Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería biomédica
versión On-line ISSN 2395-9126versión impresa ISSN 0188-9532
Resumen
PACHECO-BAUTISTA, D. et al. ABPSE: DNA Aligner Based on Bit-level Parallelism and the Seed and Extend Strategy. Rev. mex. ing. bioméd [online]. 2019, vol.40, n.1, e201821. ISSN 2395-9126. https://doi.org/10.17488/rmib.40.1.4.
DNA alignment is a key process in the assembly of genomes from the millions of short reads that are produced by massive parallel sequencing machines. Such a process is usually done by means of high spatial and temporal complexity algorithms, which takes hours to deliver the results as well as tens of GB of RAM. This has prompted the search for new algorithms and/or strategies that allow shorter runtimes, while using minimal memory footprint. In this article, we present ABPSE, a new DNA aligner that combines the Ferragina and Manzini algorithm (or FM indexes) and the Myers algorithm, by means of the seed and extend strategy. In the seeding, the FM indices allow a rapid calculation of the regions with high probability of alignment. In the extension, the Myers algorithm refines the alignment using operations based on bit vectors. It simultaneously calculates several cells of the dynamic programming matrix. The results show 96.1% of correctly aligned reads, an acceleration factor of 2.45x in relation to BWA-SW and a memory footprint of only 7.6 GB when aligning the entire human genome.
Palabras llave : DNA; Bioinformatics; Myers; Seed-and-extend; FM index.