Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista internacional de contaminación ambiental
versión impresa ISSN 0188-4999
Resumen
STAMATIU-SANCHEZ, Katina et al. Tolerance of filamentous fungi to endosulfan, chlorpyrifos and chorotalonil in in vitro conditions. Rev. Int. Contam. Ambient [online]. 2015, vol.31, n.1, pp.23-37. ISSN 0188-4999.
Endosulfan (EN), chlorpyrifos (CRP) and chlorothalonil (CTL) are carcinogenic and toxic pesticides in the environment, by which bioremediation efficient actions must be directed for detoxifying contaminated systems. Fungi such as Phanerochaete chrysospo-rium (PC), Trametes versicolor (TV) and some species of Trichoderma (TRI), Mucor, Fusarium and Penicillium are able to degrade pesticides. Seven fungal strains were isolated from agricultural soil, wheat straw, and wheat straw pieces. The seven fungal strains as well as three referential fungi (PC, TV and TRI) were cultivated by triplicate in Petri dishes with minimal mineral medium contaminated with increased doses of EN, CRP or CTL for 18 days. The mycelial growth (MG) and the percentage of growth inhibition (PGI) were determined. The three pesticides negatively affected the MG, but the fungal recovery was observed after 72 h for EN and CRP. At 18 days, strains K14S, PC, TV and TRI showed total recovery when exposed to EN. In contrast, all fungal strains showed a recovery to CRP at the 10th day. The MG for most fungal strains was significantly inhibited (P < 0.0001) due to during CTL at 18 days. The fungicide CTL resulted in highest PGI, but strains K8S, K14S, K11TP, PC and TV were less affected. The fungal strains K12P, K8S, K14S, and K11TP showed acceptable tolerance to the three pesticides comparable to PC, TV and TRI. These four fungal strains are good candidates for being used for pesticide bioremediation.
Palabras llave : pesticides; chlorinated insecticide; organophosphate insecticide; polychlorinated fungicide; fungal growth; fungal inhibition.