ Links ]

77 S. M. Ikhdair, and R. Sever, A perturbative treatment for the bound states of the Hellmann potential, Journal of Molecular Structure: J. Mol. Struct. 809 (2007) 113, https://doi.org/10.1016/j.theochem.2007.01.019. [ Links ]

78 M. Hamzavi, K. E. Thylwe, and A. A. Rajabi, Approximate Bound States Solution of the Hellmann Potential, Commun. Theor. Phys. 60 (2013) 1, https://doi.org/10.1088/0253-6102/60/1/01. [ Links ]

79 C. A. Onate, O. Ebomwonyi, K. O. Dopamu, J. O. Okoro, and M. O. Oluwayemi, Eigen solutions of the D-dimensional Schrödinger equation with inverse trigonometry scarf potential and Coulomb potential Chin. J. Phys, 56 (2018) 2538, https://doi.org/10.1016/j.cjph.2018.03.013. [ Links ]

80 C. O. Edet et al., Solutions of Schrödinger equation and thermal properties of generalized trigonometric Poschl-Teller potential Rev. Mex. Fis. 66 (2020) 824, https://doi.org/10.31349/RevMexFis.66.824. [ Links ]

81 C. P. Onyenegecha et al., Approximate solutions of Schrödinger¨ equation for the Hua plus modified Eckart potential with the centrifugal term Eur. Phys. J. Plus , 135 (2020) 571, https://doi.org/10.1140/epjp/s13360-020-00595-2. [ Links ]

82 B.I. Ita, Solutions of the Schrödinger equation with inversely quadratic Hellmann plus Mie-type potential using Nikiforov-Uvarov method. Int. J. Rec. Adv. Phys. 2 (2013) 25. [ Links ]

83 A.R. Sari, A. Suparmi, and C. Cari, Solution of Dirac equation for Eckart potential and trigonometric Manning Rosen potential using asymptotic iteration method Chin. Phys. B, 25 (2015) 010301, https://doi.org/10.1088/1674-1056/25/1/010301. [ Links ]

84 C.A. Onate, M.C. Onyeaju, A.N. Ikot, J.O. Idiodi, and J.O. Ojonubah, Eigen solutions,Shannon entropy and fisher information under the Eckart Manning Rosen potential J. Korean Phys. Soc. 70 (2017) 339, https://doi.org/10.3938/jkps.70.339. [ Links ]

85 N. Hatami, J. Naji, and M. Pananeh, Analytical solutions of the Klein-Gordon equation for the deformed generalized Deng-Fan potential plus deformed Eckart potential Eur. Phys. J. Plus, 134 (2019) 90, https://doi.org/10.1140/epjp/i2019-12451-3. [ Links ]

86 C. Tezcan and R. Sever, A general approach for the exact solution of the Schrödinger equation Int. J. Theor. Phys. 48 (2009) 337, https://doi.org/10.1007/s10773-008-9806-y. [ Links ]

87 S.H. Dong, Factorization Method in Quantum Mechanics, Fundamental Theories in Physics (Springer Dordrecht, 2007), https://doi.org/10.1007/978-1-4020-5796-0. [ Links ]

88 A.N. Ikot et al., The N ikiforov-Uvarov-Functional Analysis (NUFA) Method: A new approach for solving exponential-type potentials. Few-body syst. 62 (2021) 9, https://doi.org/10.1007/s00601-021-01593-5. [ Links ]

89 O. J. Oluwadere, and K. J. Oyewumi, Energy spectra and the expectation values of diatomic molecules confined by the shifted Deng-Fan potential Eur. Phys. J. Plus 133 (2018) 422, https://doi.org/10.1140/epjp/i2018-12210-0. [ Links ]

90 E.P. Inyang et al., Energy spectra and expectation values of selected diatomic molecules through the solutions of Klein-Gordon equation with Eckart-Hellmann potential model. Mol. Phys. 119 (2021) e1956615, https://doi.org/10.1080/00268976.2021.1956615. [ Links ]

91 I. B. Okon, A. D. Antia, L. E. Akpabio, and B. U. Archibong, Expectation values of some diatomic molecules with Deng-Fan potential using Hellmann Feynman theorem J. Appl Phys. Sci Intl. 10 (2018) 247. [ Links ]

Received: September 03, 2021; Accepted: September 21, 2021

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License