SciELO - Scientific Electronic Library Online

 
vol.41Caracterización edafológica con cultivo de agave azul (Agave tequilana Weber) en Tonaya y Tuxcacuesco, Jalisco, MéxicoModelación hidrológica con el modelo SWAT empleando diferentes distribuciones espaciales del tipo suelo en la cuenca del Río Mixteco índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Terra Latinoamericana

versión On-line ISSN 2395-8030versión impresa ISSN 0187-5779

Resumen

LOPEZ-CALDERON, Magali J. et al. Total Nitrogen in forage corn (Zea mays L.) estimated by satellite Sentinel-2 spectral indices. Terra Latinoam [online]. 2023, vol.41, e1628.  Epub 12-Jun-2023. ISSN 2395-8030.  https://doi.org/10.28940/terra.v41i0.1628.

Nitrogen is the most important nutrient for forage crops because of its contribution in various biochemical reactions in the different phenological stages of the plant. The main aim of this study is to develop a multiple linear regression model to estimate total nitrogen (Nt) in corn plants using spectral indexes. The percentage of total nitrogen (Nt) was determined through three plant samplings in four experimental plots. The estimation model was obtained to process the Sentinel-2 satellite images according to the plant sampling dates; 13 spectral indexes were calculated and the association between nitrogen and the reflectance values was analyzed by the principal component analysis (ACP), correlation matrix, and dendrogram. The indexes with the highest relationship were MCARI / OSAVI, TCARI / OSAVI, MCARI / OSAVI RE and TCARI / OSAVI RE, explaining more than 50% of the variability of the proposed model and a MSE of 0.12. This study indicates that the estimation obtained from Sentinel-2 spectral indexes images has great potential to determine nitrogen in crops. However, for future research, Nt estimation models should be obtained for each phenological crop stage.

Palabras llave : red edge; multiple linear regression; remote sensing.

        · resumen en Español     · texto en Español     · Español ( pdf )