SciELO - Scientific Electronic Library Online

 
vol.69 número3Soft breaking of the μ ↔ τ symmetry by 𝐒 4 ⊗ 𝐙 2Optical and structural properties of graphene oxide-incorporated polyvinylpyrrolidone/copper ternary nanocomposites (PVP/Cu/GO) films índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de física

versión impresa ISSN 0035-001X

Rev. mex. fis. vol.69 no.3 México may./jun. 2023  Epub 06-Sep-2024

https://doi.org/10.31349/revmexfis.69.030803 

High Energy Physics

B-L model with D5 × Z4 symmetry for lepton mass hierarchy and mixing

V. V. Vien1 

1 Department of Physics, Tay Nguyen University, 567 Le Duan, Buon Ma Thuot, DakLak, Vietnam.


Abstract

We propose a gauge B - L model with D 5 × Z 4 for explaining the lepton mass and mixing through the type-I seesaw mechanism. The model can predict the neutrino masses and mixing angles including the Dirac and Majorana CP phases in good agreement with the experimental data. The model also predicts the effective neutrino parameters in highly consistent with the current constraints.

Keywords: Lepton mass and mixing; extensions of electroweak Higgs sector; non-standard-model neutrinos; right-handed neutrinos; discrete symmetries.

1. Introduction

In particle physics, the hierarchy of fermion masses is one of the most exciting issues [1,2]. The basically experimental results related to flavour problem including the origin of charged-lepton mass hierarchy [3], me:mμ:mτ10-4:10-1:1, and the origins of two large and one small mixing angles of neutrinos, and of two neutrino squared mass differences [4],7.50×10-5 eV2Δm212bfΔm312bf2.50×10-3 eV2.

A remarkable feature of discrete symmetries is that they can be combined with the Standard Model (SM) extensions to explain the neutrino mass and mixing data (see, for example, Refs. [5,8] and the references therein). D5 symmetry [9] has been exploited in previous works [10-12] which differ from our current worki with the following basic properties:

  1. Reference [10] based on symmetry SU(2)L×U(1)Y×U(1)X×D5×T in which the first family of left handed lepton, right handed lepton and right handed neutrino are put in 11, the second and third families of left handed leptons are put in 22 while the second and third families of right handed leptons as well as right handed neutrinos are put in 21 of D 5. As a result, up to four SU(2)L doublet scalars are needed and only the normal mass hierarchy is satisfied.

  2. Reference [11] based on symmetry SU(2)L×U(1)Y×U(1)X×D5 in which the first family of the left handed lepton is put in 11, the first family of the right handed lepton and right handed neutrino are put in 12, the two other families of left handed leptons, right handed leptons and right handed neutrinos are put in 22 of D5. Furthermore, Ref. [10] also contains a non-minimal scalar sector with up to eight SU(2)L doublets and two singlets.

  3. Reference[12] based on symmetry SU(2)L×U(1)Y×U(1)B-L×D5 in which the first family of the left-and right-handed lepton are put in 11, the first family of the right handed neutrino is put in 12, the two other families of left handed leptons and right handed neutrinos are put in 22 while the two other families of right handed leptons are put in 21 of D5. Furthermore, Ref. [12] contains up to six SU(2)L doublets and three singlets.

Thence, it is necessary to suggest another D 5-based model with fewer scalar fields and a simpler scalar potential. With such a motivation, we suggest a B - L model with D 5 symmetryii in which the first two generations of the left- and right-handed charged leptons (ψ1,2L,l1,2R) are assigned in 21 while the others (ψ3L,l3R) are in 11 of D5. Furthermore, the first and second generations of the right-handed neutrinos are put in 11 while the third one is in 12 of D5. As a consequence, only one SU(2)L doublets and six singlet scalars are needed to obtain the current neutrino mass and mixing data. As will be shown below, the considered model can also naturally explain the SM charged-lepton mass hierarchy problem.

The rest of this paper is as follows. In Sec. 2 we present the particle content of the model. Section 3 is devoted to the lepton sector. The numerical analysis is presented in Sec. 4. The conclusions are drawn in Sec. 5.

2. The model

The total symmetry of the model is Γ=GB-L×D5×Z4 with GB-L is the gauge symmetry of the B - L model [13]. The particle content of the considered model under Γ symmetry is given in Tables I and II.

Table I Lepton content of the model (i = 1, 2). 

Fields ψ iL (ψ 3L ) l iR (l 3R ) v 1R , v 2R v 3R
SU(2) L 2 1 1 1
U(1) Y -12 -1 0 0
U(1) B-L -1 -1 -1 -1
D 5 21 (11) 21 (11) 11 12
Z 4 i (1) 1 (1) -i i

Table II Scalar content of the model 

Scalars H 𝝓, 𝛗, 𝛈 ρ
SU(2) L 2 1 1
U(1) Y 12 0 0
U(1) B-L 0 0 2
D 5 11 11, 22, 21 11
Z 4 1 i, i, -1 -1

The Yukawa interactions which are invariant under Γ symmetry take the form:

-LYlep=x1Λ(ψ-iLliR)1_1(Hϕ)1_1+x2Λψ-iLliR2_2(Hφ)2_2+x3(ψ-3Ll3R)1_1H+y1Λψ-iLν1R2_1(H~η)2_1+y2Λψ-iLν2R2_1(H~η)2_1+y3Λψ-3Lν1R1_1(H~ϕ)1_1+y4Λψ-3Lν2R1_1(H~ϕ)1_1+z12ν-1Rcν1R11ρ+z22ν-2Rcν2R11ρ+z32ν-3Rcν3R11ρ+z42ν-1Rcν2R11ρ+ν-2Rcν1R11ρ+H.c. (1)

All other Yukawa terms, up to five-dimension, listed in Table III of the Appendix E are prevented by one or some of the model’s symmetries; thus, they have not been included in the expression of LYlep in Eq. (1).

The minimization condition of the Higgs potential, explicitly presented in Appendix B, provides a vacuum expectation value (VEV):

H=0  vT,ϕ=vϕ,φ=(φ1,φ2),φ1,2=vφ1,2,η=(η1,  η2),η1,2=vη1,2,ρ=vρ.   (2)

We note that, for each D 5 doublet (ϕ, η), there may be four following alignments: i) 0=Φ1Φ20, D 5 is broken into {identity}; ii) 0Φ1Φ2=0, D 5 is broken into Z 2 consisting of two elements {e, b} where a being the 2π/5 rotation and b is the reflection; iii) Φ1=Φ20, D 5 is broken into {identity}; and iv) 0Φ1Φ20, D 5 is broken into {identity}. Therefore, the VEV of 𝜑 and η in Eq. (2) will break D 5 into {identity} (i.e., discrete symmetry D 5 is completely broken).

With the help of Eqs. (24)-(30), the expressions in (18)-(22) reduce to

λH>0,λφ>0,λρ>0, (3)

20λϕvφ12-λϕφηvη12>0,    3ληvη12+10λϕφηvφ12>0. (4)

Expression (4) implies the following conditions:

λη<0,λϕ>0,  0<λϕφη6-ληλϕ,vη1<vφ1-10λϕφη/(3λη). (5)

3. Lepton mass and mixing

The lepton Yukawa terms invariant under Γ symmetry take the form:

-LYlep=x1Λ(ψ-1Ll2R+ψ-2Ll1R)(Hϕ)+x2Λψ-1Ll1RHφ2+ψ-2Ll2RHφ1+x3(ψ-3Ll3R)H+y1Λψ-1Lν1RH~η2+ψ-2Lν1RH~η1+y2Λψ-1Lν2RH~η2+ψ-2Lν2RH~η1+y3Λψ-3Lν1R(H~ϕ)+y4Λψ-3Lν2R(H~ϕ)+z12ν-1Rcν1Rρ+z22ν-2Rcν2Rρ+z32ν-3Rcν3Rρ+z42ν-1Rcν2R11ρ+ν-2Rcν1R11ρ+H.c. (6)

After symmetry breaking, the mass Lagrangian for the charged leptons can be rewritten in the form:

-Lclmass=(l-1L,l-2L,l-3L)Mcl(l1R,l2R,l3R)T+H.c, (7)

where

Mcl=ϵ2blal0albl000cl,al=x1vvϕΛ,bl=x2vvφ1Λ,cl=x3v. (8)

In general the Yukawa couplings xk (k=1,2,3) are complex, i.e., al,b1,2l,cl and therefore M cl in Eq. (8) are complex. We construct a Hermitian matrix whose real and positive eigenvalues:

Mcl2=MclMcl+=A0D0eiψ0D0e-iψB0000C0, (9)

whereiii

A0=a02+b02ϵ4,  B0=a02+b02,   C0=c02,D0=a0b01+ϵ4+2ϵ2cos2ψ, (10)

ψ=α-β,α=argal,β=argbl, (11)

ϵ=vφ2vφ1=vη2vη1. (12)

The matrix Mcl2 in Eq. (9) can be diagonalized by biunitary transform VL+Mcl2VR=diag(me2,mμ2,mτ2), whereiv

VL=VR=cθsθ.eiψ0-sθ.e-iψcθ000eiψ, (13)

me,μ2=a02+12b02ϵ4+1b0Δ,mτ2=c02, (14)

with

cθ=1Ξ+b02ϵ4-124a02b022ϵ2cψ+ϵ4+1+1, (15)

Δ=8a02ϵ2c2ψ+4a02ϵ4+1+b02ϵ4-12, (16)

Ξ=4a02b022ϵ2c2ψ+ϵ4+1+b04ϵ4-12, (17)

The left-handed charged lepton mixing matrix V L in Eq. (13) differs from unity; thus, it will contribute to the lepton mixing matrix in Eq. (31).

Combining Eqs. (8), (12), (14) and (15) yieldsv:

x012=Λ2v2vϕ2ϵ22ϵ4+1cψ2-(ϵ2-1)2me2+mμ2+ϵ4+1x08ϵ2ϵ4+1cψ2+ϵ2-2(ϵ2-2)ϵ2+2ϵ2+1, (18)

x022=Λ2v2vϕ2ϵ24cψ2+ϵ2-2+1me2+mμ2-2x0ϵ2-22+ϵ2-2ϵ2ϵ2+81+ϵ4ϵ2cψ2+1,    x03=mτv, (19)

where

x0=4ϵ22ϵ4-ϵ2+1me2mμ2-(me4+mμ4)ϵ2cψ2+4ϵ4me2+mμ22cψ4+(ϵ2-1)4me2mμ2. (20)

Equations (18)-(19) yields a ratio between x 01 and x 02:

r122=x012x022=vφ12vϕ22cψ2-1me2+mμ22ϵ2+me2+mμ2x0+2ϵ4+1me2mμ2me2-mμ22. (21)

Furthermore, substituting Eq. (8) in Eq. (15), we get:

cθ=1(4vϕ2x0124cψ2+ϵ2-2ϵ2+1+ϵ4-12vφ12x022+ϵ4-1vφ1x02)24vϕ2x0124cψ4+ϵ2-2ϵ2+1+1. (22)

Regarding the neutrino sector, when the scalar fields get VEVs as in Eq. (2), from Eq. (6), we get the mass matrices for Dirac and Majorana neutrinos:

MD=a12Da22D0a11Da21D0a3Da4D0, (23)

MR=a1Ra4R0a4Ra2R000a3R, (24)

where

aijD=yiΛvvηj,akD=ykΛvvϕ,anR=znvρ,(i,j=1,2;k=3,4;n=1,2,3,4). (25)

By using the type-I seesaw mechanism, the light effective neutrino mass matrix is given by

Meff=AνDνGνDνBνHνGνHνCν, (26)

where Aν,Bν,Cν,Dν,Gν and H v are given in Appendix C.

The mass matrix Meff in Eq. (26) possesses three eigenvalues and the corresponding mixing matrix as follows

λ1=0,    λ2,3=Ω1Ω2, (27)

Rν=κ1κ12+κ22+1τ1τ12+τ22+1r1r12+r22+1κ2κ12+κ22+1τ2τ12+τ22+1r2r12+r22+11κ12+κ22+11τ12+τ22+11r12+r22+1, (28)

where Ω1,2, κ1,2, τ1,2 and r1,2 are given in Appendix D. The neutrino mass spectrum can be normal (m1<m2<m3) or inverted (m3<m1<m2) hierarchy depends on the sign of Δm312 [3]. Note that the eigenvalue λ1=0 corresponds to the first neutrino eigenvector,

φ1=κ1κ12+κ22+1,κ2κ12+κ22+1,1κ12+κ22+1T.

Thus, the neutrino mass hierarchy should be either m1=λ1=0, m2=λ2, m3=λ3 or (m1=λ2, m2=λ3, m3=λ1=0). As will see below, the model obtained results are in agreement with the current neutrino oscillation data for both normal and inverted orderings. The eigenvalues and corresponding vectors of Meff in Eq. (26), for the two mass hierarchies, are defined by:

UνTMeffUν=0000λ2000λ3,    Uν=κ1κ12+κ22+1τ1τ12+τ22+1r1r12+r22+1κ2κ12+κ22+1τ2τ12+τ22+1r2r12+r22+11κ12+κ22+11τ12+τ22+11r12+r22+1     for  NH,     λ2000λ30000,    Uν=τ1τ12+τ22+1r1r12+r22+1κ1κ12+κ22+1τ2τ12+τ22+1r2r12+r22+1κ2κ12+κ22+11τ12+τ22+11r12+r22+11κ12+κ22+1     for  IH.  (29)

It is easily to check that κ1,2,τ1,2 and r1,2 satisfy the following relations

τ1=-1+κ1r1+r22r1+κ1r12+κ1r22,    τ2=(r1-κ1)r2r1+κ1r12+κ1r22,    τ2=-1+κ1r1r2     for  NH ,r1=-1+κ22+κ1τ1κ1+(κ12+κ22)τ1,    r2=κ2(κ1-τ1)κ1+(κ12+κ22)τ1,    τ2=-1+κ1τ1κ2     for  IH . (30)

The leptonic mixing matrix, ULep=VLUν, reads:

ULep=κ1cθ-κ2sθ.eiψκ12+κ22+1τ1cθ-τ2sθ.eiψτ12+τ22+1r1cθ-r2sθ.eiψr12+r22+1κ2cθ+κ1sθ.e-iψκ12+κ22+1τ2cθ+τ1sθ.e-iψτ12+τ22+1r2cθ+r1sθ.e-iψr12+r22+1e-iψκ12+κ22+1e-iψτ12+τ22+1e-iψr12+r22+1     for     NH ,τ1cθ-τ2sθ.eiψτ12+τ22+1 r1cθ-r2sθ.eiψr12+r22+1 κ1cθ-κ2sθ.eiψκ12+κ22+1τ2cθ+τ1sθ.e-iψτ12+τ22+1r2cθ+r1sθ.e-iψr12+r22+1κ2cθ+κ1sθ.e-iψκ12+κ22+1e-iψτ12+τ22+1e-iψr12+r22+1e-iψκ12+κ22+1     for     IH . (31)

In the three neutrino framework, the leptonic mixing matrix can be parameterized as

UPMNS=c12c13c13s12e-iδCPs13-c12s13s23eiδCP-c23s12c12c23-eiδCPs12s13s23c13s23s12s23-c12c23eiδCPs13-c23s12s13eiδCP-c12s23c13c23eiη1000eiη10001, (32)

where c12=cosθ12, c23=cosθ23, c13=cosθ13, s12=sinθ12, s23=sinθ23 and s13=sinθ13,δCP is the Dirac CP phase and η1,2 are two Majorana phases.

By comparing Eqs. (31) and (32), with the aid of Eq.(30), we obtain:

s122=κ1r1+r22+12cθ2-r2κ1-r1κ1r1+r22+1s2θcψ+r22κ1-r12sθ2κ12+1r22+(κ1r1+1)2r12sθ2+r1r2s2θcψ+r22cθ2+1     for  NH,κ1τ1+κ22+12cθ2+κ2(κ1-τ1)κ1τ1+κ22+1s2θcψ+κ22(κ1-τ1)2sθ2τ12+1κ22+(κ1τ1+1)2κ12sθ2+κ1κ2s2θcψ+κ22cθ2+1     for  IH, (33)

s132=r12cθ2-r1r2s2θcψ+r22sθ2r12+r22+1     for  NH,κ12cθ2-κ1κ2s2θcψ+κ22sθ2κ12+κ22+1      for  IH, (34)

s232=r22cθ2+r1r2s2θcψ+r12sθ2r12+r22+1-r12cθ2+r1r2s2θcψ-r22sθ2     for  NH,κ22cθ2+κ1κ2s2θcψ+κ12sθ2κ12+κ22+1-κ12cθ2+κ1κ2s2θcψ-κ22sθ2     for  IH, (35)

η1 = -i logκ1cθ-κ2sθ.eiψc12c13κ12+κ22+1     for  NH,-i logτ1cθ-τ2sθ.eiψc12c13τ12+τ22+1      for  IH, (36)

η2 = -i logτ1cθ-τ2sθ.eiψs12c13τ12+τ22+1     for  NH,-i logr1cθ-r2sθ.eiψs12c13r12+r22+1     for  IH. (37)

Comparing the expressions of the Jalskog’s CP-violation parameter, JCP=Im(U23U13*U12U22*), in term of the model parameters in Eq. (31) and the standard parameterization in Eq. (32), we get

sinδCP=    (r12+r22)κ1+r1r2s2θsψ2r12+r22+1(κ12+1)r22+(κ1r1+1)2s13c132s12c12s23c23     (NH) ,    (κ12+κ22)τ1+κ1κ2s2θsψ2κ12+κ22+1(τ12+1)κ22+(κ1τ1+1)2s13c132s12c12s23c23     (IH) . (38)

Equations (34)-(35) yield a solution:

• For NH:

κ1=r1r22c122sθ2+r1(1+r12+r22)s122+r2(1+r22-r12c2θ12sθcθcψ-κ01-r1(1+r22+r12s122)cθ2/r12cθ2+r22sθ2-r1r2cψs2θ-κ02(r12+r22)s122, (39)

r1=1c132c232r01+2r02cθ4+2sθ2cθ2cos2ψ+sθ4, (40)

r2=r1r02-c132c232(1-c232c132)sθ2cθ2cψ2c132c232(s132cθ2-c132s232sθ2)sθcθcψ, (41)

where

κ01=r22r12+r22+1κ022s122c122-r12+r22+1cθ2sθ2sψ2, (42)

κ02=1+r12sθ2+r1r2cψs2θ+r22cθ2, (43)

r01=c132c232s132cθ4+c132s232sθ4+(s132+c132s232)sθ2cθ2c2ψ, (44)

r02=c134c234c132s132s232(cθ4+2cθ2cψ2sθ2+sθ4)-(s134+c134s234)sθ2cθ2sψ2sθ2cθ2cψ2. (45)

• For IH:

τ1=κ1κ22sθ2+κ11+κ12+κ22cθ2s122+κ221+κ22-κ12c2θ12cψs2θ-τ01-κ11+κ22+κ12s122cθ2/κ12cθ2-κ1κ2cψs2θ+κ22sθ2-τ02κ12+κ22s122, (46)

κ1=1c132c232κ01+2κ02cθ4+2sθ2cθ2c2ψ+sθ4, (47)

κ2=κ1κ02-c132c232(1-c232c132)sθ2cθ2cψ2c132c232s132cθ2-c132s232sθ2cθsθcψ, (48)

where

τ01=κ22(1+κ12+κ22)τ022s122c122-cθ2sψ2(1+κ12+κ22)sθ2, (49)

τ02=1+κ22cθ2+κ1κ2cψs2θ+κ12sθ2, (50)

κ01=c132c232s132cθ4+c132s232sθ4+(1-c132c232)sθ2cθ2cψ, (51)

κ02=c134c234c132s132s232(cθ4+2cθ2cψ2sθ2+sθ4)-(c134s234+s134)cθ2sθ2sψ2sθ2cθ2cψ2. (52)

Expressions (30), (36)-(52) imply that k1,2, τ1,2, r1,2, sinδCP and η1,2 depend on s13, s12, s23, θ and ψ which will be presented in Sec. 4.

4. Numerical analysis

In fact, the electroweak symmetry breaking scale is low,

v=2.46×102 GeV, (53)

The B - L symmetry breaking is assumed to be TeV scale [14] and the cut-off scale is very high [15],

vρ103 GeV,    Λ1013 GeV. (54)

Further, the experimental values of me,μ,τ at the weak scale is [3],

me0.511 MeV,mμ105.658 MeV,mτ1776.860 MeV. (55)

Expressions (19), (53) and (55) yield:

x03=0.0072. (56)

To estimate the order of magnitude of x01 and x02, we consider the case where vϕ is an order of magnitude lower than TeV scale and the B - L symmetry breaking is assumed to be TeV scale:

vϕ=10vφ1,    vη2=10vη1    (ϵ=10). (57)

With the help of Eqs. (21) and (53)-(57), we find the possible region of cos ψ is

cos ψ(0.968,0.975). (58)

The dependences of two parameters r 12 and cos θ on cos ψ are plotted in Figs. 1 and 2, respectively, which imply

cos θ(0.098,0.106), i.e.,    θ(83.92,84.38), (59)

Figure 1 r 12 versus cos ψ with cos ψ ∈ (0.968,0.975). 

Figure 2 cos θ versus cos ψ with cos ψ ∈ (0.968,0.975). 

and

r12(0.98,1.06), i.e.,    x01(0.98÷1.06)x02. (60)

Expression (60) shows that x01 and x02 are in the same scale of magnitude.

The dependences of x01 and x02 on cos ψ are presented in Figs. 3 and 4, respectively, which imply

x01x02(0.0050, 0.0225). (61)

Figure 3 (color line) x 01 versus cos ψ and vφ1 with cos ψ ∈ (0.968,0.975) and vφ1(109,1010) GeV. 

Figure 4 (color line) x 02 versus cos ψ and vφ1 with cos ψ ∈ (0.968,0.975) and vφ1(109,1010) GeV. 

Expressions (56) and (61) show that three Yukawa couplings in the charged-lepton sector are in the same scale of magnitude, i.e., the charged-lepton mass hierarchy is explained naturally.

As presented in Figs. 3 and 4, the possible region of vφ1 is vφ1(109,1010) GeV. Thus, we can fix vφ1=5×109 GeV. As a consequence, from the condition (5) one can estimate the range of the couplings λ η , λ ϕ , λ ϕφη and vη1,2,vφ2 as followsvi:

λη-10-2,    λϕ10-2,    λϕφη10-3, (62)

vφ2=5×1011 GeV,vη22.89×1010 GeV.    vη12.89×109 GeV, (63)

At the best-fit points of neutrino mass-squared differences given in Ref. [4], Δm212=75.0 meV2 and Δm312=2.55×103 meV2 for NH, and Δm312=-2.45×103 meV2 for IH, with the help of Eq. (27) we obtain:

Ω1=29.58 meV,    Ω2=20.92 meV for NH Ω1=49.87 meV,    Ω2=0.376 meV for IH . (64)

Three neutrino masses and the sum of neutrino masses get the explicit values (in meV):

m1=0, m2=8.66,m3=50.50 for NH  m1=49.50,m2=50.52,  m3=0 for IH, (65)

mν=59.16  meV     for  NH 99.75  meV     for  IH . (66)

There exist some different constraints for mν, for example, mν<0.152 eV, mν<0.118 eV by adding the high-l polarization data [16], in NPDDE model mν<0.101 eV, in the NPDDE+ r model mν< 0.093 eV, and in NPDDE+r with the R16 prior mν<0.078 eV [16]. The result in Eq. (66) is in consistence with the updated bounds on νmν taken from Ref. [16].

Expressions (30), (34)-(52) imply that k12, τ12, r12, sinδCP and η1,2 depend on three mixing angles s13, s12, s23 and two model parameters θ and ψ. Using the best-fit values s13,  s12 and s 23 [4],s132=2.2×10-2, s122=0.318, s232=0.574 for NH, and s132=2.225×10-2, s122=0.318, s232=0.578 for IH, we can describe the dependence of k1,2, τ1,2, r1,2, sinδCP and η1,2 on cos ψ with cos ψ ∈ (0.968,0.975) for both NH and IH as shown in Figs. 10-15, respectively.

Figures 10-15 imply that:

κ1(-0.708, -0.694)     for  NH (1.1872,1.1882)      for  IH,κ2(1.548, 1.554)     for  NH (-0.118,-0.108)     for  IH,τ1(-0.956,-0.948)     for  NH (-0.700,-0.688)      for  IH,τ2 (-1.078, -1.070)     for  NH (1.543,1.550)      for  IH ,r1(1.1774,1.1784)     for  NH (-0.948,-0.940)      for  IH ,r2 (-0.118, -0.108)     for  NH (-1.074,-1.066)     for  IH . (67)

Furthermore, the dependence of sinδCP and η1,2 on cos ψ with cos ψ ∈ (0.968,0.975) for both NH and IH are plotted in Figs. 5-7, respectively.

Figure 5 δCP versus cos ψ with cos ψ ∈ (0.968,0.975) for both NH and IH. 

Figure 6 η 1 versus cos ψ with cos ψ ∈ (0.968,0.975) for both NH and IH. 

Figure 7 η 2 versus cos ψ with cos ψ ∈ (0.968,0.975) for both NH and IH. 

Figures 5 tells us that sinδCP(-0.145,-0.125), i.e., δCP(351.7, 352.8) for both NH and IH which lies in the 3𝜎 range of the best-fit value taken from Ref. [18] for both NH and IH and is in good agreement with the T2K data on Dirac CP violation [19]. In addition, Figs. 6 and 7 imply that η1(-2.925, -2.900) rad(192.40, 193.80) and η2(0.250, 0.275) rad(14.32, 15.76) for both NH and IH which are acceptable since they are assumed to be in [0,2π] [3].

The effective neutrino mass parameter governing 0νββ,  mee=i=13Uei2mi, depends o n cos ψ, which are plotted in Figs. 8 and 9 for NH and IH, respectively.

Figure 8 m ee 〉 (in meV) versus cos ψ with cos ψ ∈ (0.968,0.975) for NH. 

Figure 9 m ee › (in meV) versus cos ψ with cos ψ ∈ (0.968,0.975) for IH. 

Figures 8 and 9 imply that:

mee(3.764, 3.776) meV     for  NH (48.601,48.610) meV      for  IH . (68)

The resulting effective neutrino mass in Eq. (68) are below all the constraints from current 0νββ decay experiments, for instance, MAJORANA [18] mee<0.24÷0.53 eV, CUORE [19,20] mee<0.11÷0.5 eV, EXO [21,23]mee<0.17÷0.49 eV, GERDA [24] mee<0.12÷0.26 eV, KamLAND-Zen [25] mee<0.05÷0.16 eV.

5. Conclusions

We have suggested a gauge B - L model with D 5 × Z 4 for explaining the lepton mass and mixing through the type-I seesaw mechanism. The model predicts the neutrino masses and mixing angles at their best-fit values while the Dirac CP phase lies in (351.7, 352.8) which being within 3𝜎 range of the best-fit value for both NH and IH and is in good agreement with the T2K data on Dirac CP violation. The two Majorana phases are predicted to be η1(192.40, 193.80) and η2(14.32, 15.76) for both NH and IH. The model also predicts the effective neutrino parameters of mee(3.764, 3.776) meV for NH and mee(48.601,48.610) meV which are highly consistent with the current constraints.

Non-Abelian discrete symmetry D 5 requires additional scalar fields which may be dark matter candidates. Howerver, a detailed study of this issue is beyond the scope of this study and it will be shown elsewhere.

Acknowledgments

This research is funded by Tay Nguyen University under grant T2022-21CBTÐ.

References

1. F. Feruglio, Pieces of the flavour puzzle, Eur. Phys. J. C 2015 (2015) 373, https://doi.org/10.1140/epjc/s10052-015-3576-5. [ Links ]

2. P. P. Novichkov, J. T. Penedo, and S. T. Petcov, Fermion Mass Hierarchies, Large Lepton Mixing and Residual Modular Symmetries, J. High Energ. Phys. 2021 (2021) 206, https://doi.org/10.1007/JHEP04(2021)206. [ Links ]

3. P. A. Zyla, et al., (Particle Data Group), Review of Particle Physics, Prog. Theor. Exp. Phys. 2020 (2020) 083C01, https://doi.org/10.1093/ptep/ptaa104. [ Links ]

4. P. F. de Salas, et al., 2020 Global reassessment of the neutrino oscillation picture, J. High Energ. Phys. 2021 (2021) 71, https://doi.org/10.1007/JHEP02(2021)071. [ Links ]

5. V. V. Vien, H. N. Long, and A. E. C. Hernández, U(1)B-L extension of the standard model with S3 symmetry, Eur. Phys. J. C 80 (2020) 725, https://doi.org/10.1140/epjc/s10052-020-8318-7. [ Links ]

6. V. V. Vien, Fermion mass and mixing in the U(1)B-L extension of the standard model with D4 symmetry, J. Phys. G: Nucl. Part. Phys. 47 (2020) 055007, https://doi.org/10.1088/1361-6471/ab7ec0. [ Links ]

7. V. V. Vien, H. N. Long, and A. E. C. Hernández, Lepton masses and mixings in a T’ flavored 3-3-1 model with type I and type II seesaw mechanisms, Mod. Phys. Lett. A 34 (2019) 1950005, https://doi.org/10.1142/S0217732319500056. [ Links ]

8. V. V. Vien, Lepton mass and mixing in a neutrino mass model based on S4 flavor symmetry, Int. J. Mod. Phys. A 31 (2016) 1650039, https://doi.org/10.1142/S0217751X16500391. [ Links ]

9. H. Ishimori, et al., Non-Abelian Discrete Symmetries in Particle Physics, Prog. Theor. Phys. Suppl. 183 (2010) 1, https://doi.org/10.1143/PTPS.183.1. [ Links ]

10. C. Hagedorn, M. Lindner, and F. Plentinger, Discrete flavor symmetry D5, Phys. Rev. D 74 (2006) 025007, https://doi.org/10.1103/PhysRevD.74.025007. [ Links ]

11. V. V. Vien and N. V. Soi, Fermion mass and mixing in an extension of the standard model with D5 symmetry, Mod. Phys. Lett. A 35 (2020) 2050003, https://doi.org/10.1142/S0217732320500030. [ Links ]

12. V. V. Vien, The Renormalizable B - L Model with D5 Discrete Symmetry for Lepton Masses and Mixings, J. Exp. Theor. Phys. 131 (2020) 730, https://doi.org/10.1134/S106377612010009X. [ Links ]

13. S. Khalil1, Low scale B - L extension of the Standard Model at the LHC, J. Phys. G 35 (2008) 055001, https://doi.org/10.1088/0954-3899/35/5/055001. [ Links ]

14. W. Abdallah, D. Delepine, and S. Khalil, TeV Scale Leptogenesis in B-L Model with Alternative Cosmologies, Phys.Lett. B 725 (2013) 361, https://doi.org/10.1016/j.physletb.2013.07.047. [ Links ]

15. K. Aoki, et al., Is the Standard Model in the Swampland? Consistency Requirements from Gravitational Scattering, Phys. Rev. Lett. 127 (2021) 091602, https://doi.org/10.1103/PhysRevLett.127.091602. [ Links ]

16. S. R. Choudhury and S. Choubey, Updated Bounds on Sum of Neutrino Masses in Various Cosmological Scenarios, JCAP 09 (2018) 017, https://doi.org/10.1088/1475-7516/2018/09/017. [ Links ]

17. K. Abe, et al., (T2K Collaboration), Constraint on the matter- antimatter symmetry-violating phase in neutrino oscillations, Nature 580 (2020) 339, https://doi.org/10.1038/s41586-020-2177-0. [ Links ]

18. C. E. Aalseth, et al., (Majorana Collaboration), Search for Zero-Neutrino Double Beta Decay in 76Ge with the Majorana Demonstrator, Phys. Rev. Lett. 120 (2018) 132502, https://doi.org/10.1103/PhysRevLett.120.132502. [ Links ]

19. C. Alduino, et al., (CUORE Collaboration), CUORE-0 detector: design, construction and operation, JINST 11 (2016) P07009, https://doi.org/10.1088/1748-0221/11/07/P07009. [ Links ]

20. C. Alduino, et al., (CUORE Collaboration), First Results from CUORE: A Search for Lepton Number Violation via 0vββ Decay of 130Te, Phys. Rev. Lett. 120 (2018) 132501, https://doi.org/10.1103/PhysRevLett.120.132501. [ Links ]

21. M. Auger, et al., (EXO-200 Collaboration), The EXO-200 detector, part I: detector design and construction, JINST 7 (2012) P05010, https://doi.org/10.1088/1748-0221/7/05/P05010. [ Links ]

22. J. B Albert, et al., (EXO-200 Collaboration), Search for Majorana neutrinos with the first two years of EXO-200 data, Nature 510 (2014) 229, https://doi.org/10.1038/nature13432. [ Links ]

23. J. B Albert, et al., (EXO-200 Collaboration), Search for Neutrinoless Double-Beta Decay with the Upgraded EXO-200 Detector, Phys. Rev. Lett. 120 (2018) 072701, https://doi.org/10.1103/PhysRevLett.120.072701. [ Links ]

24. M. Agostini, et al., (GERDA Collaboration), Improved limit on neutrinoless double beta decay of 76Ge from GERDA Phase II, Phys. Rev. Lett. 120 (2018) 132503, https://doi.org/10.1103/PhysRevLett.120.132503. [ Links ]

25. A. Gando, et al., (KamLAND-Zen Collaboration), Search for Majorana Neutrinos near the Inverted Mass Hierarchy Region with KamLAND-Zen, Phys. Rev. Lett. 117 (2016) 082503, https://doi.org/10.1103/PhysRevLett.117.082503. [ Links ]

26. S. Pramanick and A. Raychaudhuri, A4-based seesaw model for realistic neutrino masses and mixing, Phys. Rev. D 93 (2016) 033007, https://doi.org/10.1103/PhysRevD.93.033007. [ Links ]

iAs shown in Table I, the current model contains only one SU(2) L doublet and six singlets.

iiFor the convenience, we briefly present the Clebsch-Gordan coefficients of D5 symmetry in Appendix A.

iiiHere, a0=al, b0=|bl| and c0=|cl|.

ivFor simplicity, hereafter we use the notations cθ=cos θ, sθ=sin θ, cψ=cos ψ, sψ=sin ψ.

vHere, x0i=|xi|  (i=1,2,3).

viThe range of vφ2 and vη2 are obtained from Eqs. (56) and (57).

viiHere, the following notation is used: V(χχ',ζζ')=V(χ,ζ)|χ=χ',ζ=ζ'.

viiiThe considered model has many free parameters in the scalar potential. For simplicity, we consider the case where the couplings in the same type of interaction are equal to each other which is similar to that of Ref. [25].

Appendix

A. Tensor products of D 5

The D 5 group is the symmetry group of the regular pentagon which is generated by the 2π/5 rotation a and the reflection b, and satisfying the relations, a5=e,b2=e,bab=a-1. The D 5 group has ten elements which are divided into four conjugacy classes corresponding to four irreducible representations, denoted by 11,12 and 21, 22 [10]. The Clebsch-Gordan coefficients for all the tensor products of D 5 are given by:

1_1(α)1_1(y)=1_2(α)1_2(β)=1_1(αβ),1_1(α)1_2(β)=1_2(α)1_1(β)=1_2(αβ), (A.1)

1_1α2_kβ1, β2=2_kαβ1, αβ2,1_2α2_kβ1, β2=2_kαβ1, -αβ2,(k=1,2) (A.2)

2_1(α1,α2)2_1(β1,β2)=1_1(α1β2+α2β1)1_2(α1β2-α2β1)2_2(α1β1, α2β2), (A.3)

2_2(α1,α2)2_2(β1,β2)=1_1(α1β2+α2β1)1_2(α1β2-α2β1)2_1(α2β2, α1β1), (A.4)

2_1(α1,α2)2_2(β1,β2)=2_1(α2β1, α1β2)2_2(α2β2, α1β1), (A.5)

where α1,2 and β1,2 are the multiplet components of different representations.

B. Scalar potential

B. Scalar potential

The scalar potential up to five dimension, which is invariant under Γ symmetry, readsvii:

Vg=V(H)+V(ϕ)+V(φ)+V(η)+V(ρ)+V(H,ϕ)+V(H,φ)+V(H,η)+V(H,ρ)+V(ϕ,φ)+V(ϕ,η)+V(ϕ,ρ)+V(φ,η)+V(φ,ρ)+V(η,ρ)+Vtri, (B.1)

where

V(H)=μH2HH+λH(HH)2,V(ϕ)=μϕ2ϕ*ϕ+λϕ(ϕ*ϕ)2, (B.2)

V(φ)=μφ2φ*φ+λ1φ(φ*φ)1_1(φ*φ)1_1+λ2φ(φ*φ)1_2(φ*φ)1_2+λ3φ(φ*φ)2_1(φ*φ)2_1, (B.3)

V(η)=μη2η*η+λη(η*η)1_1(η*η)1_1+λ2η(η*η)1_2(η*η)1_2+λ3η(η*η)2_2(η*η)2_2, (B.4)

V(ρ)=μρ2ρ*ρ+λρ(ρ*ρ)2,V(H,ϕ)=λ1Hϕ(HH)1_1(ϕ*ϕ)1_1+λ2Hϕ(Hϕ)1_1(ϕ*H)1_1, (B.5)

V(H,φ)=λ1Hφ(HH)1_1(φ*φ)1_1+λ2Hφ(Hφ)2_2(φ*H)2_2,V(H,ρ)=V(H,ϕρ), (B.6)

V(H,η)=λ1Hη(HH)1_1(η*η)1_1+λ2Hη(Hη)2_1(η*H)2_1,V(ϕ,φ)=V(Hϕ,φ), (B.7)

V(ϕ,η)=V(Hϕ,η),V(ϕ,ρ)=V(Hϕ,ρ), (B.8)

V(φ,η)=λ1φη(φ*φ)1_1(η*η)1_1+λ2φη(φ*φ)1_2(η*η)1_2+λ3φη(φ*η)2_1(η*φ)2_1+ λ4φη(φ*η)2_2(η*φ)2_2,V(φ,ρ)=V(φ,Hρ),V(η,ρ)=V(η,Hρ), (B.9)

Vtri=λHφη(HH)1_1(φφ)2_1η+λϕφη(ϕφ)2_2(ηη)2_2+λφηρ(φφ)2_1(ηρ*ρ)2_1+h.c. (B.10)

All the other terms up to five dimensions that contain more than three different scalar fields (including quartic and quintic terms) are not included in the expression of V g in Eq. (B.1) because they are not invariant under one (or some) of the model’s symmetry Γ. The existence of several couplings in the scalar potential V g represents a characteristic of discrete symmetry models and it guarantees of freedom to choose a suitable scalar potential.

With the aim of showing that the scalar VEVs in Eq. (2) is a natural solution of the minimum condition of the scalar potential Vtot, we put vλ*=vλ (vλ=v, vϕ,vφ, vη1,2, vρ), the minimization condition of the scalar potential reads

2λHv2+4λHφvφ1vφ2+λHϕη(vφ12vη1+vφ22vη2)+4λHηvη1vη2+2λHϕvϕ2+2λHρvρ2+μH2=0, (B.11)

vϕμϕ2+2λHϕv2+2λϕφvφ1vφ2+2λϕηvη1vη2+λϕvϕ2+λϕρvρ2+λϕφη(vφ2vη12+vφ1vη22)=0, (B.12)

μφ2vφ2+2λHφv2vφ2+6λφvφ1vφ22+λHϕηv2vφ1vη1+4λφηvφ2vη1vη2+λϕφηvη22vϕ+2λϕφvφ2vϕ2+2(λφρvφ2+λϕηρvφ1vη1)vρ2=0, (B.13)

μφ2vφ1+2λHφv2vφ1+6λφvφ2vφ12+λHϕηv2vφ2vη2+4λφηvφ1vη1vη2+λϕφηvη12vϕ+2λϕφvφ1vϕ2+2(λφρvφ1+λϕηρvφ2vη2)vρ2=0, (B.14)

4vη2λHηv2+2λφηvφ1vφ2+3ληvη1vη2+λϕφηvφ2vη1vϕ+λϕηvη2vϕ2+2μη2vη22+λHϕηv2vφ12+2(λϕηρvφ12+2ληρvη2)vρ2=0, (B.15)

4vη1λHηv2+2λφηvφ1vφ2+3ληvη1vη2+λϕφηvφ1vη2vϕ+λϕηvη1vϕ2+2μη2vη12+λHϕηv2vφ22+2(λϕηρvφ22+2ληρvη1)vρ2=0, (B.16)

2λHρv2+2λφρvφ1vφ2+λϕηρ(vφ12vη1+vφ22vη2)+2ληρvη1vη2+λϕρvϕ2+μρ2+2λρvρ2=0, (B.17)

6λHv2+4λHφvφ1vφ2+λHϕηvφ12vη1+λHϕηvφ22vη2+4λHηvη1vη2+μH2+2λHϕvϕ2+2λHρvρ2>0, (B.18)

μϕ2+2λHϕv2+4λϕφvφ1vφ2+4λϕηvη1vη2+6λϕvϕ2+2λϕρvr2>0, (B.19)

6λφvφ22+λHϕηv2vη1+2λϕηρvη1vr2>0,3ληvη22+λϕφηvφ2vϕ>0, (B.20)

6λφvφ12+λHϕηv2vη2+2λϕηρvη2vr2>0,3ληvη12+λϕφηvφ1vϕ>0, (B.21)

2λHρv2+2λφρvφ1vφ2+λϕηρvφ12vη1+λϕηρvφ22vη2+2ληρvη1vη2+μρ2+2λϕρvϕ2+6λρvρ2>0, (B.22)

where the following benchmark points were usedviii

λ1φ=λ3φ=λφ,λ1ϕηρ=λ2ϕηρ=λϕηρ,λ1ϕη=λ2ϕη=λϕη,λ1ϕφ=λ2ϕφ=λϕφ,λ1Hϕ=λ2Hϕ=λHϕ,λ1ϕρ=λ2ϕρ=λϕρ,λ1Hη=λ2Hη=λHη,λ1Hφ=λ2Hφ=λHφ,λ1Hρ=λ2Hρ=λHρ,λ1η=λ3η=λη,λ1ϕφη=λ2ϕφη=λϕφη,λ1ηρ=λ2ηρ=ληρ,λ1φη=λ2φη=λ3φη=λ4φη=λφη,λ1φρ=λ2φρ=λφρ. (B.23)

The system of Eqs. (B.11)-(B.17) yields the following solution:

λHϕη=-2λHv2+2λHηvη1vη2+λHϕvϕ2+λHρvρ2+2λHφvφ1vφ2+μH2/λ0, (B.24)

λϕη=-μϕ2+2(λHϕv2+2λϕφvφ1vφ2+λϕvϕ2+λϕρvρ2)4vη1vη2-λϕφη(vφ2vη12+vφ1vη22)4vη1vη2vϕ, (B.25)

λϕηρ=-vφ2μφ2+2λHφv2+6λφvφ1vφ2+2λφρvρ2+4λφηvη1vη2+2λϕφvϕ2-v2vφ1vη1λ0×μH2+2λHv2+4λHφvφ1vφ2+4λHηvη1vη2+2λHϕvϕ2+2λHρvρ2+ λϕφηvη22vϕ/2vφ1vη1vρ2, (B.26)

λHφ=-12v2μφ2+6λφvφ1vφ2+4λφηvη1vη2+2λϕφvϕ2+2λφρvρ2+λϕφηvϕ(vφ2vη23-vφ1vη13)/δφη, (B.27)

λφη=λϕφηvϕvη12vφ2-vφ1vη22vφ1/8vφ2vη2δφη+2λHϕv2vϕ2+4λϕφvϕ2vφ1vφ2-12ληvη12vη22-2μη2vη1vη2-4λHηv2vη1vη2-3λϕφηvϕvη12vφ2-2(2ληρvη1vη2-λϕρvϕ2)vρ2+λϕφηvφ1vη22vϕ+2λϕvϕ4+μϕ2vϕ2/8vφ1vφ2vη1vη2, (B.28)

λϕφ=μH2v2vη14-μϕ2vη14vϕ2-2μφ2vφ12vη12vη22+2μη2vη15vη2+μρ2vη14vρ2+8λHηv2vη15vη2+2λHv4vη14+12ληvη16vη22-12λφvφ14vη24-2λϕvη14vϕ4+4λHρvη14v2vρ2+2λρvη14vρ4+8ληρvη14vη1vη2vρ2/8vφ12vη12vη22vϕ2, (B.29)

vφ2=ϵ2vφ1, (B.30)

where

λ0=vφ12vη1+vφ22vη2,δφη=vφ22vη2-vφ12vη1. (B.31)

C. Explicit expressions for A v , B v , C v , D v , G v and H v

C. Explicit expressions for A v , B v , C v , D v , G v and H v

Aν=a12Da12Da2R-2a22Da4R+a1Ra22D2a4R2-a1Ra2R, (C.1)

Bν=a11Da11Da2R-2a21Da4R+a1Ra21D2a4R2-a1Ra2R, (C.2)

Cν=a4Da1Ra4D-2a3Da4R+a2Ra3D2a4R2-a1Ra2R, (C.3)

Dν=a11Da12Da2R+a1Ra21Da22Da4R2-a1Ra2R-a4Ra11Da22D+a12Da21Da4R2-a1Ra2R, (C.4)

Gν=a12Da2Ra3D+a1Ra22Da4Da4R2-a1Ra2R-a4Ra12Da4D+a22Da3Da4R2-a1Ra2R, (C.5)

Hν=a11Da2Ra3D+a1Ra21Da4Da4R2-a1Ra2R-a4Ra11Da4D+a21Da3Da4R2-a1Ra2R. (C.6)

D. Explicit expressions of Ω1,2, κ 1,2, τ 1,2 and r 1,2

D. Explicit expressions of Ω1,2, κ 1,2, τ 1,2 and r 1,2

Ω1=Ω012a1Ra2R-a4R2,  Ω2=Ω022a1Ra2R-a4R2, (D.1)

Ω01=a1Ra21D2+a22D2+a4D2+a2Ra11D2+a12D2+a3D2-2a4Ra11Da21D+a12Da22D+a3Da4D, (D.2)

Ω02=-4a1Ra2R-a4R2a11D2a22D2+a4D2+a3D2a21D2+a22D2-2a11Da21Da3Da4D-2a12Da22Da11Da21D+a3Da4D+a12D2a21D2+a4D2+Ω012, (D.3)

κ1=a21Da3D-a11Da4Da11Da22D-a12Da21D, (D.4)

κ2=a22Da3D-a12Da4Da12Da21D-a11Da22D, (D.5)

τ1=τ112τ0,τ2=τ222τ0,r1=r112τ0,r2=r222τ0, (D.6)

where

τ11=-2a11Da12Da21Da2Ra3D+a22Da2Ra3D3-a12D2a22Da2Ra3D+a12D3a2Ra4D-a12Da2Ra3D2a4D-a1R(a22D2-a4D2)(a22Da3D-a12Da4D)-2a11Da21Da22Da4D+a21D2(a22Da3D+a12Da4D)+2a12Da21D2a3Da4R+2a12Da22D2a3Da4R-2a12D2a22Da4Da4R-2a22Da3D2a4Da4R+2a12Da3Da4D2a4R+a11D2(a22Da2Ra3D+a12Da2Ra4D-2a22Da4Da4R)+(a22Da3D-a12Da4D)δ0, (D.7)

τ22=a11D3a2Ra4D-a11D2a21D(a2Ra3D+2a4Da4R)+a11D-a4Da2Ra3D2+a1R(a22D2-a21D2+a4D2)+a12D2a2Ra4D+2a3D(a21D2+a22D2+a4D2)a4R-2a12Da22Da2Ra3D+a21Da1R2a12Da22Da4D-(a21D2+a22D2)a3D+a3Da4D2+(a12D2+a3D2)(a2Ra3D-2a4Da4R)+(a21Da3D-a11Da4D)δ0,r11=-2a11Da12Da21Da2Ra3D-a12D2a22Da2Ra3D+a22Da2Ra3D3+a12D3a2Ra4D-a12Da2Ra3D2a4D -a1R(a22D2-a4D2)(a22Da3D-a12Da4D)-2a11Da21Da22Da4D+a21D2(a22Da3D+a12Da4D)+2a12Da21D2a3Da4R+2a12Da22D2a3Da4R-2a12D2a22Da4Da4R-2a22Da3D2a4Da4R+2a12Da3Da4D2a4R+a11D2(a22Da2Ra3D+a12Da2Ra4D-2a22Da4Da4R)+(a12Da4D-a22Da3D)δ0, (D.8)

r22=a11D3a2Ra4D-a11D2a21D(a2Ra3D+2a4Da4R)+a11D-a4Da2Ra3D2+a1R(a22D2-a21D2+a4D2)+a12D2a2Ra4D+2a3D(a21D2+a22D2+a4D2)a4R-2a12Da22Da2Ra3D+a21Da1R2a12Da22Da4D-(a21D2+a22D2)a3D+a3Da4D2+(a12D2+a3D2)(a2Ra3D-2a4Da4R)-a21Da3Dδ0+a11Da4Dδ0, (D.9)

τ0=a11Da21D(a1Ra4D2-a2Ra3D2)+a12Da22D(a1Ra4D2-a2Ra3D2)+a3D(a21D2+a22D2)(a3Da4R-a1Ra4D)+a11D2a4D(a2Ra3D-a4Da4R)+a12D2a4D(a2Ra3D-a4Da4R),δ0=a1R2(a21D2+a22D2+a4D2)2+2a1Ra2R4a11Da21D(a12Da22D+a3Da4D)+4a12Da22Da3Da4D+a11D2(a21D2-a22D2-a4D2)-a3D2(a21D2+a22D2-a4D2)-a12D2(a21D2-a22D2+a4D2)+(a11D2+a12D2+a3D2)a2R2(a11D2+a12D2+a3D2)-4a2R(a11Da21D+a12Da22D+a3Da4D)a4R +4(a21D2+a22D2+a4D2)a4R2-4a1Ra4R(a11Da21D+a12Da22D+a3Da4D)(a21D2+a22D2+a4D2), (D.10)

with aijD,akD,anR (i, j = 1, 2; k = 3,4; n = 1, 2, 3, 4) are defined in Eq. (25).

E. Excluded interactions

Table III Excluded interactions. 

Couplings Prevented by
(ψ¯iLl3R)2_1(Hϕ)1_1,(ψ¯iLl3R)2_1(Hφ)2_2,(ψ¯3LliR)2_1H,(ψ¯iLν3R)2_1H~,(ψ¯3Lν1R)1_1(H~φ)2_2,(ψ¯3Lν2R)1_1(H~φ)2_2,(ψ¯3Lν3R)1_1(H~ϕ*)1_1,(ψ¯3Lν3R)1_1(H~φ*)1_1,(ν¯1RCν3R)1_1(ηρ)2_1,(ν¯2RCν3R)1_1(ηρ)2_1,(ν¯3RCν1R)1_1(ηρ)2_1,(ν¯3RCν2R)1_1(ηρ)2_1, D 5
(ψ¯iLliR)1_H,(ψ¯iLliR)1_(Hϕ*)1_,(ψ¯iLliR)2_2(Hφ*)2_2,(ψ¯iLl3R)2_1(Hη)2_1,(ψ¯3LliR)2_1(Hη)2_1,(ψ¯3Ll3R)1_1(Hϕ)1_1,(ψ¯3Ll3R)1_1(Hϕ*)1_1,(ψ¯iLν3R)2_1(H~η)2_1,(ψ¯3Lν1R)1_1H~,(ψ¯3Lν2R)1_1H~,(ψ¯3Lν1R)1_1(H~ϕ*)1_1,(ψ¯3Lν2R)1_1(H~ϕ*)1_1,(ν¯1RCν1R)1_1(ϕρ)1_1,(ν¯1RCν1R)1_1(ϕ*ρ)1_1,(ν¯1RCν2R)1_1(ϕρ)1_1,(ν¯1RCν2R)1_1(ϕ*ρ)1_1,(ν¯2RCν1R)1_1(ϕρ)1_1,(ν¯2RCν1R)1_1(ϕ*ρ)1_1,(ν¯2RCν2R)1_1(ϕρ)1_1,(ν¯2RCν2R)1_1(ϕ*ρ)1_1,(ν¯3RCν3R)1_1(ϕρ)1_1,(ν¯3RCν3R)1_1(ϕ*ρ)1_1, Z 4
(ψ¯iLν1R)2_1(H~ρ)1_1,(ψ¯iLν1R)2_1(H~ρ*)1_1,(ψ¯iLν2R)2_1(H~ρ)1_1,(ψ¯iLν2R)2_1(H~ρ*)1_1, B - L, D 5
(ψ¯iLliR)1_1(Hρ)1_1,(ψ¯iLliR)1_1(Hρ*)1_1,(ψ¯3Ll3R)1_1(Hρ)1_1,(ψ¯3Ll3R)1_1(Hρ*)1_1,(ψ¯3Lν1R)1_1(H~ρ)1_1,(ψ¯3Lν2R)1_1(H~ρ)1_1,(ψ¯3Lν1R)1_1(H~ρ*)1_1,(ψ¯3Lν2R)1_1(H~ρ*)1_1, B - L, Z 4
(ψ¯iLl3R)2_1(Hρ)1_1,(ψ¯iLl3R)2_1(Hρ*)1_1,(ψ¯3LliR)2_1(Hρ)1_1,(ψ¯3LliR)2_1(Hρ*)1_1,(ψ¯iLν3R)2_1(H~ρ)1_1,(ψ¯iLν3R)2_1(H~ρ*)1_1,(ψ¯3Lν3R)1_1(H~ρ)1_1,(ψ¯3Lν3R)1_1(H~ρ*)1_1, B - L, D 5, Z 4
(ψ¯iLliR)(Hη)2_1,(ψ¯iLl3R)H,(ψ¯iLl3R)2_1(Hϕ*)1_1,(ψ¯iLl3R)2_1(Hφ*)2_2,(ψ¯3LliR)2_1(Hϕ)1_1,(ψ¯3LliR)2_1(Hϕ*)1_1,(ψ¯3LliR)2_1(Hφ)2_2,(ψ¯3LliR)2_1(Hφ*)2_2,(ψ¯3Ll3R)1_1(Hφ)2_2,(ψ¯3Ll3R)1_1(Hφ*)2_2,(ψ¯3Ll3R)1_1(Hη)2_1,(ψ¯iLν1R)2_1H~,(ψ¯iLν1R)2_1(H~ϕ)1_1,(ψ¯iLν1R)2_1(H~ϕ*)1_1,(ψ¯iLν2R)2_1H~,(ψ¯iLν2R)2_1(H~ϕ)1_1,(ψ¯iLν2R)2_1(H~ϕ*)1_1,(ψ¯iLν1R)2_1(H~φ)2_2,(ψ¯iLν1R)2_1(H~φ*)2_2,(ψ¯iLν2R)2_1(H~φ)2_2,(ψ¯iLν2R)2_1(H~φ*)2_2,(ψ¯iLν3R)2_1(H~ϕ)1_1,(ψ¯iLν3R)2_1(H~ϕ*)1_1,(ψ¯iLν3R)2_1(H~φ)2_2,(ψ¯iLν3R)2_1(H~φ*)2_2,(ψ¯3Lν1R)1_1(H~φ*)2_2,(ψ¯3Lν2R)1_1(H~φ*)2_2,(ψ¯3Lν1R)1_1(H~η)2_1,(ψ¯3Lν2R)1_1(H~η)2_1,(ψ¯3Lν3R)1_1H~,(ψ¯3Lν3R)1_1(H~ϕ)1_1,(ψ¯3Lν3R)1_1(H~φ)1_1,(ψ¯3Lν3R)1_1(H~η)2_1,(ν¯1RCν1R)1_1(ϕρ)1_1,(ν¯1RCν1R)1_1(ϕ*ρ)1_1,(ν¯1RCν2R)1_1(ϕρ)1_1,(ν¯1RCν2R)1_1(ϕ*ρ)1_1,(ν¯2RCν1R)1_1(ϕρ)1_1,(ν¯2RCν1R)1_1(ϕ*ρ)1_1,(ν¯2RCν2R)1_1(ϕρ)1_1,(ν¯2RCν2R)1_1(ϕ*ρ)1_1,(ν¯3RCν3R)1_1(ϕρ)1_1,(ν¯3RCν3R)1_1(ϕ*ρ)1_1,(ν¯1RCν1R)1_1(φρ)2_2,(ν¯1RCν1R)1_1(φ*ρ)2_2,(ν¯1RCν2R)1_1(φρ)2_2,(ν¯1RCν2R)1_1(φ*ρ)2_2,(ν¯2RCν1R)1_1(φρ)2_2,(ν¯2RCν1R)1_1(φ*ρ)2_2,(ν¯2RCν2R)1_1(φρ)2_2,(ν¯2RCν2R)1_1(φ*ρ)2_2,(ν¯3RCν3R)1_1(φρ)2_2,(ν¯3RCν3R)1_1(φ*ρ)2_2,(ν¯1RCν1R)1_1(ηρ)2_1,(ν¯1RCν2R)1_1(ηρ)2_1,(ν¯2RCν1R)1_1(ηρ)2_1,(ν¯2RCν2R)1_1(ηρ)2_1,(ν¯3RCν3R)1_1(ηρ)2_1,(ν¯1RCν3R)1_1ρ,(ν¯1RCν3R)1_1(ϕρ)1_1,(ν¯1RCν3R)1_1(ϕ*ρ)1_1,(ν¯1RCν3R)1_1(φρ)1_1,(ν¯2RCν3R)1_1ρ,(ν¯1RCν3R)1_1(φ*ρ)1_1,(ν¯2RCν3R)1_1(ϕρ)1_1,(ν¯2RCν3R)1_1(ϕ*ρ)1_1,(ν¯2RCν3R)1_1(φρ)1_1,(ν¯2RCν3R)1_1(φ*ρ)1_1,(ν¯3RCν1R)1_1ρ,(ν¯3RCν1R)1_1(ϕρ)1_1,(ν¯3RCν1R)1_1(ϕ*ρ)1_1,(ν¯3RCν1R)1_1(φρ)1_1,(ν¯3RCν1R)1_1(φ*ρ)1_1,(ν¯3RCν2R)1_1ρ,(ν¯3RCν2R)1_1(ϕρ)1_1,(ν¯3RCν2R)1_1(ϕ*ρ)1_1,(ν¯3RCν2R)1_1(φρ)1_1,(ν¯3RCν2R)1_1(φ*ρ)1_1, D 5, Z 4

F. The dependence of k 12 , τ 12 , r 12 , sin δ CP and η 1,2 on cos ψ

Figure 10 κ 1 versus cos ψ with cos ψ ∈ (0.968,0.975) for NH (left side) and IH (right side). 

Figure 11 κ 2 versus cos ψ with cos ψ ∈ (0.968,0.975)for NH (left side) and IH (right side). 

Figure 12 τ 1 versus cos ψ with cos ψ ∈ (0.968,0.975)for NH (left side) and IH (right side). 

Figure 13 τ 2 versus cos ψ with cos ψ ∈ (0.968,0.975)for NH (left side) and IH (right side). 

Figure 14 r 2 versus cos ψ with cos ψ ∈ (0.968,0.975)for NH (left side) and IH (right side). 

Figure 15 r 2 versus cos ψ with cos ψ ∈ (0.968,0.975)for NH (left side) and IH (right side). 

Received: May 27, 2022; Accepted: December 22, 2022

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License