SciELO - Scientific Electronic Library Online

 
 número130Listado de angiospermas epífitas que conforman jardines de hormigas de Azteca gnava (Formicidae) en el sureste de MéxicoAnatomía de madera y hoja en las especies de Nahuatlea, Tehuasca y sus grupos hermanos (Gochnatieae, Asteraceae) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Acta botánica mexicana

versión On-line ISSN 2448-7589versión impresa ISSN 0187-7151

Act. Bot. Mex  no.130 Pátzcuaro  2023  Epub 20-Ene-2025

https://doi.org/10.21829/abm130.2023.2143 

Articles of investigation

Humaria setimarginata (Pyronemataceae, Ascomycota), a new species from Mexico

Humaria setimarginata (Pyronemataceae, Ascomycota), una nueva especie de México

Marcos Sánchez-Flores1 
http://orcid.org/0000-0001-5630-3084

Tania Raymundo2 
http://orcid.org/0000-0002-7525-0034

Nicolas Van Vooren3 
http://orcid.org/0000-0003-3026-6785

César Ramiro Martínez González1 
http://orcid.org/0000-0002-0256-0840

Jesús García Jiménez1  4 
http://orcid.org/0000-0001-9290-1460

1Tecnológico Nacional de México, Instituto Tecnológico de Ciudad Victoria, Herbario Micológico José Castillo, Boulevard Emilio Portes Gil 1301, 87010 Ciudad Victoria, Tamaulipas, Mexico.

2Instituto Politécnico Nacional, Escuela Nacional de Ciencias Biológicas, Laboratorio de Micología, Prolongación de Carpio y Plan de Ayala, Santo Tomás, Alcaldía Miguel Hidalgo, 11340 Cd. Mx., Mexico.

3Chemin du Bois Ponard 13, 69160 Tassin-la-Demi-Lune, France.


Abstract:

Background and Aims:

Humaria (Pyronemataceae, Ascomycota) is an ectomycorrhizal genus of fungi, mainly distributed in temperate forest. It is characterized by cupuliform to discoid apothecia that are covered with abundant hairs throughout the exterior of the brown ascomata, and by ellipsoid, hyaline, warty ascospores. There are 66 accepted species of which only one has been recorded in Mexico. The present study aims to describe a new species of Humaria with morphological, ecological and molecular data, found in Quercus forests from Tamaulipas, Mexico.

Methods:

The specimens were collected in 2019 in the Victoria municipality, Tamaulipas, Mexico. Description and morphological studies were performed according to traditional mycological techniques. Studied material was deposited in the José Castillo Tovar Mycological Herbarium of the Instituto Tecnológico de Ciudad Victoria (ITCV) and the Escuela Nacional de Ciencias Biológicas Herbarium (ENCB) of the Instituto Politécnico Nacional. Phylogenetic analyses were performed using ITS and LSU sequences of the nuclear rDNA.

Key results:

Humaria setimarginata sp. nov. is described and illustrated. This species is well differentiated by its morphological, molecular and ecological characteristics. It forms typically cupuliform apothecia with straight margin, abundant dark brown colored short hairs at the margin, and a greyish-white hymenium. It presents a dextrinoid reaction in the ectal excipulum in contact with Melzer´s reagent. It grows around Quercus rysophylla and Q. polymorpha in oak forests.

Conclusions:

Humaria setimarginata is the second species of this genus reported in Mexico, after Humaria hemisphaerica. There are several collections under the name Humaria sp. that need a revision, to expand the diversity knowledge of this genus in this country. It is possible that several species exist, considering that this genus is ectomycorrhizal and the diversity of its potential hosts is high.

Key words: ectomycorrhizal fungi; northeast of Mexico; Pezizales; Quercus spp

Resumen:

Antecedentes y Objetivos:

Humaria (Pyronemataceae, Ascomycota) es un género de hongos ectomicorrízicos, distribuidos generalmente en bosques templados. Se caracteriza por apotecios cupuliformes a discoides que están cubiertos con abundantes pelos en todo el exterior de los ascomas marrones, y por ascosporas elipsoides, hialinas y verrucosas. Son 66 especies aceptadas de las cuales solo una ha sido registrada en México. El presente estudio tiene como objetivo describir una nueva especie de Humaria, con datos morfológicos, ecológicos y moleculares, encontrada en el bosque de Quercus de Tamaulipas, México.

Métodos:

Los ejemplares fueron recolectados en 2019 en el municipio Victoria, Tamaulipas, México. La descripción y los estudios morfológicos se realizaron según las técnicas micológicas tradicionales. El material estudiado fue depositado en el Herbario Micológico José Castillo Tovar del Instituto Tecnológico de Ciudad Victoria (ITCV) y en el Herbario de la Escuela Nacional de Ciencias Biológicas (ENCB) del Instituto Politécnico Nacional. Los análisis filogenéticos se realizaron utilizando secuencias ITS y LSU del ADNr nuclear.

Resultados clave:

Humaria setimarginata sp. nov. se describe e ilustra. Esta especie se diferencia bien por características morfológicas, moleculares y ecológicas. Forma un apotecio típicamente cupuliforme, con margen recto, abundantes pelos cortos color marrón oscuro en el margen y un himenio blanco grisáceo. Presenta una reacción dextrinoide en el excípulo ectal en contacto con el reactivo Melzer. Crece alrededor de Quercus rysophylla y Q. polymorpha en bosques de encino.

Conclusiones:

Humaria setimarginata es la segunda especie de este género que se reporta para México, después de Humaria hemisphaerica. Hay varias colecciones bajo el nombre de Humaria sp. que necesitan una revisión, para ampliar el conocimiento de la diversidad de este género en el país. Es posible que existan varias especies, considerando que este género es ectomicorrícico y la diversidad de sus hospedantes potenciales es alta.

Palabras clave: hongos ectomicorrícicos; noreste de México; Pezizales; Quercus spp

Introduction

The name Humaria (Fr.) Boud. was first used by Fries (1822) in the rank of tribe of his broad genus Peziza Dill. ex Fr. Cooke (1879), following Fries´ definition, used the rank of subgenus; then Boudier (1885) erected it at the rank of genus. Clements and Shear (1931) selected Humaria leucoloma (Hedw.) Boud. as lectotype of this genus. With such a typification Humaria becomes an obligate synonym of Octospora Hedw. Fuckel (1870) used the name Humaria with his own definition, encompassing several species of the series Lachnea defined by Fries (1822) or the tribe Lachnea (Fr.) Boud. Its type has been designated by Denison (1959) with Humaria hemisphaerica (F.H. Wigg.) Fuckel (Peziza hemisphaerica F.H. Wigg.) and must be followed. Humaria became the type of family Humariaceae proposed by Velenovský (1934), then accepted by subsequent authors such Le Gal (1947), Dennis (1960), Moser (1963), Berthet (1964), Rifai (1968), until Eckblad (1968) emended the family Pyronemataceae to widen its definition, including Humariaceae. This has been followed by Korf (1972) and subsequent authors. The modern classification based on molecular phylogeny confirmed the position of Humaria inside the family Pyronemataceae inside its own linage (Perry et al., 2007; Hansen et al., 2013; Van Vooren et al., 2021). Fuckel (1870) characterized this genus as having terrestrial ascomata, cupuliform apothecia when young, discoid when mature, gregarious, sessile, with tomentose hairs; asci cylindrical, elongated, containing 8 spores; ascospores oval to oblong-oval, containing 1-3 guttules, hyaline; filiform paraphyses. Among the 512 names listed in the Index Fungorum (2022) database under Humaria as genus, many of them are now combined in other genera, but 66 names are “accepted” in this repository, although many of them are old names, hard to interpret in a modern sense. Humaria represents an ectomycorrhizal genus of fungi, associated with different deciduous trees like Quercus spp., Fagus sylvatica L., Tilia cordata Mill. (Tedersoo et al., 2006; Erős-Honti et al., 2008), Carya spp. (Rudawska et al., 2018), as well as conifers like Pinus spp. (Tedersoo et al., 2006). On the American continent, only two species have been described: H. cazaresii (M.E. Sm. & Trappe) M.E. Sm., Healy & P. Alvarado and H. hemisphaerica. In Mexico, H. hemisphaerica has been cited from Durango, Guerrero, Hidalgo, Jalisco, Mexico City, Mexico State, Michoacán, Morelos, Oaxaca, Sonora and Tamaulipas, frequently in Pinus-Quercus and Quercus forests, montane cloud forests, and in coniferous forests (Chacón and Guzmán, 1983; Frutis and Guzmán, 1983; Bautista et al., 1986; Díaz-Barriga et al., 1988; Heredia, 1989; Pompa-González and Cifuentes, 1991; Esqueda et al., 1992; García Jiménez and Guevara Guerrero, 2005; García Jiménez and Valenzuela, 2005; Villarruel-Ordaz and Cifuentes, 2007; Raymundo et al., 2012, 2013; Gándara et al., 2014; García et al., 2014; Rodríguez-Alcántar et al., 2018, 2019). However, only Bautista et al. (1986) and Ortega López (2015) have given a detailed description. The present study aims to describe a new Humaria species in oak forest from Tamaulipas, Mexico based on morphological, ecological and molecular data.

Materials and Methods

Study material

Specimens were collected in 2019 in the Victoria municipality, Tamaulipas, located in the Sierra Madre Oriental (Fig. 1). The specimens were deposited in the José Castillo Tovar Mycological Herbarium of the Instituto Tecnológico de Ciudad Victoria (ITCV) and the Escuela Nacional de Ciencias Biológicas Herbarium (ENCB) of the Instituto Politécnico Nacional.

Figure 1: Localities of Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez, in Tamaulipas, Mexico. 

Morphological analyses

The collected material was examined following the traditional techniques proposed by Cifuentes et al. (1986). The specimens were described when fresh, macroscopic characters, like size, shape, color, and possible hosts were recorded. The terminology used herein refers to the Nuevo Diccionario Ilustrado de Micología (Ulloa and Hanlin, 2006). Colors are indicated according to the color table of Kornerup and Wanscher (1978). Longitudinal sections of dried apothecia were rehydrated with 70% alcohol, observed in 5% KOH, and in water. Ornamentation of ascospores, and other structures were observed using Melzer´s staining reagent, as well as cotton blue in lactophenol.

The microscopic structures were observed using an optical microscope (OM) (Axiostar Plus, Zeiss, Jena, Germany). Photographs were taken with a Rebel T-1i camera and a 100 mm macro lens (Canon, Tokyo, Japan). Scanning electron microscopy (SEM; SU1510, Hitachi High Technologies, Tokyo, Japan) was used to observe the ornamentation of the ascospores in detail. The works of Dennis (1981), Fuckel (1870) and Beug et al. (2014) were used to differentiate the species.

DNA extraction, amplification and sequencing

Total DNA was extracted from dried herbarium specimens using a modified version of the protocol of Martínez-González et al. (2017) protocol. PCR amplification, based on Mullis and Faloona (1987), included 35 cycles with an annealing temperature of 54 ºC, and was carried out with the ITS5 and ITS4 primers (White et al., 1990; Gardes and Bruns, 1993) for the ITS nrDNA region, and LR0R and LR5 primers (Vilgalys and Hester, 1990; Cubeta et al., 1991) for the 28S nrDNA region (LSU).

PCR products were verified by agarose gel electrophoresis. The gels were run for 1 h at 95 V cm⁻³ in 1.5% agarose and 1× TAE buffer (Tris Acetate-EDTA). The gel was stained with GelRed (Biotium, USA) and the bands were visualized in an Infinity 3000 transilluminator (Vilber Lourmat, Germany).

The amplified products were purified with the ExoSAP Purification kit (Affymetrix, USA), following the manufacturer’s instructions. They were quantified and prepared for the sequence reaction using a BigDye Terminator v. 3.1 (Applied Biosystems, USA). These products were sequenced in both directions with an Applied Biosystem model 3730XL (Applied BioSystems, USA), at the Instituto de Biología of the Universidad Nacional Autónoma de México (UNAM). The obtained sequences were compared with the original chromatograms to detect and correct possible reading errors.

Phylogenetic analysis

To explore the phylogenetic relationship of the new species, an alignment was made based on the taxonomic sampling employed by Erős-Honti et al. (2008), Healy et al. (2022) and sequences deposited in the Gen Bank NCBI database (GenBank, 2022).

Each gene region was independently aligned using the online version of MAFFT v. 7 (Katoh et al., 2002, 2017; Katoh and Standley, 2013). Alignments were reviewed in PhyDE v. 10.0 (Müller et al., 2005), followed by minor manual adjustments to ensure character homology between taxa.

The matrices consisted of 31 taxa for ITS (700 characters) and 18 taxa for LSU (962 characters) (table 1). The aligned matrices were concatenated into a single matrix (34 taxa, 1662 characters). Phylogenetic inferences were estimated with Maximum Likelihood in RAxML v. 8.2.10 (Stamatakis, 2014) with a GTR + G model of nucleotide substitution. To assess branch support, 1000 bootstrap replicates were run with the GTRGAMMA model. For Bayesian posterior probability, the best evolutionary model for alignment was sought using PartitionFinder v. 2.0 (Lanfear et al., 2014; 2016; Frandsen et al., 2015).

Table 1: GenBank, 2022 accession numbers corresponding to the sequences used in the phylogenetic analyses. The accession numbers of the new species are in bold. 

Species name Voucher Number GenBank Accession
ITS LSU
Genea gardneri Gilkey SOC 690 AY830857 -----
Genea gardneri Gilkey src831 DQ206850 -----
Genea gardneri Gilkey src867 DQ206851 -----
Genea harknessii Gilkey Trappe 13313 DQ220334 -----
Genea harknessii Gilkey Trappe 11775 DQ220335 -----
Genea verrucosa Vittad. AH44208 KJ938935 -----
Genea verrucosa Vittad. BP104856 KJ938936 -----
Humaria cazaresii (M.E. Sm. & Trappe) M.E. Sm., Healy & P. Alvarado Trappe18044 DQ206863 ----
Humaria hemisphaerica (F.H. Wigg.) Fuckel Andy 10/15/03 ----- AY789389
Humaria hemisphaerica (F.H. Wigg.) Fuckel BAP 320 (FH) ----- DQ220352
Humaria hemisphaerica (F.H. Wigg.) Fuckel HKAS 82077 MG871304 MG871339
Humaria hemisphaerica (F.H. Wigg.) Fuckel FHKH03100 DQ200832 DQ220353
Humaria hemisphaerica (F.H. Wigg.) Fuckel JMP0104 EU819470 -----
Humaria hemisphaerica (F.H. Wigg.) Fuckel K (M) 187356 MZ159485 -----
Humaria hemisphaerica (F.H. Wigg.) Fuckel GO-2009-385 KC152113 -----
Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez Type ITCV OP521892 OP529804
Humaria sp. FLAS-F-61555 MG019762 MG019797
Humaria sp. FLAS-F-61554 MG019761 MG019796
Humaria sp. LY NV2012.10.16 MG019765 MG019800
Humaria sp. LY NV2014.08.35 MG019768 -----
Humaria sp. LY NV2014.07.19 MG019767 -----
Humaria sp. LY NV2012.10.16 MG019765 MG019800
Humaria sp. ISC 443646 MG019764 MG019799
Humaria sp. ISC 437685 MG019763 MG019798
Humaria sp. FLAS F-61548 MG019759 MG019794
Humaria sp. FLAS F-61555 MG019762 MG019797
Humaria sp. FLAS F-61554 MG019761 MG019796
Humaria sp. FLAS F-61552 MG019760 MG019795
Humaria sp. FH 823753 MG019757 MG019792
Humaria sp. FH 00304592 MT505219 MT505178
Humaria sp. FLAS F-66262 MN653025 MZ018863
Humaria sp. GEN 4 OP177902 -----
Humaria sp. FLAS-F-68407 OM672766 -----

Phylogenetic analyses were also performed using MrBayes v. 3.2.6 x64 (Huelsenbeck and Ronquist, 2001). The information block for the matrix included two simultaneous runs, four Montecarlo chains, temperature set to 0.2 and sampling 10 million generations (standard deviation ≤0.1) with trees sampled every 1000 generations. The first 25% of samples were discarded as burn-in, and stationarity was checked in Tracer v. 1 (Rambaut et al., 2014). The two simultaneous Bayesian runs continued until the convergence parameters were met, and the standard deviation fell below 0.0001 after 10 million generations. No significant changes in tree topology trace or cumulative split frequencies of selected nodes were observed after about 0.37 million generations, so the first 2,500,000 sampled trees (25%) were discarded as burn-in. Trees were visualized and optimized in FigTree v. 1.4.4 (Rambaut et al., 2014).

Results

Molecular analyses

We successfully amplified and sequenced the ITS and LSU region from the holotype of our Humaria collection. Both the Bayesian and Maximum Likelihood analyses (Fig. 2) recovered Humaria setimarginata, supporting the existence of a new taxon distinctive from related species of Humaria (1 Bayesian Posterior Probability (PP) and 100% bootstrap values (BP) for Maximum Likelihood). Thus, Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez is proposed as a new species for science (see Taxonomy).

Figure 2: Phylogram of Bayesian inference (BI) tree from the ITS and LSU sequence data of 34 specimens. The values above branches represent Bayesian posterior probabilities (PP) and bootstrap values (LP) for Maximum Likelihood, respectively. The scale bar represents the expected number of nucleotide substitutions per site. Sequences obtained from this study are in bold. 

Taxonomy

Ascomycota

Pezizomycetes

Pezizales

Pyronemataceae

Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez, sp. nov. Figs. 3, 4, 5, 6, 7. MycoBank no. MB 841440.

Figure 3: Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez. A., B. apothecia; C. longitudinal section of the apothecium. 

Figure 4: Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez. A-F. hairs of the apothecium. 

Figure 5: Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez. A. longitudinal section of the apothecium; B., C. ectal excipulum; D., E. dextrinoid reaction in Melzer´s reagent of the ectal excipulum. 

Figure 6: Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez. A. paraphyses; B. asci; C. asci and ascospores; D. ascospore in cotton blue; E. ascospore in 5% KOH, ornamentation having dissolved; F., G. ascospores in water. 

Figure 7: Humaria setimarginata Sánchez-Flores, Raymundo, Van Vooren & García-Jiménez. A., B. ascospores with SEM. 

TYPE: MEXICO. Tamaulipas, Victoria municipality, El Madroño, 1443 m a.s.l., 23°36'16.32"N, 99°13'45.2"W, 11.XI.2019, M. Sánchez 1889 (holotype: ITCV!, isotype: ENCB!).

Humaria setimarginata is characterized by the size, 60-353 × 13-20 µm, and position of marginal hairs, by a dextrinoid reaction in the ectal excipulum with Melzer´s reagent, and ascospores 19-25 × 10-15 µm, ellipsoid to oblong-ellipsoid.

Apothecial ascomata solitary or gregarious, 10-15 mm diameter, sessile, deeply cupulate, with a greyish white (1B1) hymenium when fresh, light orange (5A4) when dry, outer surface dark brown (6F8), covered with scattered short hairs, margin entire, with dense dark brown hairs; marginal hairs, 60-353 × 13-20 µm, wall 2-5 µm thick, with 1-14 septa, brown, superficial, having a single napiform base, with slightly rounded apex; excipular hairs similar, scattered, with a sharp apex; ectal excipulum 138-225 µm thick, of textura angularis, composed of angular to subglobose cells, 15-55 × 10-30 µm, walls of cells brown or hyaline, tissues turning greyish ruby (12C7) to reddish in Melzer´s reagent (dextrinoid reaction); medullary excipulum 80-130 µm thick, of textura intricata, made of hyphae 4-8 µm diameter, hyaline, without reaction in Melzer´s reagent; paraphyses hyaline, septate, filiform, 5-7 µm diameter at the apex, widened, some widened or having a bulge in the top cell; asci 217-237 × 12-15 µm, cylindrical, with croziers, hyaline, containing 8 uniseriate spores, inamyloid; ascospores 19-25 × 10-15 µm (X=21.7 × 12.5 µm, n=60), Q=1.5-2, Qm=1.7, ellipsoid to oblong-ellipsoid, hyaline, ornamented with cyanophilous warts, 1 µm high (side view), disappearing with 5% KOH.

Habitat: on soil, under Quercus rysophylla Weath. and Q. polymorpha Schltdl. & Cham.

Distribution: only known from the type locality.

Etymology: from Latin seta, meaning “hair”, and margo, meaning “edge, margin”, referring to the abundant hairs in the margin of the apothecium.

Additional material examined: MEXICO. Tamaulipas, Victoria municipality, Puerto El Paraíso community, 1650 m a.s.l., 23°31'38.99"N, 99°12'20.04"W, 01.XI.2019, M. Sánchez 1847 (ITCV), 1852 (ITCV).

Notes: Humaria setimarginata is characterized by its abundant, short marginal hairs, contrary to H. hemisphaerica which has longer hairs (sometimes reaching more than 1000 µm, see table 2), mostly concentrated on the edge of the margin. This species also differs from H. hemisphaerica by the dextrinoid reaction of the ectal excipulum with Melzer's reagent and by slightly smaller ascospores (24 × 14 µm). It also differs from H. cazaresii, which is a hypogeous species which has smaller ascospores 18-21 × (12)14-16 µm (Smith et al., 2006). Finally, H. setimarginata is considered to be associated with Q. rysophylla and Q. polymorpha.

Table 2: Comparison of species of Humaria (Fr.) Boud, in the American continent with species of the Humaria hemisphaerica (F.H. Wigg.) Fuckel complex. 

Species Distribution Apothecia Hymenium Marginal hairs Asci Ascospores Paraphyses Reference
H. cazaresii (M.E. Sm. & Trappe) M.E. Sm., Healy & P. Alvarado USA 10 mm diameter, hypogeous No data Without hairs 170-220 × 10-13 µm 18-21 × (12) 14- 16 µm 2.5- 5 µm Smith et al., 2006
H. hemisphaerica (F.H. Wigg.) Fuckel England 30 mm diameter White or whitish 500-1000 × 20 µm 350 × 20 µm 20-24 × 10-12 µm 7-8 µm Dennis, 1981
H. hemisphaerica (F.H. Wigg.) Fuckel Europe and USA 20-30 mm diameter, White or whitish 400-500 × 15-20 µm 325 × 15-18 µm 25-27 × 12-15 µm 7-8 µm Seaver, 1928
H. hemisphaerica (F.H. Wigg.) Fuckel France 6-30 mm diameter Dull white to pale grey 120-1300 ×17-28 µm 205-270 × 16-25 µm 20-24 × 11.5-14 µm 5-9 µm Van Vooren 2014
H. hemisphaerica (F.H. Wigg.) Fuckel Germany No data White No data 168 × 16 µm 24 × 14 µm No data Fuckel 1870
Humaria hemisphaerica (F.H. Wigg.) Fuckel Mexico 10-30 mm diameter Whitish 770-850 × 20-22 µm 250-300 × 13.2- 16.5 µm 19.8-20.9 × 11- 12.1 µm 5.5-7.7 µm Bautista et al., 1986
Humaria hemisphaerica (F.H. Wigg.) Fuckel Mexico 15-30 mm diameter Whitish 400-830 × 13-19 µm 190-230 × 10-13 µm 13-19 × 6-8 µm 3-4 µm Ortega-López (2015)
H. hemisphaerica (F.H. Wigg.) Fuckel Turkey 10-30 mm diameter, 5-15 mm high Whitish or greyish No data No data 22-27 × 12-15 µm No data Sesli, (1998)
H. hemisphaerica (F.H. Wigg.) Fuckel USA 10-30 mm diameter Whitish to pale grey No data 230-270 (350) × 19-23 µm 22-27 × 10-13 µm No data Beug et al. (2014)
H. setimarginata Sánchez-Flores, Raymundo, Van Vooren & García- Jiménez Mexico 10-15 mm diameter greyish white 60-353 × 13-20 µm 217-237 × 12-14 µm 19-25 × 10-15 µm 5-7 µm This study

Discussion

Humaria setimarginata sp. nov. only known from the type specimen in Quercus forests in Mexico, is proposed based on the combination of morphological, ecological, and molecular characters. One of the main characters that differentiates this species is the dextrinoid reaction of the ectal excipulum in Melzer’s reagent, a feature that has not been seen in other specimens or reported in current descriptions of H. hemisphaerica or any other species of Humaria. In addition, H. hemisphaerica differs from H. setimarginata in the size of ascospores and the size of the marginal hairs (see table 2). One of the problems in differentiating H. hemisphaerica is the wide range of macro and microscopic characters that have been provided in the literature. Dennis (1981) described the latter with slightly narrower ascospores 20-24 × 10-12 µm, wider asci 350 × 20 µm and wider paraphyses 7-8 µm. Fuckel (1870) gives ascospores measuring 24 × 14 µm. Sesli (1998) described larger ascospores, 22-27 × 12-15 µm. Van Vooren (2014) indicated 20-24(-25) × (11-)11.5-14 µm for ascospore dimensions. In Mexico, Bautista et al. (1986) described this species as having longer hairs, 770-850 × 20-22 µm, and smaller and narrower ascospores 19-21 × 11-12 µm. Ortega López (2015), in his master's thesis, described it with larger and narrower hairs, 400-830 × 10-13 µm, and with smaller and narrower ascospores, 13-19 × 6-8 µm.

All these variations in spore size and hair dimensions suggest the existence of several potential distinct species named under H. hemisphaerica. Our phylogeny (Fig. 2) shows that such a diversity exists in the genus Humaria. A detailed revision of the H. hemisphaerica species complex is required, including type study, but this is beyond the aim of our article.

Reports of Humaria species in Mexico are scarce, as are their descriptions; this is probably due to the morphological similarity of the collections made in the country. However, the macro and microscopic differences could cause them to be classified as different taxa. Considering that Humaria is an ectomychorrizal genus (Tedersoo et al., 2006; Erős-Honti et al., 2008) and the country has a high diversity of ecosystems, being the home of 161 species of Quercus (Valencia-A, 2004) and 50 of Pinus (Gernandt and Pérez-de la Rosa, 2014; Pérez-de la Rosa and Gernandt, 2017), we believe that a comprehensive review of the genus is needed. It is imperative that morphological and phylogenetic studies of other collections identified as Humaria hemisphaerica be carried out, as well as their ecology.

Acknowledgements

MSF, CRMG and JGJ thank the Instituto Tecnológico de Ciudad Victoria. All authors thank María Berenit Mendoza Garfias, from LaNaBio, IBUNAM (Laboratorio de Microscopia y Fotografía de la Biodiversidad 1, Instituto de Biología, Universidad Nacional Autónoma de México), for the SEM photographs of ascospores, and Laura Márquez and Nelly López from LaNaBio, IBUNAM, for sequencing the PCR products.

Literature cited

Bautista, N., S. Chacón and G. Guzmán. 1986. Ascomicetes poco conocidos de México. III. Especies del Estado de Morelos. Revista Mexicana de Micología 2: 85-104. [ Links ]

Berthet, P. 1964. Essai biotaxinomique sur les Discomycètes. Thèse de la Faculté des sciences de l’Université de Lyon. Lyon, France. 158 pp. [ Links ]

Beug, M., A. E. Bessette and A. R. Bessette. 2014. Ascomycete Fungi of North America a Mushroom Reference Guide. University of Texas Press. Texas, USA. 488 pp. DOI: https://doi.org/10.7560/754522 [ Links ]

Boudier, E. 1885. Nouvelle classification naturelle des discomycètes charnus connus généralement sous le nom de Pézizes. Bulletin de la Société mycologique de France 1: 91-120. [ Links ]

Chacón, S. andG. Guzmán. 1983. Especies de macromicetos citadas de México, V. Ascomycetes, parte II. Boletín de la Sociedad Mexicana de Micología 18: 103-114. [ Links ]

Cifuentes, J., M. Villegas and L. Pérez-Ramírez. 1986. Hongos. In: Lot, A. y F. Chiang (eds.). Manual de Herbario. Consejo Nacional de la Flora de México, A.C. México, D.F., México. Pp. 55-64. [ Links ]

Clements, F. E. and C. L. Shear. 1931. The genera of Fungi. Hafner Publishing. New York, USA. 496 pp. + pl. 1-58. DOI: https://doi.org/10.5962/bhl.title.5704 [ Links ]

Cooke, M. C. 1879. Mycographis, seu icones fungorum. 1. Discomycetes. London, UK. Pp. 267. [ Links ]

Cubeta, M. A., E. Echandi, T. Abernethy and R. Vilgalys. 1991. Characterization of anastomosis groups of binucleate Rhizoctonia species using restriction analysis of an amplified ribosomal RNA gene. Phytopathology 81(11): 1395-1400. DOI: https://doi.org/10.1094/Phyto-81-1395 [ Links ]

Denison, W. C. 1959. Some species of the genus Scutellinia. Mycologia 51(5): 605-635. DOI: https://doi.org/10.1080/00275514.1959.12024845 [ Links ]

Dennis, R. W. G. 1960. British cup fungi and their allies. Ray Society. London, UK. 280 pp. [ Links ]

Dennis, R. W. G. 1981. British Ascomycetes. Ed. J. Cramer. Vaduz, Germany. 585 pp. [ Links ]

Díaz-Barriga, H., F. Guevara and R. Valenzuela. 1988. Contribución al conocimiento de los macromicetos del estado de Michoacán. Acta Botanica Mexicana 2: 21-44. DOI: https://doi.org/10.21829/abm2.1988.564 [ Links ]

Eckblad, F. E. 1968. The genera of operculate Discomycetes. A re-evaluation of their taxonomy, phylogeny and nomenclature. Nytt Magasin for Botanikk 15(1-2): 1-191. [ Links ]

Erős-Honti, Z., G. M. Kovács, G. Szedlay and E. Jakucs. 2008. Morphological and molecular characterization of Humaria and Genea ectomycorrhizae from Hungarian deciduous forests. Mycorrhiza 18(3): 133-143. DOI: https://doi.org/10.1007/s00572-008-0164-7 [ Links ]

Esqueda, M., E. Pérez-Silva and M. Coronado-Andrade. 1992. Nuevos registros de Pezizales para Sonora. Revista Mexicana de Micología 8: 43-54. [ Links ]

Frandsen, P. B., B. Calcott, C. Mayer and R. Lanfear. 2015. Automatic selection of partitioning schemes for phylogenetic analyses using iterative k-means clustering of site rates. BMC Evolutionary Biology 15: 13. DOI: https://doi.org/10.1186/s12862-015-0283-7 [ Links ]

Fries, E. M. 1822. Systema mycologicum, sistens fungorum ordines, genera et species, huc usque cognitas. Vol. II, 1st part. Gryphiswaldiae, Ernesti Mauritii. Gryphiswaldia, Germany. 274 pp. [ Links ]

Frutis, I. and G. Guzmán. 1983. Contribución al conocimiento de los hongos del Estado de Hidalgo. Boletín de la Sociedad Mexicana de Micología 18: 219-265. [ Links ]

Fuckel, L. 1870. Symbolae mycologicae. Beiträge zur Kenntniss der rheinischen Pilze. Jahrbücher des Nassauischen Vereins für Naturkunde 23-24: 1-459. [ Links ]

Gándara, E., L. Guzmán-Dávalos, G. Guzmán and O. Rodríguez. 2014. Inventario micobiótico de la región de Tapalpa, Jalisco, México. Acta Botanica Mexicana 107: 165-185. DOI: https://doi.org/10.21829/abm107.2014.207 [ Links ]

García, J., R. Valenzuela, T. Raymundo, L. J. García-Morales, G. Guevara, F. Garza, E. Cázares and E. R. Cancino. 2014. Macrohongos asociados a encinares (Quercus spp.) en algunas localidades del estado de Tamaulipas, México. In: Correa Sandoval, A., J. V. Horta-Vega, J. García-Jiménez and L. Barrientos Lozano (eds.). Biodiversidad Tamaulipeca, Vol. 2, No. 1. Instituto Tecnológico de Ciudad Victoria. Cd. Victoria, México. Pp. 103-140. [ Links ]

García Jiménez, J. and G. Guevara Guerrero. 2005. Macromicetos (Hongos superiores) de Tamaulipas. In: Barrientos-Lozano, L., A. Correa Sandoval, J. V. Horta-Vega and J. García-Jiménez (eds.). Biodiversidad Tamaulipeca, Vol. 1. Dirección General de Educación Superior Tecnológica-Instituto Tecnológico de Ciudad Victoria. Cd. Victoria, Mexico. Pp. 67-79. [ Links ]

García Jiménez, J. andR. Valenzuela . 2005. 30 Hongos macromicetos. In: Sánchez-Ramos, G., P. Reyes-Castillo and R. Dirzo (eds.). Historia Natural de la Reserva de la Biosfera El Cielo, Tamaulipas, México. Universidad Autónoma de Tamaulipas. Cd. Victoria, Mexico. Pp. 321-337. [ Links ]

Gardes, M. and T. D. Bruns. 1993. ITS primers with enhanced specificity for Basidiomycetes - application to the identification of mycorrhizae and rusts. Molecular Ecology 2(2): 113-118. DOI: https://doi.org/10.1111/j.1365-294X.1993.tb00005.x [ Links ]

GenBank. 2022. National Center of Biotechnology Information. National Library of Medicine (NIH) https://www.ncbi.nlm.nih.gov/genbank (consulted April, 2022). [ Links ]

Gernandt, D. S. and J. A. Pérez-de la Rosa. 2014. Biodiversidad de Pinophyta (coníferas) en México. Revista Mexicana de Biodiversidad 85(1): S126-S133. DOI: https://doi.org/10.7550/rmb.32195 [ Links ]

Hansen K., B. A. Perry, A. W. Dranginis and D. H. Pfister. 2013. A phylogeny of the highly diverse cup-fungus family Pyronemataceae (Pezizomycetes, Ascomycota) clarifies relationships and evolution of selected life history traits. Molecular Phylogenetics and Evolution 67(2): 311-335. DOI: https://doi.org/10.1016/j.ympev.2013.01.014 [ Links ]

Healy, R. A., A. E. Arnold, G. Bonito, Y. L. Huang, B. Lemmond, D. H. Pfister and M. E. Smith. 2022. Endophytism and endolichenism in Pezizomycetes: the exception or the rule? New Phytologist 233(5): 1974-1983. DOI: https://doi.org/10.1111/nph.17886 [ Links ]

Heredia, G. 1989. Estudio de los hongos de la Reserva de la Biósfera El Cielo, Tamaulipas. Consideraciones sobre la distribución y ecología de algunas especies. Acta Botanica Mexicana 7: 1-18. DOI: https://doi.org/10.21829/abm7.1989.577 [ Links ]

Huelsenbeck, J. P. and F. Ronquist. 2001. MrBayes: Bayesian inference of phylogeny. Bioinformatics 17(8): 754-755. DOI: https://doi.org/10.1093/bioinformatics/17.8.754 [ Links ]

Index Fungorum. 2022. Index Fungorum database. http://www.indexfungorum.org/Names/Names.asp (consulted August, 2022). [ Links ]

Katoh, K. and D. M. Standley. 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30(4): 772-780. DOI: https://doi.org/10.1093/molbev/mst010 [ Links ]

Katoh, K. , J. Rozewicki and K. D. Yamada. 2017. MAFFT online service: multiple sequence alignment, interactive sequence choice and visualization. Briefings in Bioinformatics 20(4): 1160-1166. DOI: https://doi.org/10.1093/bib/bbx108 [ Links ]

Katoh, K. , K. Misawa, K. Kuma and T. Miyata. 2002. MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. Nucleic Acids Research 30(14): 3059-3066. DOI: https://doi.org/10.1093/nar/gkf436 [ Links ]

Korf, R. P. 1972. Synoptic key to the genera of Pezizales. Mycologia 64(5): 937-994. DOI: https://doi.org/10.2307/3758070 [ Links ]

Kornerup, A. and J. H. Wanscher. 1978. Methuen Handbook of Colour. 3a. ed. Eyre Methuen. London, UK. 252 pp. [ Links ]

Lanfear, R., B. Calcott , D. Kainer, C. Mayer and A. Stamatakis. 2014. Selecting optimal partitioning schemes for phylogenomic datasets. BMC Evolutionary Biology 14(1): 82. DOI: https://doi.org/10.1186/1471-2148-14-82 [ Links ]

Lanfear, R. , P. B. Frandsen, A. M. Wright, T. Senfeld andB. Calcott . 2016. Partition Finder 2: new methods for selecting partitioned models of evolution for molecular and morphological phylogenetic analyses. Molecular Biology and Evolution 34(3): 772-773. DOI: https://doi.org/10.1093/molbev/msw260 [ Links ]

Le Gal, M. 1947. Recherches sur les ornemantations sporales des discomycètes operculés. Tesis doctoral en ciencias. Facultad de Ciencias de la Universidad de París-Sorbona. París, Francia. 297 pp. [ Links ]

Martínez-González, C. R., R. Ramírez-Mendoza, J. Jiménez-Ramírez, C. Gallegos-Vázquez and I. Luna-Vega. 2017. Improved method for genomic DNA extraction for Opuntia Mill. (Cactaceae). Plant Methods 13: 1-10. DOI: https://doi.org/10.1186/s13007-017-0234-y [ Links ]

Moser, M. 1963. Kleine Kryptogamenflora. Band IIa. Ascomyceten. Gustav Fischer Verlag. Stuttgart, Germany. 147 pp. [ Links ]

Müller, K., D. Quandt, J. Müller and C. Neinhuis. 2005. PhyDE®-Phylogenetic data editor. Program distributed by the authors, ver. 10.0. Available from: https://www.phyde.de (consulted April, 2022). [ Links ]

Mullis, K. B. and F. A. Faloona. 1987. Specific synthesis of DNA in vitro via a polymerase-catalyzed chain reaction. Methods in Enzymology 155: 335-350. DOI: https://doi.org/10.1016/0076-6879(87)55023-6 [ Links ]

Ortega López, I. 2015. Descripción de especies xilófagas del orden Pezizales (Pezizomycetes, Ascomycota) en cuatro tipos de vegetación de la Sierra Norte y Sur del estado de Oaxaca. Tesis de maestría. Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional. Cd. Mx., México. 83 pp. [ Links ]

Pérez-de la Rosa, J. A. and D. S. Gernandt. 2017. Pinus vallartensis (Pinaceae), a new species from western Jalisco, Mexico. Phytotaxa 331(2): 233-242. DOI: https://doi.org/10.11646/phytotaxa.331.2.7 [ Links ]

Perry, B. A., K. Hansen andD. H. Pfister . 2007. A phylogenetic overview of the family Pyronemataceae (Ascomycota, Pezizales). Mycological Research 3: 549-571. DOI: https://doi.org/10.1016/j.mycres.2007.03.014 [ Links ]

Pompa-González, A. and J. Cifuentes. 1991. Estudio taxonómico de los Pezizales de los estados de Guerrero, Hidalgo, Estado de México y Michoacán. Revista Mexicana de Micología 7: 87-112. [ Links ]

Rambaut, A., M. A. Suchard, D. Xie and A. J. Drummond. 2014. Tracer v. 1.6. http://beast.bio.ed.ac.uk/Tracer (consulted May, 2022). [ Links ]

Raymundo, T., E. Aguirre-Acosta, S. Bautista-Hernández, M. Contreras-Pacheco, P. Garma, H. León-Avendaño andR. Valenzuela . 2013. Catálogo de los Ascomycota en los bosques de Santa Martha Latuvi, Sierra Norte, Oaxaca, México. Boletín de la Sociedad Micológica de Madrid 37: 13-29. [ Links ]

Raymundo, T. , R. Díaz-Moreno, S. Bautista-Hernández , E. Aguirre-Acosta andR. Valenzuela . 2012. Diversidad de ascomicetes macroscópicos en Bosque Las Bayas, municipio de Pueblo Nuevo, Durango, México. Revista Mexicana de Biodiversidad 83: 1-14. DOI: https://doi.org/10.22201/ib.20078706e.2012.1.1241 [ Links ]

Rifai, M. A. 1968. The Australian Pezizales in the Herbarium of the Royal Batonic Gardens Kew. Verhandelingen der Koninklijke Nederlandse, Afdeling Natuurkunde II, 57(3): 1-295. [ Links ]

Rodríguez-Alcántar, O., D. Figueroa García and M. J. Herrera-Fonseca. 2019. Catálogo de los hongos de San Sebastián del Oeste, Jalisco, México. Acta Botanica Mexicana 126: e1364. DOI: https://doi.org/10.21829/abm126.2019.1364 [ Links ]

Rodríguez-Alcántar, O. , D. Figueroa-García andM. J. Herrera-Fonseca . 2018. Catálogo de los hongos del Volcán de Tequila, municipio de Tequila, Jalisco, México. Polibotánica 45: 15-33. DOI: https://doi.org/10.18387/polibotanica.45.3 [ Links ]

Rudawska, M., T. Leski, R. Wilgan, L. Karliński, M. Kujawska and D. Janowski. 2018. Mycorrhiza l associations of the exotic hickory trees, Carya laciniosa and Carya cordiformis, grown in Kórnik Arboretum in Poland. Mycorrhiza 28: 549-560. DOI: https://doi.org/10.1007/s00572-018-0846-8 [ Links ]

Seaver, F. J. 1928. The North America Cup-Fungi (Operculates). Lubrecht and Cramer. Monticello, USA. 337 pp. [ Links ]

Sesli, E. 1998. Four Interesting Records of Pezizales of the Macrofungal Flora of Turkey. Turkish Journal of Botany 22(4): 289-293. [ Links ]

Smith, M. E., J. M. Trappe and D. M. Rizzo. 2006. Genea, Genabea and Gilkeya gen. nov.: ascomata and ectomycorrhiza formation in a Quercus woodland. Mycologia 98(5): 699-716. DOI: https://doi.org/10.3852/mycologia.98.5.699 [ Links ]

Stamatakis, A. 2014. RAxML ver. 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9): 1312-1313. DOI: https://doi.org/10.1093/bioinformatics/btu033 [ Links ]

Tedersoo, L., K. Hansen , B. A. Perry and R. Kjøller. 2006. Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytologist 170: 581-596. DOI: https://doi.org/10.1111/j.1469-8137.2006.01678.x [ Links ]

Ulloa, M. and R. T. Hanlin. 2006. Nuevo diccionario ilustrado de Micología. APS Press. St. Paul, USA. 615 pp. [ Links ]

Valencia-A., S. 2004. Diversidad del género Quercus (Fagaceae) en México. Boletín de la Sociedad Botánica de México 75: 33-53. DOI: https://doi.org/10.17129/botsci.1692 [ Links ]

Van Vooren, N. 2014. Contribution à la connaissance des Pézizales (Ascomycota) de Rhône-Alpes - 1re partie. Cahiers de la FMBDS 3: 1-148. [ Links ]

Van Vooren, N., F. J. Valencia López, M. Carbone, U. Lindemann, M. Vega and F. Valade. 2021. Exploring the European Trichophaea-like discomycetes (Pezizales) using morphological, ecological and molecular data. Ascomycete.org 13(1): 5-48. DOI: https://doi.org/10.25664/art-0315 [ Links ]

Velenovský, J. 1934. Monographia Discomycetum Bohemiae. Pars 1. Prague, Czech Republic. 436 pp. [ Links ]

Vilgalys, R. and M. Hester. 1990. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. Journal of Bacteriology 72(8): 4238-4246. DOI: https://doi.org/10.1128/jb.172.8.4238- 4246.1990 [ Links ]

Villarruel-Ordaz, J. and J. Cifuentes. 2007. Macromicetos de la Cuenca del Río Magdalena y zonas adyacentes, Delegación la Magdalena Contreras, México, D.F. Revista Mexicana de Micología 25: 59-68. [ Links ]

White, T. J., T. D. Bruns , S. B. Lee and J. W. Taylor. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M. A., D. H. Gelfand, J. J. Sninsky and T. J. White (eds.). PCR Protocols: a guide to methods and applications. Academic Press. New York, USA. 135-322. DOI: https://doi.org/10.1016/B978-0-12-372180-8.50042-1 [ Links ]

Author contributions

MSF, TR and JGJ conceived and designed the study. MSF collected the species. MSF, TR, NVV and JGJ contributed to the acquisition of important data for the study. CRMG extracted the DNA and realized amplification and phylogenetic analysis. The photos were taken by MSF. All authors contributed to the discussion, review, and approval of the final manuscript.

Funding

MSF, TR and JGJ thank the Consejo Nacional de Ciencia y Tecnología (CONACYT). TR thanks the Instituto Politécnico Nacional Project SIP-20230017.

Received: October 26, 2022; Revised: December 12, 2022; Accepted: May 03, 2023; Published: May 15, 2023

4Autor para la correspondencia: jgarjim@yahoo.com.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License