Introducción
Los ambientes lóticos (ríos, arroyos, riachuelos) son el sistema dominante de las aguas epicontinentales y se diferencian de otros sistemas acuáticos por tener un flujo de agua unidireccional (Guiller & Malmqvist, 1998). Estos sistemas forman redes hidrológicas que capturan el agua de manera jerárquica y la concentran en un cauce principal (Sánchez et al., 2003) por lo que enlazan múltiples componentes del paisaje, incluyendo los suelos y las aguas subterráneas con la atmósfera y los océanos (Battin et al., 2009). Su flujo se utiliza como fuente de energía e influye en el clima de la Tierra (Palmer, 1997). Es por ello que el estudio de estos ambientes y de la comunidad biológica que en ellos habita, brinda información del ambiente que los rodea e incluso de regiones más lejanas.
Los ríos son ambientes altamente diversos donde la combinación de variables espaciales y temporales ejerce una fuerte influencia sobre el establecimiento, la distribución e interacciones de los organismos (Scarsbrook & Townsend, 1993). Las principales variables que inciden sobre el establecimiento y permanencia de las comunidades autótrofas en los ríos son la disponibilidad lumínica y la velocidad de corriente (Allan, 1995; Krupek et al., 2007; Krupek et al., 2012; Bojorge-García et al., 2014).
Las algas adheridas al sustrato habitan de manera exitosa los ambientes lóticos, ya que han desarrollado una gran diversidad de estructuras especializadas que les permite fijarse al sustrato y evita que sean arrancadas por la velocidad de corriente (Carmona et al., 2005; Ramírez & Carmona, 2005; Carmona et al., 2006). Asimismo, los pigmentos accesorios (ej. clorofila b, c, d y ficobiliproteínas) que poseen, captan el intervalo de la luz fotosintéticamente activa (PAR, por sus siglas en inglés, 400-700 nm) que la clorofila a no absorbe, lo que les permite establecerse en un mayor número de microhábitats que las plantas vasculares.
Por otra parte, las algas bentónicas tienen una gran capacidad para responder rápidamente a los cambios ambientales gracias a sus historias de vida cortas, estrategias reproductivas y estructuras especializadas. Por ejemplo, algunas poblaciones presentan talos dioicos, germinación de cigotos al interior del talo y fragmentación o bipartición del talo vegetativo, que permiten incrementar el éxito reproductivo. Mientras que para asegurar la permanencia de las poblaciones en las épocas de mayor descarga cuando los crecimientos visibles desaparecen, desarrollan estructuras de resistencia (esporas, auxosporas o rizoides) o fases alternantes del ciclo de vida (como la fase Chantransia de las algas rojas) que toleran el efecto mecánico del agua (Carmona et al., 2006). En las épocas de estiaje y alta luminosidad desarrollan mucilagos que las protegen de la desecación, asegurando de esta manera su permanencia (Boney, 1981).
Las algas bentónicas tienen un papel importante en los ambientes lóticos, ya que participan intensamente en los ciclos biogeoquímicos, la retención de nutrientes, la formación y estabilidad de los sedimentos y modifican la velocidad de la corriente, lo que genera microhábitats que son utilizados por otros organismos acuáticos (peces y macroinvertebrados) como zonas de refugio, para depositar sus huevos o como alimento (Stevenson, 1996; Graham & Wilcox, 2000).
También son consideradas los productores primarios de mayor importancia en los sistemas lóticos (Minshall, 1978), debido a que son más abundantes y permanentes que las plantas vasculares acuáticas y tienen la capacidad de transformar elementos químicos inorgánicos de diversas fuentes (Fig. 1) en compuestos orgánicos, que pueden ser empleados por organismos de otros niveles tróficos (Round, 1981; Mulholland et al., 1994; Guiller & Malmqvist, 1998; Cushing & Allan, 2001).
El presente escrito está estructurado con los siguientes apartados: productividad primaria y ecofisiología, ciclos biogeoquímicos, interacciones tróficas, efectos de los crecimientos algales en la velocidad de corriente, en la estabilidad de sedimentos y en la disponibilidad de refugios, y finalmente, la relación de las algas de ríos con los humanos. Con lo anterior, se pretende poner en evidencia la importancia que tiene la comunidad fotosintética algal de los ambientes lóticos, no sólo para la dinámica de estos ambientes, sino también para otros sistemas biológicos.
Productividad primaria y ecofisiología. La incorporación de energía a las redes tróficas de los ambientes lóticos puede ser de origen alóctono, mediante el ingreso de materia orgánica de origen terrestre (sobre todo de la vegetación riparia) o autóctono, mediante la de los autótrofos que habitan en el agua: algas, musgos y plantas vasculares acuáticas. En términos de productividad primaria se considera que la comunidad de algas bentónicas es el soporte energético de las redes tróficas de los ambientes lóticos de bajo orden (Biggs, 2000), ya que su elevada productividad le permite sostener una comunidad de herbívoros de entre 10 y 20 veces más biomasa que la suya (McIntire, 1973; Gregory, 1980).
La importancia de la fuente de energía autóctona para satisfacer las demandas energéticas de las redes tróficas de los sistemas lóticos y en particular la de las algas bentónicas, ha sido confirmada por estudios efectuados principalmente con isótopos estables, como los realizados por Lau y colaboradores (2009), quienes reportan que las algas representan del 29 % al 98 % de la biomasa que usan los consumidores en nacimientos de ríos tropicales.
La productividad primaria autóctona del bentos como soporte energético de la trama trófica de los ambientes lóticos y en particular la de las algas, es importante tanto para los ríos con bajo ingreso de material de origen alóctono como los de alto ingreso (Dudley et al., 1986; Biggs, 2000; Kobayashi et al., 2011). Ésto se debe principalmente a que: 1) las algas y cianofitas son los organismos autótrofos de mayor abundancia en el bentos (Biggs, 2000); y 2) son la fracción más importante en términos de alimento efectivamente asimilado por la biota (Mantel et al., 2004; Brito et al., 2006; Lau et al., 2009; Kobayashi et al., 2011) por su fácil digestión, debido a la ausencia de lignina y otras estructuras vegetales, lo que los hace un recurso más accesible que las plantas vasculares acuáticas para los invertebrados y los peces (Boland et al., 2008); además de, 3) ser un alimento de mayor calidad que los detritos al tener una menor relación carbono-nitrógeno (C:N) (Cummins & Klug, 1979; Hauer & Lamberti, 2007).
Otro aspecto interesante de las algas, que tiene que ver con su ecofisiología, es el relacionado a su sensibilidad y pronta capacidad de respuesta ante la eutroficación de las aguas de los ríos, producto de la incorporación de diferentes sustancias derivadas de actividades antrópicas diversas como la agricultura, la industria y los desechos de las ciudades. Para ello, se han desarrollado una serie de índices que permiten valorar la respuesta de algún grupo de algas específico, por ejemplo el índice trófico de diatomeas (TDI por sus siglas en inglés, Kelly & Whitton, 1995), o de varios grupos como el índice trófico del perifiton (PIT por sus siglas en inglés, Schneider & Lindstrøm, 2011). Este último, fue realizado para ríos Nórdicos y compila información para más de 350 sitios en las tierras bajas de Noruega, que relaciona la concentración de fósforo en las aguas y la presencia de algas en un gradiente de condiciones que van de oligotróficas a eutróficas.
Otro ejemplo, se muestra en el estudio realizado por Loza y colaboradoras (2014), quienes estudiaron varias cianobacterias del río Guadarrama en España y realizaron bioensayos con enriquecimiento de fósforo y nitrógeno, reconociendo los límites de tolerancia de las especies. Con ello, pueden relacionar las fomas de crecimiento en relación a concentraciones de nutrientes, información valiosa para el manejo ambiental.
Otro tema interesante, ha sido el conocer cómo pueden vivir ciertas algas en ríos con bajos contenidos minerales y pequeñas concentraciones de nitrógeno y fósforo. Para entender como las cianobacterias asimilan el fósforo en ríos oligotróficos, el estudio de Wood y colaboradores (2015), pone de manifiesto el papel crucial que tiene la vaina en dicho proceso. Realizaron estudios con Phormidium que crece en ríos oligotróficos de Nueva Zelanda, observaron que las matas de filamentos de Phormidium tienen una delgada y adherente matriz mucilaginosa con el sustrato y observaron que en el día la actividad fotosintética eleva el pH dentro de las matas y por las noches la respiración reduce el oxígeno disuelto. Estas condiciones, permiten la liberación de los fosfatos de los sedimentos, posibilitando su incorporación dentro de las matas de filamentos, mismos que Phormidium emplea para su crecimiento. Los resultados que obtuvieron, mostraron que los sedimentos finos son una fuente de fósforo que posibilita el crecimiento y la proliferación de los crecimientos de Phormidium (Wood et al., 2015).
Los ciclos biogeoquímicos. Dichos ciclos son los responsables del movimiento e intercambio de materia y energía entre la atmósfera, la hidrósfera, la litósfera y la biósfera (Graham & Wilcox, 2000). Los ciclos biogeoquímicos en todos los ecosistemas constan de una secuencia de procesos que incluyen: 1) la captura de elementos inorgánicos (en algunos casos orgánicos) por la biota; 2) la transferencia de estos elementos de un organismo a otro a través de las redes tróficas; 3) la liberación al ambiente de los elementos en formas biodisponibles (formas solubles, re-mineralización) y 4) la re-asimilación de los elementos por los organismos (Mulholland, 1996).
Las algas participan activamente en los ciclos de nutrientes proporcionando servicios ecosistémicos y biogeoquímicos (Sigee, 2005; Barsanti & Gualtieri, 2006).
En los ambientes lóticos las algas bentónicas intervienen de manera directa en los ciclos biogeoquímicos, por ejemplo: 1) al incrementar la oferta total de nutrientes, ya que son capaces de obtener los nutrientes del sustrato (orgánico o inorgánico) al cual están adheridos a través de difusión pasiva, los procesos de intercambio de iones, o mediante la extracción activa de elementos del sustrato y de la atmósfera; 2) la captación de los nutrientes presentes en el agua del río; y 3) la transformación y remineralización de los nutrientes (Mulholland, 1996) (Fig. 1), ya que ésta sucede en gran medida en el fondo de los ríos cerca de la comunidad bentónica (Ellwood & Whitton, 2007; Wood et al., 2015).
Las algas bentónicas contribuyen con cerca del 2 pg de carbono orgánico terrestre, que se transforma o almacena cada año en los arroyos y ríos a nivel mundial (Battin et al., 2009) y son consideradas las principales captadoras de nitrógeno inorgánico y fósforo (orgánico e inorgánico) que se incorporan en los ríos (Marcarelli et al., 2008).
El nitrógeno es un componente esencial de todos los organismos vivos, este elemento forma parte de las proteínas, ácidos nucleícos y muchas otras biomoléculas (Barsanti & Gualtieri, 2006). El nitrógeno se encuentra dentro de los hábitats de agua dulce en una amplia gama de formas de las cuales únicamente los estados solubles son utilizados por la mayoría de los organismos (Sigee, 2005). Sólo algunos organismos pueden utilizar formas insolubles como es el caso de algunas especies de cianobacterias, que por medio de los heterocistos (células especializadas en la fijación), capturan el nitrógeno atmosférico (NO2) y lo transforman en amoniaco (NH3) y aminoácidos (Stevenson, 1996; Sigee, 2005).
La fijación de nitrógeno atmosférico (N2) por las algas representa hasta el 85% del flujo neto de nitrógeno en el bentos, aunque la importancia de este proceso varía estacionalmente (Grimm & Petrone, 1997; Sigee, 2005), de acuerdo al orden del río y la variación de las características fisicoquímicas del sistema. Por ejemplo, las altas concentraciones de fósforo favorecen la abundancia de taxa fijadores de nitrógeno y el aumento de la tasa de fijación de éste (Marcarelli & Wurtsbaugh, 2007) al incrementar la entrada de nitrógeno en las aguas.
Debido a que la fijación de nitrógeno es energéticamente muy costosa, se plantea que la energía lumínica es muy importante para este proceso, por lo que se espera que la tasa de fijación sea menor en la noche y en ríos sombreados que en el día y en ríos con alta luminosidad (Grimm & Petrone, 1997; Marcarelli et al., 2008). Asimismo, la captura de nitrógeno atmosférico es de menor importancia en los hábitats con alto contenido de nitrógeno, donde las algas bentónicas están más involucradas en la captura diaria de los nitratos y amonio, lo que da lugar en algunos arroyos a una variación diurna en las concentraciones de éstos y otros nutrientes, ya que el pH de las aguas circundantes puede elevarse considerablemente si los nitratos son la fuente de nitrógeno (por ejemplo el pH puede incrementarse de 7 hasta 9.3), o sufrir un leve incremento si es amonio (Sigee, 2005), afectando la disponibilidad y absorción de otros nutrientes.
El fósforo es otro elemento esencial para los seres vivos, ya que es una molécula estructural de la célula al formar parte de los ácidos nucleicos y los fosfolípidos, además de ser parte de la molécula de ATP (Sigee, 2005) que es responsable de las trasformaciones energéticas celulares. Se considera que las algas son un elemento importante en los ambientes acuáticos para la trasferencia de los fosfatos a otros organismos (Barsanti & Gualtieri, 2006). Esto se debe a que las algas son muy eficientes en la captura de este nutriente, ya que poseen enzimas fosfatasas a lo largo de su talo vegetativo que les permite capturar de manera eficaz el fósforo (orgánico e inorgánico) presente en el agua (Whitton et al., 2005). En los ambientes lóticos la comunidad de algas bentónicas es la principal responsable de la captura del fósforo (inorgánico e inorgánico) presente en la columna de agua (Sigee, 2005; Ellwood & Whitton, 2007). Se estima que la comunidad bentónica de los ríos capta entre el 5 % y el 35 % del total del fosfato que se incorpora al sistema (Mulholland, 1996).
La captura del fósforo varía estacionalmente, registrando los valores más altos en promedio en la primavera de ambientes templados (Mulholland, 1996) y en función de la partícula del fósforo disponible, lo que en conjunto con otros factores incide sobre el desarrollo y la estructura de la comunidad heterótrofa de los ambientes lóticos. Por ejemplo en el estudio realizado por Ellwood & Whitton (2007) en un río de montaña del parque Nacional North Yorkshire Dales, los autores relacionaron el cambio de fósforo orgánico a inorgánico en el agua con la disminución de la población de Didymosphenia geminata (Lyngbye) Mart. Schmidt (diatomea pedunculada) que dominaba en el sistema y el incremento de diatomeas no pedunculadas y otras algas cuando el fósforo inorgánico aumentó. Este cambio en la comunidad incrementa las fuentes de alimento para los herbívoros, lo que puede favorecer una comunidad de herbívoros más diversa.
Cuando el fósforo es limitante, varios géneros de cianobacterias y unos pocos géneros de algas eucariotas desarrollan pelos al final del filamento donde se concentra la mayor actividad de las enzimas fosfatasas (Whitton et al., 2005), lo que les confiere una ventaja para la captura de fósforo en comparación a las especies que no los desarrollan (Mahasneh et al., 1990). Este proceso se expresa en un cambio de la composición específica de la comunidad algal como respuesta a los cambios en las concentraciones de fósforo. De esta manera se asegura la entrada de fósforo a las redes tróficas en condiciones limitantes del nutriente lo que mantiene el funcionamiento del ecosistema. Sin embargo, la habilidad de captura de fósforo de las algas puede traer consecuencias fatales para los ecosistemas, ya que el exceso de este nutriente causa crecimientos masivos de algas que provocan desequilibrio en la producción y el consumo (Barsanti & Gualtieri, 2006). Dentro de los ambientes lóticos, los ríos de planicie son más sensibles a presentar esta condición que los ríos de montaña, debido al aporte de materia orgánica proveniente de sus tributarios y la poca pendiente que presentan, lo que favorece la acumulación de la materia orgánica en el lecho del río.
Interacciones en las redes tróficas microbiológicas y macrobiológicas. Dentro de la comunidad bentónica las biopelículas o biofilms, tienen un papel importante en las redes tróficas de los sistemas lóticos, ya que los organismos que habitan dentro de la biopelícula soportan mejor algunas condiciones estresantes como la disminución de nutrientes, cambios de pH, temperatura, humedad, velocidad de corriente e irradiación lumínica que los organismos que habitan fuera de ésta (Boney, 1981; Burkholder, 1996). Debido a ello, las biopelículas son la comunidad más abundante y permanente de estos sistemas, por lo que contribuyen de manera importante en las funciones del ecosistema incluso en los flujos de carbono a gran escala (Besemer et al., 2009). Además son la fuente de alimento de mayor importancia para los protozoarios, macroinvertebrados bentónicos, algunos peces y crustáceos (Fuller et al., 1986; Bott, 1996; Pusch et al., 1998; Julius, 2007; Lefrancois et al., 2011). Las biopelículas están compuestas por hongos, bacterias, cianobacterias, algas eucariotas y microfauna (Romaní et al., 2008), la abundancia de estos organismos varía de acuerdo a la etapa seral de la sucesión en la que se encuentra la biopelícula (Besemer et al., 2007). Sin embargo, en varios estudios se reporta que la comunidad autótrofa es el componente mayoritario de las biopelículas (Romaní et al., 2004; Besemer et al., 2009).
La composición de la biopelícula será modificada por la interacción de sus poblaciones, la depredación, la herbivoría y las características fisicoquímicas del medio ambiente. A su vez, la estructura física y calidad nutricional de la biopelícula influye en la composición y abundancia de los herbívoros que junto con los factores ambientales, determina las interacciones de las redes tróficas (Bott, 1996). Aboal y colaboradores (2005) destacan la importancia de los mucílagos algales en la retención y acumulación de sustancias tóxicas y como ésto puede conferir ventajas para las algas, por ejemplo, indican que las algas que producen mucílago pueden beneficiarse de la producción de cianotoxinas de las cianobacterias, ya que la acumulación de microcistina en el mucilago hace que los macroinvertebrados disminuyan su consumo, reflejándose en la dominancia de colonias de Cymbella (diatomea) en algunos ríos calcáreos de España. La dominancia de una especie puede provocar una disminución de la población de macroinvertebrados, al disminuir la variabilidad del alimento. Por ejemplo, Julius (2007) documentó en ríos de Hawaii que las diatomeas bentónicas son la principal fuente de alimento para el pez Sicyopterus stimpsoni Gill, de tal manera que la estructura de la mandíbula de los peces adultos, está modificada para realizar el raspado de las comunidades de algas bentónicas (Julius et al., 2005) por lo que este pez sólo crece en ríos donde hay crecimientos delgados de diatomeas (Schoenfuss et al., 2004).
Efecto de los crecimientos algales en la velocidad de corriente, la estabilidad de sedimentos y disponibilidad de refugios. Los crecimientos algales bentónicos proporcionan estabilidad al sedimento y modifican los patrones hidrológicos de los ambientes lóticos (Grant et al., 1985; Dodds & Biggs, 2002; Sigee, 2005), lo que genera cambios en los ciclos de los nutrientes (Mulholland et al., 1994). La velocidad de corriente en el fondo del río es afectada en diferentes magnitudes en función de la forma de crecimiento, la abundancia y la arquitectura de los crecimientos algales, lo cual puede conferir ventajas o desventajas para la comunidad acuática. Mulholland y colaboradores (1994) reportan que la velocidad de transporte de nutrientes río abajo es modificada por la formación de zonas de estancamiento temporal de agua (llamadas zonas de almacenamiento transitorios), resultado de la acumulación de las algas bentónicas y que la limitación de nutrientes es más intensa en los ríos con un mayor número zonas de almacenamiento. Esto provoca cambios en el contenido de nutrientes disueltos en el agua, afectando la disponibilidad de éstos aguas abajo y la calidad del alimento para los consumidores (Stelzer & Lamberti, 2001).
La formación de estromatolitos estabiliza al sustrato, brinda disponibilidad de hábitat y alimento para algunos macroinvertebrados y determina la distribución y estructura de la comunidad. Por ejemplo, Sabater y colaboradores (2000) señalaron que la fracción del río La Solana cubierta por estromatolitos, presentaba una menor abundancia de ramoneadores que la parte descubierta. Asimismo, Pitois y colaboradores (2003) reconocieron que el incremento de zonas cubiertas por estromatolitos en ríos de aguas carbonatadas de la cuenca del río Sena (Francia), provoca un decremento en la disponibilidad de hábitats, lo que conduce a una pérdida de la diversidad de la fauna y flora lo que repercute en la disponibilidad de presas para los salmones jóvenes.
Por otra parte la presencia de diatomeas, cianobacterias y clorofitas disminuye el movimiento de los sedimentos cuando la corriente se incrementa (Stevenson, 1996), lo que permite que la comunidad bentónica permanezca durante estos periodos, no sólo por la estabilidad de los sedimentos sino porque fungen como refugio para otros organismos. La comunidad de algas bentónicas es considerada como un hábitat importante para las comunidades de ambientes lóticos (Hargeby, 1990), por ejemplo los crecimientos de Chara (Chlorophyta) soportan gran diversidad y densidad de invertebrados en ríos donde el sustrato provee pocos hábitats. Casos similares son los de Cladophora (Chlorophyta) que soporta gran número de epífitas, pequeños invertebrados y meiofauna (Stevenson, 1996; Ramírez & Carmona, 2005) y Sirodotia suecica Kylin (Rhodophyta) ha sido reportada como hábitat de simúlidos y quironómidos (Sheath et al., 1996) y como refugio para los estados larvales finales de su ciclo de vida en ríos con alta velocidad de corriente (Carmona et al., 2009).
Relación de las algas de ambientes lóticos con los humanos. La degradación de los ambientes lóticos no sólo limita la disponibilidad de agua para el consumo humano, también afecta a los ciclos biogeoquímicos a nivel global, por lo que es conveniente evaluar integralmente la salud ecológica de estos sistemas y dejar a un lado la visión de sólo evaluar la "calidad del agua" en función del uso que se le desea dar. Tradicionalmente la valoración de los sistemas lóticos se ha realizado en base a las características físico-químicas, sin embargo en la actualidad varios países han complementado sus sistemas de evaluación mediante el uso de indicadores biológicos (Toro et al., 2003).
El uso de organismos indicadores tiene ventajas sustanciales sobre los análisis físico-químicos, ya que dan información del estado histórico del cuerpo de agua y no sólo del momento de la toma de la muestra (McCormick & Cairns, 1994; Lowe & Pan, 1996). Esto permite hacer un mejor manejo de los sistemas. La comunidad algal bentónica y particularmente las diatomeas, son uno de los grupos más usados para realizar la evaluación biológica, ya que tienen una amplia distribución geográfica y responden rápidamente a los cambios ambientales (Lowe, 2011). Se han incorporado grupos algales que nos permiten comprender mejor los procesos de alteración de las aguas (Schneider & Lindstrøm 2011; Loza et al., 2014). Además, algunas poblaciones son capaces de detectar e incluso inmovilizar sustancias tóxicas como los metales pesados (Stevenson et al., 2010), cuya presencia se ha incrementado por las actividades industriales y agrícolas.
Tener un buen conocimiento de la comunidad algal bentónica de ambientes lóticos, nos permite mantener un sistema con alta biodiversidad que nos brinda servicios ecosistémicos como agua de calidad para uso y consumo humano, alimentos, regulación del clima, importante como referente en un escenario de cambio climático global (Whitehead et al., 2009), además de valores estéticos y culturales (Bellinger & Sigee, 2010; Stevenson et al., 2010). Asimismo, podemos hacer uso directo de las algas como los que Garduño y colaboradores (2009) reportan en el empleo milenario de 10 algas de ambientes de agua dulce (lóticos y lénticos) en el Estado de México. Dentro de éstas Prasiola mexicana J. Agardh (Chlorophyta, alga macroscópica de ambientes lóticos con baja concentración de nutrientes y aguas templadas), se emplea en usos medicinales como cataplasmas para disminuir hemorragias y como infusión para tratar trastornos respiratorios. El uso biotecnológico de las algas de aguas epicontinentales, ha sido desarrollado principalmente en microalgas de ambientes lénticos -Arthrospira maxima Setchell & N.L. Gardner ha sido empleada en México y otros países para la alimentación desde hace décadas, actualmente se le emplea cada vez más, como fuente de pigmentos naturales, vitaminas, ácidos grasos y para la obtención de aditivos utilizados en fórmulas farmacéuticas y alimentos (Ramírez-Moreno & Olvera-Ramírez, 2006)- por lo que las algas de ambientes lóticos son un área subaprovechada y con gran potencial para la investigación en México.
La comunidad de algas bentónicas y en particular las biopelículas, constituyen una comunidad ecológicamente importante, ya que contribuyen en los procesos físicos, químicos y biológicos de los ríos a través de vínculos longitudinales de los procesos biogeoquímicos e hidrodinámicos locales (Battin et al., 2003). Por lo que su estudio es importante para hacer un buen manejo de los sistemas lóticos que son de gran importancia para la civilización humana, ya que son una fuente de agua potable y responsables del mantenimiento de buena parte de los ecosistemas terrestres.
Los estudios sobre ecofisiología de algas, ponen de manifiesto la necesidad de conocer la composición de especies y sus respuestas a nutrientes como nitrógeno y fósforo (Loza et al., 2014), como una base fundamental para el monitoreo de las aguas que posibiliten tomar medidas apropiadas y coordinadas para mantener y mejorar las condiciones de los ríos.
En conclusión, con lo expuesto anteriormente es claro que el estudio de las comunidades algales de ambientes lóticos es atractivo desde distintos enfoques. Desde la perspectiva ecológica es posible comprender el funcionamiento de los ecosistemas lóticos, mientras que desde el punto de vista ambiental su composición y estructura pueden ser utilizadas como indicadores de la calidad del agua y para evaluar procesos de contaminación que afectan a los ecosistemas. Además con un plan de manejo adecuado, una amplia variedad de recursos naturales pueden ser aprovechados para solventar demandas de alimentación, agua y nuevos materiales que requieren las poblaciones humanas, lo que tiene un impacto directo en la economía de las sociedades y en la salud de los ecosistemas.