Introducción
Los incendios forestales son una de las perturbaciones que más influyen sobre la estructura y funcionamiento de gran parte de los ecosistemas terrestres (Prentice, Heimann y Sitch, 2000). La combustión de biomasa sobre grandes extensiones puede llegar a suponer la emisión de una gran cantidad de gases y partículas a la atmosfera (Seiler y Crutzen, 1980). Estas emisiones incluyen gases de efecto invernadero en proporciones variables, pero por orden de magnitud están constituidas por: dióxido de carbono (CO2), gas con el efecto invernadero de mayor impacto y responsable de más de la mitad de los efectos de calentamiento global, metano (CH4) y óxido nitroso (N2O) (Andreae et al., 1996). La proporción liberada de cada uno dependerá de múltiples variables que pueden variar espacial y temporalmente, tales como la estructura de la vegetación, la cantidad de biomasa presente y las condiciones específicas de combustión (Pereira et al., 2011).
Estos gases y aerosoles son transportados en la atmósfera desde su lugar de origen, conducidos por la dirección del viento y otras variables meteorológicas, produciendo impactos no solo sobre los ecosistemas, sino sobre la salud y seguridad de la población local (Wiedinmyer et al., 2006). Sus efectos varían desde la irritación en ojos y piel y dificultades respiratorias, hasta daños directos en plantas, animales y personas (Galanter, M., Levy, & Carmichael, 2000). Diferentes estudios señalan crecientes niveles de concentración de material particulado en tramas urbanas (Hennigan, Bergin, Russell, Nenes y Weber, 2009; Merbitz, Fritz y Schneider, 2012). Gran parte de las fuentes generadoras de dichos contaminantes se localizan dentro del propio perímetro de las ciudades, pero hay estudios que evidencian el transporte de material particulado desde lugares muy distantes (especialmente de fracciones finas) que incide en los niveles de calidad del aire (Pongkiatkul & Kim Oanh, 2007; Stefan, Necula, & Georgescu, 2010).
Estudios previos han demostrado que los datos obtenidos por sensores instalados en satélites (teledetección) permiten estimar la biomasa vegetal (Ortiz-Reyes et al., 2015; Acevedo, Salinero y Palacios-Orueta, 2011) y las emisiones de gases efecto invernadero producidas por quema de dicha biomasa, en forma remota (Werf et al., 2006). Una gran ventaja en la recolección de datos de emisiones con satélites es su cobertura global y su alta resolución temporal (Zúñiga-Vásquez, Cisneros-González, Pompa-García, Rodríguez-Trejo, & Pérez-Verdín, 2017). Es factible hacer mediciones de las emisiones mediante diferencias en reflectividad entre dos bandas ópticas con diferentes propiedades respecto a dispersión y transmisividad. También se pueden realizar observaciones simultáneas desde dos o más ángulos para determinar la profundidad atmosférica, y comparar la reflectividad de la misma cobertura desde diferentes ángulos de visión (Acevedo, et al., 2011). Existen otros métodos a partir de imágenes NOAA recurriendo no solamente a las bandas visibles (1 y 2) sino también considerando las bandas térmicas (Gong et al., 2006). Estas mediciones se fundamentan en las propiedades físicas de dispersión y absorción de los diferentes componen tes de las plumas de humo (Acevedo et al., 2011). Sin embargo, estos estudios generalmente proporcionan valores globales de emisión sin considerar el transporte de los contaminantes emitidos. Es de suma importancia estimar conjuntamente las emisiones de los gases de efecto invernadero y sus trayectorias, con el fin de determinar las poblaciones que pueden ser afectadas por los penachos de humo, a fin de tomar decisiones para prevenir los incendios, o una vez ocurridos, poder identificar las poblaciones que pueden estar expuestos a los daños y proceder a su evacuación.
La reconocida importancia de estudiar los procesos de transporte de contaminantes ha llevado al desarrollo de modelos de difusión atmosférica, una de las soluciones más extendidas al problema de conocer el comportamiento de los contaminantes en la atmósfera. Entre los modelos de trayectoria más empleados se encuentra HYSPLIT (Draxler & Rolph, 2014), HYbrid Single-Particle Lagrangian Integrated Trajectory. Este modelo se ha utilizado para determinar el movimiento de las masas de aire en una escala sinóptica (Escudero et al., 2011; Querol, 2008; Viana et al., 2007), y también para modelar los penachos de humo procedentes de incendios forestales en trabajos anteriores (Ceca, Ferreyra, Diez, & Scavuzzo, 2016; Mims et al., 2010).
El presente estudio analiza estos avances realizados en el conocimiento de emisiones generadas por incendios forestales, y los aplica a un caso de estudio en entorno mediterráneo, donde los incendios de origen antrópico presentan alta incidencia, y al mismo tiempo la elevada densidad poblacional supone un alto valor en riesgo. Hay escasos trabajos en entornos mediterráneos, que en los últimos años se han visto afectados por incendios de gran magnitud con enormes pérdidas (por ejemplo, en Pedrógão Grande, Portugal, junio 2017, en Ática, Grecia, julio 2018). Se ha demostrado que el abandono agrario y otros factores complejos han elevado la carga de combustible y su continuidad, creando nuevas condiciones de peligro (Brotons et al., 2012), pero las implicaciones desde el punto de vista de emisiones y cambio climático no se han explorado suficientemente, a pesar de ser una región en que se esperan impactos climáticos significativos (Jolly et al., 2015). Sí hay numerosos estudios en otros tipos de bosques y regiones climáticas, por ejemplo, más de 75% de los estudios de incendios y cambio climático publicados pertenecen a Norteamérica (Flannigan, Krawchuk B, De Groot, Mike Wotton, & Gowman, 2009).
Esta carencia ha llevado a seleccionar una región mediterránea representativa como área piloto para un estudio integrado de emisiones y transporte de contaminantes, bajo la hipótesis de que las emisiones mediterráneas por grandes incendios pueden alcanzar niveles elevados, comparables a otras formaciones más estudiadas (como sabanas o bosques tropicales o boreales), y pueden exportarse a grandes distancias. El objetivo de este trabajo es la cuantificación de dichas emisiones de gases de efecto invernadero y el análisis de las trayectorias de los penachos de humo procedentes de los grandes incendios forestales (mayores de 300 ha) de los últimos 10 años en Cataluña, España.
Materiales y Métodos
El área de estudio se corresponde con las superficies de siete grandes incendios forestales ubicados en el nordeste de la Península Ibérica, todos dentro de la Comunidad Autónoma de Cataluña, y ocurridos en los últimos 10 años con registros disponibles (2006 - 2015). Son todos mayores de 300 ha, de acuerdo con el criterio técnico que rige en Cataluña para la denominación de grandes incendios. En la Tabla 1 se relacionan estos siete incendios, su fecha de ocurrencia, causa, área total afectada y área forestal. Las evaluaciones posteriores se restringieron a las áreas forestales afectadas por los incendios, con mayor potencial de emisión, también en la Tabla 1.
Municipio | Fecha de ocurrencia | Causa | Área total afectada (ha) | Área total forestal (ha) |
---|---|---|---|---|
Òdena | 26/07/2015 | Accidental | 1263 | 1043 |
La Jonquera | 22/07/2012 | Negligencia | 10 477 | 6188 |
Rasquera | 15/05/2012 | Intencionado | 2788 | 1842 |
Tivissa | 15/06/2014 | Rayos | 891 | 871 |
Vilopriu | 11/11/2013 | Intencionado | 857 | 335 |
Horta de Sant Joan | 20/07/2009 | Hogueras | 941 | 747 |
Ventalló | 04/08/2006 | Intencionado | 959 | 768 |
Fuente: Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente
La mayoría de estos incendios tuvieron lugar en zonas de interfase urbano-forestal, situación común en los grandes incendios de la última década en Cataluña (Alcasena, Evers y Vega-Garcia, 2018). Las temperaturas máximas diarias superaron los 20 °C en todos (excepto el incendio otoñal de Vilopriu con máxima de 14 °C) y las humedades relativas oscilaron entre 19% y 56%. La velocidad máxima de viento se registró en el incendio de La Jonquera, 50 km h-1. La vegetación preexistente estaba compuesta de formaciones de coníferas (principalmente Pinus halepensis), frondosas (principalmente Quercus ilex) y Matorral. La Figura 1 muestra la localización de la zona de estudio, que corresponde a la Comunidad Autónoma de Cataluña, y la ubicación espacial de los siete incendios.
La información estadística correspondiente a los incendios procede del Centro de Coordinación de la Información Nacional sobre Incendios Forestales (CCINIF), órgano del Ministerio de Agricultura y Pesca, Alimentación y Medio Ambiente (Mapama) responsable de coordinar la Estadística General de Incendios Forestales (EGIF). La cartografía de los perímetros de los incendios, para el periodo de estudio 2006 a 2015 procede de datos publicados por la Generalitat de Cataluña ()http://agricultura.gencat.cat.
Vegetación y biomasa previas al incendio
Para obtener la información sobre la vegetación preexistente de las áreas incendiadas se descargaron del Centro Nacional de Información Geográfica mapas de la base de datos de ocupación del suelo en España a escala 1:25 000 de los años 2005 y 2011 del Sistema de Información de Ocupación del Suelo en España (Siose; ign.es/siose) con la proyección Universal Transversa de Mercador y datum ETRS89. Los mapas Siose (2005 y 2011) proporcionaron los polígonos correspondientes a matorrales, frondosas y coníferas dentro de las áreas quemadas.
La biomasa preexistente en las zonas quemadas se obtuvo mediante la descarga y proceso de la capa de Biomasa Total disponible en ICGC (http://www.icc.cat/vissir3), una de las ocho variables biofísicas del arbolado calculadas a partir de datos LiDAR (Light Detection and Ranging) de Cataluña (LiDARCAT) y cartografiadas a 20 m de resolución (Carlón-Allende, Mendoza, Villanueva-Díaz y Pérez- Salicrup, 2015).
Se superpuso la cartografía de los perímetros de los incendios 2006-2015 (agricultura.gencat.cat) a los polígonos correspondientes a las clases de vegetación Siose y se procedió a sumar los valores de biomasa total de todos los píxeles dentro de cada clase de vegetación e incendio, utilizando un sistema de información geográfica (SIG), ArcGIS Desktop versión 10.5 (ESRI Inc., Redlands, CA, USA).
Estimación de pérdidas de biomasa por combustión mediante niveles de severidad
Operativamente, se denomina severidad a la mayor o menor pérdida o cambio de materia orgánica como consecuencia de un incendio (Keeley, 2009). A mayor intensidad en el frente, mayor consumo de combustibles y mayor pérdida de biomasa en el sistema forestal. Estas pérdidas pueden estimarse mediante inventario forestal antes y después del fuego, pero rara vez es posible disponer de dichos inventarios, por lo que es habitual recurrir a técnicas de detección de cambios por teledetección (Bella & Posse, 2008). En este estudio no se tenía acceso a datos de campo sobre materia orgánica consumida en cada píxel (20 m) de cada incendio, por lo que se tuvieron que obtener categorías de severidad por teledetección y posteriormente usar datos publicados por otros autores que relacionan nivel de severidad con el porcentaje de biomasa consumida para cada tipo de vegetación. Sabiendo el nivel de severidad que alcanzaron los incendios seleccionados, y la biomasa preexistente (en el apartado anterior), fue posible estimar las pérdidas como porcentaje de dicha biomasa con base en el trabajo de (De Santis, Asner, Vaughan y Knapp, 2010) y totalizarlas de nuevo para cada clase de vegetación e incendio mediante superposición espacial y extracción de la suma de valores en cada recinto.
Para determinar la severidad en cada píxel de las zonas quemadas, se descargaron mapas del servidor Severicat (severicat.ctfc.cat) disponibles para Jonquera, Rasquera, Tivissa, Horta de Sant Joan, y Ventalló. Severicat es un servidor de mapas que proporciona cartografía de severidad de incendios (desde 1986) a partir de imágenes de satélite e índices de vegetación. Es la única fuente disponible para severidad de incendios en Cataluña, y la metodología que usan sus autores está avalada por publicaciones científicas (Pla, Duane, & Brotons, 2017) Los dos incendios más recientes no estaban disponibles en este sitio, por lo que se tuvo que realizar la cartografía de severidad de estos (Viloprius y Òdena) reproduciendo el mismo procedimiento SEVERICAT (Pla et al., 2017) a partir de imágenes Landsat 8 (http://earthexplorer.usgs.gov). Los valores de severidad resultantes en toneladas de biomasa fueron clasificados en cuatro niveles, desde baja a muy alta severidad. La relación entre los niveles de severidad alcanzados y las pérdidas de biomasa, expresadas como porcentaje de biomasa consumida, se estableció siguiendo a (De Santis et al., 2010) en función del tipo de vegetación existente, en tres clases: matorrales, frondosas y coníferas. Los porcentajes de consumo medios aplicados a cada nivel de severidad (4) y clase de vegetación (3) fueron elaborados para zonas de clima mediterráneo en California, siendo esta zona bioclimática la de condiciones más similares a las del sitio del presente estudio entre las disponibles en la bibliografía (De Santis et al., 2010). Estas relaciones se presentan en la Tabla 2.
Factores de emisión de la biomasa consumida por el fuego
Es habitual la estimación de emisiones de compuestos a partir de ratios entre dichos compuestos y la biomasa sujeta al proceso de combustión (Urbanski, Hao y Baker, 2009). En el ámbito mediterráneo es extremadamente escasa la información acerca de factores de emisión de gases y partículas en incendios (Evtyugina et al., 2014). Para este trabajo se utilizaron factores de emisión publicados en Portugal (Alves et al., 2010; Evtyugina et al., 2013), dada la carencia de datos directos del área de este estudio (Tabla 3).
Factores de emisión de gases | ||
---|---|---|
Compuesto | t/t biomasa seca | Procedencia |
CO2 | 1,377 | Portugal verano 2010 (Evtyugina et al., 2013) |
CH4 | 0,0014 | Monte Lousa (Alves et al., 2010) |
N2O | 0,00012 | Monte Lousa (Alves et al., 2010) |
Estimación de emisiones de GEIs
Para la estimación de las emisiones de GEIs se utilizó la ecuación de Wiedinmeyer et al. (2006).
En donde:
Ex = |
toneladas de gas (CO2, CH4, N2O) |
A = |
área quemada en hectáreas (perímetros gencat) |
B = |
biomasa previa al fuego en toneladas (mapa ICGC) |
FC = |
fracción consumida en porcentaje (función de la severidad y vegetación, Tabla 2) |
FEx = factores de emisión de un gas dado en toneladas de gas liberado por tonelada de biomasa consumida (Tabla 3).
Los parámetros de esta ecuación se procesaron utilizando (multiplicando) las capas ráster descritas en epígrafes anteriores a 20 m de resolución.
Transformación a emisiones de dióxido de carbono equivalente (CO2eq)
Una vez calculadas las emisiones, se normalizaron a toneladas de dióxido de carbono equivalente (CO2eq). Esta es la unidad de medida utilizada para indicar el potencial de calentamiento global de los gases de efecto invernadero (Global Warming Potential, GWP). Ha sido definida por el Panel Intergubernamental sobre Cambio Climático (Intergovernmental Panel on Climate Change [IPCC], 2007) comola capacidad de un gas de contribuir al apantallamiento radiativo durante un periodo estipulado respecto del CO2 (gas de referencia), cuyo GWP será igual a 1. También es recomendada por el Grupo Intergubernamental sobre Cambio Climático en su publicación “Directrices del IPCC para los inventarios nacionales de gases de efecto invernadero”, versión revisada en 2013 conocida como (IPCC, 2013). Los otros gases considerados en este estudio son CH4 con un GWP en un horizonte de 100 años igual a 21, y N2O cuyo GWP a 100 años es igual a 298.
Para su cálculo se utilizó la siguiente formula.
Comparación de las emisiones CO2eq obtenidas con otras fuentes de emisión en distintos sectores en Cataluña y la capacidad de la fijación en sistemas forestales.
Una vez obtenidos los valores de emisiones de los GEIs producidos en los incendios forestales estudiados, se realizó una comparación de magnitudes con otras publicaciones en formaciones de estructura similar (principalmente chaparral) y con fuentes de emisión en distintos sectores en Cataluña que contribuyen GEIs y materia particulada. Esta información se obtuvo del Inventario Nacional de Gases de Efecto Invernadero de España (GEIs), en la página web de Mapama (http://www.mapama.gob.es/es/) para el periodo 1990 y 2015, publicado en la edición del 2017. Los valores de emisiones de CO2eq producidos en los incendios en toneladas fueron convertidos a kilotoneladas de CO2eq (kt CO2eq) para su comparación, ya que los valores de Inventario Nacional de (GEIs) de España están en esta unidad.
También se compararon las emisiones con la capacidad de fijación de carbono en sistemas forestales en Cataluña según el cuarto Inventario Forestal Nacional de España (IFN4).
Calculo de las trayectorias de los penachos de humo
Para el cálculo de las trayectorias de las partículas de los penachos de humo generados durante los incendios seleccionados, se utilizó el modelo HYSPLIT, ejecutado on-line mediante el sistema READY en web (arl.noaa.gov). Se calcularon trayectorias isentrópicas (que consideran ascensos y descensos adiabáticos del aire, es decir sin intercambio de calor con su entorno) de cinco días de duración, a distintas alturas sobre el nivel del suelo (500 m, 1500 m, y 3000 m snm) a las 12 horas UTC (Tiempo Universal Coordinado). El análisis de las trayectorias se realizó utilizando datos meteorológicos archivados de REANALYSIS (Global 1948-present).
Resultados
Vegetación y biomasa previas al incendio
Los valores obtenidos en tonelada por hectárea de biomasa preexistente de los siete incendios muestran mayor cantidad de biomasa de Pinus sylvestris y Quercus ilex, que osciló entre 323,6 t ha-1 y 1998 t ha-1 en Ódena y Ventalló respectivamente, mientras la menor cantidad de biomasa en t ha-1 se obtuvo en Matorral y Pinus halepensis que osciló entre 5,7 t ha-1 y 6,4 t ha-1 respectivamente en La Jonquera, (Tabla 4). Los valores globales de biomasa, densidad y superficie ocupada por la vegetación afectada se presentan en la Tabla 5.
Biomasa preexistente | ||||
---|---|---|---|---|
Tipo de vegetación | t (biomasa) | % | ha | t ha-1 |
Ódena | ||||
Pinus halepensis | 43 002 | 62,4 | 327,4 | 131,3 |
Pinus sylvestris | 2223 | 2,2 | 6,9 | 323,6 |
Matorral | 24 131 | 35,4 | 708,9 | 34,0 |
La Jonquera | ||||
Pinus halepensis | 22 659 | 32,0 | 847,6 | 6,4 |
Quercus ilex | 37 978 | 53,7 | 3557 | 44,8 |
Matorral | 10 181 | 14,4 | 1783,3 | 5,7 |
Rasquera | ||||
Pinus halepensis | 21 636 | 65,0 | 336,9 | 64,2 |
Quercus ilex | 225 | 1,1 | 2,7 | 82,2 |
Matorral | 11 448 | 33,9 | 1512,4 | 7,6 |
Tivissa | ||||
Pinus halepensis | 22 187 | 49,5 | 304,1 | 190,0 |
Matorral | 22 602 | 50,5 | 566,8 | 42,6 |
Vilopriu | ||||
Pinus halepensis | 19 5466 | 37,5 | 149,7 | 130,6 |
Pinus pinea | 213 | 1,7 | 4,5 | 47,9 |
Quercus ilex | 30 683 | 58,8 | 171,8 | 178,6 |
Pinus pinaster | 1069 | 2,0 | 9,4 | 114,2 |
Horta de Sant Joan | ||||
Pinus halepensis | 23 360 | 28,9 | 208,4 | 108,8 |
Quercus ilex | 50 792 | 62,9 | 360,6 | 136,6 |
Matorral | 6604 | 8,2 | 178,0 | 35,7 |
Ventalló | ||||
Pinus halepensis | 8574 | 92,7 | 714,0 | 12,0 |
Quercus ilex | 49 271 | 6,2 | 24,7 | 1998 |
Matorral | 6357 | 1,1 | 29,7 | 214,4 |
Pérdidas de biomasa por combustión
La Tabla 6 describe la biomasa consumida por el fuego, en valor absoluto y en porcentaje, para cada nivel de severidad ocurrido en cada incendio. Los valores de la Tabla 6 indican el predominio de niveles de alta severidad en estos grandes incendios. La Tabla 7 proporciona valores globales de biomasa perdida, su valor ponderado por ha, y el porcentaje que supone sobre el total disponible antes del incendio.
Incendios | Biomasa consumida por clase de severidad e incendio | ||||
---|---|---|---|---|---|
Nivel | t (biomasa) | % biomasa | ha | % superficie | |
Ódena | Baja | 1 482 | 2,1 | 17 | 1,3 |
Media | 6 844 | 9,9 | 96 | 7,6 | |
Alta | 23 405 | 33,8 | 406 | 32,2 | |
Muy alta | 37 625 | 54,3 | 744 | 58,9 | |
La Jonquera | Baja | 9 148 | 0,9 | 101 | 0,9 |
Media | 68 185 | 6,9 | 603 | 5,8 | |
Alta | 866 333 | 87,5 | 7635 | 72,9 | |
Muy alta | 44 525 | 4,5 | 2112 | 20,2 | |
Rasquera | Baja | 4 697 | 14,1 | 87 | 3,1 |
Media | 8 929 | 26,8 | 321 | 11,5 | |
Alta | 17 198 | 51,6 | 1915 | 68,7 | |
Muy alta | 2 484 | 7,5 | 430 | 15,4 | |
Tivissa | Baja | 6 575 | 8 | 103 | 11,6 |
Media | 15 248 | 18,6 | 215 | 24,1 | |
Alta | 22 775 | 27,8 | 313 | 35,1 | |
Muy alta | 37 304 | 45,6 | 234 | 26,2 | |
Vilopriu | Baja | 8 778 | 17 | 66 | 7,7 |
Media | 16 856 | 32,7 | 140 | 16,3 | |
Alta | 24 006 | 46,6 | 204 | 23,8 | |
Muy alta | 1 871 | 3,6 | 447 | 52,1 | |
Horta de Sant Joan | Baja | 2 359 | 2,6 | 34 | 3,6 |
Media | 16 838 | 18,2 | 183 | 19,4 | |
Alta | 56 945 | 61,7 | 512 | 54,5 | |
Muy alta | 2 154 | 2,3 | 152 | 16,1 | |
Ventalló | Baja | 3 241 | 4,9 | 43 | 4,5 |
Media | 16 337 | 24,9 | 133 | 13,8 | |
Alta | 42 684 | 65,2 | 587 | 61,2 | |
Muy alta | 3 241 | 4,9 | 175 | 18,3 |
Emisiones de GEIs
Las emisiones obtenidas para cada gas objetivo se presentan en las Tablas 8, 9 y 10 desglosadas para cada tipo de vegetación e incendio, en valor absoluto. En conjunto, las mayores emisiones de CO2, CH4 y N2O (t ha-1) se registraron en el incendio de La Jonquera, y las menores en Ventalló, de acuerdo con sus áreas quemadas (Tabla 11).
Incendios | Dióxido de carbono (CO2) emitido (t ha-1) | |||||
---|---|---|---|---|---|---|
Pinus halepensis | Pinus sylvestris | Quercus ilex | Matorral | Pinus pinea | Pinus pinaster | |
Ódena | 29 336 | 916 | - | 667 | - | - |
La Jonquera | 97 891 | - | 239 882 | 32 061 | - | - |
Rasquera | 16 071 | - | 3 | 7981 | - | - |
Tivissa | 17 793 | - | - | 12 997 | - | - |
Vilopriu | 13 200 | - | 174 | - | 31,7 | 957 |
Horta de Sant Joan | 9589 | - | 39 342 | 1268 | - | - |
Ventalló | 1654 | - | 654 | 29,9 | - | - |
Incendios | Metano (CH4) emitido | |||||
---|---|---|---|---|---|---|
Pinus halepensis | Pinus sylvestris | Quercus ilex | Matorral | Pinus pinea | Pinus pinaster | |
Ódena | 29,8 | 9,3 | - | 6,8 | - | - |
La Jonquera | 99,6 | - | 243,9 | 32,6 | - | - |
Rasquera | 16,3 | - | - | 8,1 | - | - |
Tivissa | 18,1 | - | 13,2 | - | - | |
Vilopriu | 13,4 | - | 0,2 | - | 1,0 | |
Horta de Sant Joan | 9,8 | - | 40,0 | 1,3 | - | - |
Ventalló | 1,7 | - | 0,7 | - | - | - |
Incendios | Dióxido nitroso N2O emitido | |||||
---|---|---|---|---|---|---|
Pinus halepensis | Pinus sylvestris | Quercus ilex | Matorral | Pinus pinea | Pinus pinaster | |
Ódena | 2,6 | 0,1 | - | 0,1 | - | - |
La Jonquera | 8,5 | - | 20,9 | 2,8 | - | - |
Rasquera | 1,4 | - | 0,003 | 0,7 | - | - |
Tivissa | 0,2 | - | 1,1 | - | - | |
Vilopriu | 0,2 | - | 1,2 | 0,003 | 0,003 | |
Horta de Sant Joan | 0,1 | - | 3,4 | 0,1 | - | - |
Ventalló | 0,1 | - | 0,1 | 0,003 | - | - |
Emisiones de dióxido de carbono equivalente (CO2eq)
La Tabla 12 refleja resultados absolutos desglosados por tipo de vegetación. La Tabla 13 aporta valores ponderados superficialmente que señalan al incendio de Horta de San Joan como mayor emisor (t ha-1) de CO2eq, a pesar de no ser el de mayor carga combustible preincendio por ha (Tabla 5).
Incendios | Emisiones CO 2 eq por tipo de vegetación | |||||
---|---|---|---|---|---|---|
Pinus halepensis | Pinus sylvestris | Quercus ilex | Matorral | Pinus pinea | Pinus pinaster | |
Ódena | 30 724 | 960 | - | 699 | - | - |
La Jonquera | 102 523 | - | 251 233 | 33 579 | - | - |
Rasquera | 16 832 | - | 3 | 8360 | - | - |
Tivissa | 18 635 | - | 13 612 | - | - | |
Vilopriu | 13 825 | - | 521 | 33 | 978 | |
Horta de Sant Joan | 10 042 | - | 41 204 | 1328 | - | - |
Ventalló | 17 323 | - | 6850 | 303 | - | - |
Comparación de las emisiones obtenidas con otras fuentes de emisión en distintos sectores en Cataluña y la fijación de carbono en sistemas forestales
Los resultados de la comparación de los valores obtenidos de emisiones de los incendios estudiados con otras fuentes de emisión en distintos sectores en Cataluña se muestran en la Tabla 14. Es destacable, en relación con la hipótesis de este trabajo, la variabilidad que suponen las emisiones relativas de los incendios anualmente y en relación con sectores incluidos en informes oficiales; aunque con varios órdenes de magnitud inferiores, ocasionalmente las emisiones por incendios pueden llegar casi a 1% del total anual contabilizado, lo cual no es despreciable considerando que dichas emisiones proceden de una única ocurrencia en un periodo de tiempo de 1 y 2 días y se adicionan a concentraciones en tramas urbanas frecuentemente altas durante las situaciones anticiclónicas estivales.
Año | Procesos energéticos | Procesos industriales | Agricultura | Tratamiento y eliminación de residuos | Total | Incendios | Emisiones relativas (%) |
---|---|---|---|---|---|---|---|
2006 | 42 006 | 9197 | 3625 | 2511 | 57 339 | 24 | 0,04 |
2007 | 42 335 | 9493 | 3759 | 2487 | - | - | - |
2008 | 40 373 | 8016 | 3610 | 2487 | - | - | - |
2009 | 36 920 | 7480 | 3674 | 2883 | 50 957 | 53 | 0,10 |
2010 | 36 492 | 7997 | 3490 | 2660 | - | - | - |
2011 | 33 905 | 7644 | 3696 | 2720 | - | - | - |
2012 | 32 544 | 7296 | 3693 | 2870 | 46 403 | 412 | 0,89 |
2013 | 30 515 | 6421 | 3527 | 2464 | 42 927 | 15 | 0,04 |
2014 | 29 699 | 7253 | 3785 | 2461 | 43 198 | 32 | 0,07 |
2015 | 30 869 | 6303 | 3939 | 2421 | 43 530 | 32 | 0,07 |
Según el cuarto Inventario Forestal Nacional de España (IFN4), Cataluña ha aumentado su superficie boscosa de 1 930 482 ha a 2 001 828 ha, lo que supone un incremento de 718 346 ha en los últimos 10 años, con estimaciones de fijación de carbono de 149,5 t ha-1, que superan ampliamente las emisiones por incendios.
Cálculo de las trayectorias de los penachos de humo procedentes de los incendios
La Figura 2 recoge gráficamente las trayectorias de las columnas de humo para los siete grandes incendios forestales en los últimos 10 años en Cataluña a 500 m, 1500 m, y 3000 m (distancias esperadas de ascenso). En la mayoría de los casos, los contaminantes son transportados desde el punto de inicio de los incendios forestales hacia el SE, afectando algunos municipios a nivel local dentro y cerca de los perímetros de los incendios, pero también a otras regiones en España, algunos países de Europa occidental (Francia, Italia) y países del norte de África (Argelia, Marruecos, Túnez). Las trayectorias en sentido del reloj indican la influencia de situaciones sinópticas de altas presiones propias del verano que generan tiempo seco y cálido, a excepción de Vilopriu (f), ocurrido en noviembre bajo influencia ciclónica. Los gráficos longitudinales permiten apreciar descensos del penacho como consecuencia del enfriamiento de los gases generados y, ocasionalmente, ascensos por desarrollos convectivos.
Discusión
Este trabajo ha permitido ponderar órdenes de magnitud en emisiones de carbono equivalente para grandes incendios en el entorno mediterráneo del sur de Europa, escasamente abordados hasta la fecha, y valorar sus consecuencias en términos de dispersión.
La imposibilidad de toma de datos de campo por la temporalidad del estudio ha llevado a que el proceso metodológico abordado sea sensible a tres factores principales: i. la determinación de biomasa previa el incendio, ii. su consumo durante el desarrollo del incendio, y iii. la aplicación de factores de emisión para traducir biomasa consumida a GEIs. Los resultados del presente estudio vienen condicionados por la adecuación de los valores de estudios previos aplicados a la zona de estudio (Alves et al., 2010; Evtyugina et al., 2013; De Santis et al., 2010) que se consideran válidos por su similitud en condiciones ambientales y por los resultados obtenidos:
i. Existen más publicaciones sobre estimación de biomasa arbórea (Montealegre, Lamelas, de la Riva, García-Martín y Escribano, 2015; Domingo, Lamelas, Montealegre, García-Martín y de la Riva, 2018; Montero, Ruiz-Peinado y Muñoz, 2005) que sobre matorrales (Alías, García, Valares, Sosa y Chaves, 2009), pero los valores de biomasa total estimada en matorrales en este estudio (17,01 t ha-1) son similares a los de (Alías et al., 2009) y algo superiores a los de Fernández et al. (1995) para matorrales mixtos en la Sierra Norte de Sevilla (8,1 t ha-1 y 15,2 t ha-1), explicable por diferencias de densidad causadas por mejores condiciones climáticas en Cataluña.
Las estimaciones para formaciones arbóreas también se asemejan a las publicadas por (Gracia et al., 2015) y por el Centre de Recerca Ecologica i Aplicacions Forestals (CREAF) de Cataluña, en su página web (http://www.creaf.uab.cat), para Quercus ilex (14,9 t ha-1 y 167,1 t ha-1), Pinus halepensis (12,8 t ha-1 y 109 t ha-1), Pinus sylvestris (21,2 t ha-1 y 162,2 t ha-1), Pinus pinaster (18 t ha-1 y 121,5 t ha-1) y Pinus pinea (22 t ha-1 y 135,4 t ha-1). Si ocasionalmente algún valor ha resultado superior (Pinus sylvestris 323,64 t ha-1 en Ódena), la diferencia es posible biológicamente debido a las variaciones en calidad de la estación típicas de los entornos mediterráneos, muy heterogéneos, aunque no debe descartarse que la sobreestimación se deba a desajustes locales en el proceso geo-estadístico de los datos LiDARCAT. Respecto a otras regiones mediterráneas, Bohlman, Underwood y Safford (2018) también sitúan las formaciones californianas (chaparral y matorral costero) entre 15,83 t ha-1 y 34,61 t ha-1 tras una revisión de 37 estudios previos.
ii. La biomasa consumida depende del comportamiento del fuego en sus diferentes etapas de propagación, que puede causar grandes diferencias en esta variable (Conard y Solomon 2008; French et al., 2011). El conocimiento de la sólida relación entre la severidad del fuego y la cantidad de biomasa consumida (Díaz-Delgado, Lloret y Pons, 2003; Rogan y Yool, 2001) ha sido calificada como esencial para mejorar las estimaciones de emisiones (Conard & Solomon, 2008; Kasischke et al., 2008). La determinación de niveles de severidad mediante dNBR está avalada por numerosas publicaciones, sin embargo la conversión de dichos niveles a porcentajes de consumo depende de un solo trabajo (De Santis et al., 2010) lo cual supone una limitación, común a la mayoría de trabajos en emisiones (French et al., 2011).
iii. Las emisiones procedentes de incendios en este estudio para las fracciones de CO2, CH4 y N2O coinciden con valores de trabajos previos (Andreae y Merlet, 2001; Wiedinmyer et al., 2006). Sin embargo, también debe considerarse como una limitación del estudio la disponibilidad de únicamente dos trabajos en Portugal para determinar factores de emisión, restringidos a tres categorías de vegetación (frondosa, conífera, matorral). La comparación de estos factores de emisión con los publicados en la revisión de Urbanski et al. (2009) para bosques y matorrales templados los pondera como conservadores; estos autores asignan factores de emisión más elevados a CO2, 1,619 t/t y 1,684 t/t frente a 1,377 t/t biomasa seca, a CH4 con 0,00341 t/t y 0,00231 t/t frente a 0,0014 t/t, y a N2O con 0,00016 t/t y 0,00032 t/t frente a 0,00012 t/t biomasa seca, obtenido en este estudio (Tabla 3). Los factores de emisión de Urbanski et al. (2009) para formaciones en sabanas y bosques tropicales y boreales para CO2 son casi iguales a los de formaciones templadas (1,661t/t y 1,604 t/t), sin embargo, son más elevados en CH4 (0,0027 t/t y 0,0067 t/t biomasa seca). Factores para chaparral en California a partir de 12 quemas prescritas publicados por Hardy et al. (1996) alcanzan también valores más elevados que los de este estudio para CO2, 1,477 t/t frente a 1,377 t/t biomasa seca, y para CH4 con 0,00258 t/t frente a 0,0014 t/t (Tabla 3).
El análisis de los valores globales obtenidos de las emisiones en distintos sectores en Cataluña anualmente en relación con las emisiones producidas por incendios forestales arroja valores entre 0,04% y 0,89% para estos, que pueden calificarse de considerables, dado que estos se concentran en pocos días (a menudo solo un día) y pueden agravar puntualmente las condiciones de calidad del aire de tramas urbanas cercanas. Afortunadamente, los valores relativos de emisión en Cataluña respecto a los de fijación en sistemas forestales son poco relevantes, en correspondencia con la actual situación forestal que ha estado dominada por tendencias de expansión superficial en los últimos años y ahora se mantiene estable.
El mayor de los incendios ocurridos (La Jonquera, 6188 ha forestales) tuvo lugar en julio de 2012, bajo factores de riesgo elevados por las condiciones meteorológicas excepcionales (temperatura máxima en ola de calor y sequía por precipitaciones a 50% de la media mensual). La ocurrencia de situaciones de mayor riesgo, potencialmente resultantes en grandes incendios con alta severidad (> 65% de la superficie afectada) será más frecuente en el futuro si se cumplen las previsiones de cambio global establecidas en cada vez más numerosos informes y publicaciones (IPCC, 2007). Por ejemplo, ya se ha comprobado una extensión en la duración de la estación de peligro de incendios de varios días en entorno mediterráneo, que podría seguir aumentando (Jolly et al., 2015). Estos autores prevén que en el futuro la ocurrencia de incendios se verá favorecida por la coexistencia de vegetación inflamable y condiciones climáticas desecantes con altas temperaturas, baja humedad y sequía (Jolly et al., 2015). Bajo los escenarios de cambio climático que se anticipan, las situaciones de altas temperaturas y alto número de días sin lluvia se harán más frecuentes, lo que inducirá una elevación de la desecación de los combustibles vivos y muertos y, por tanto, de su disponibilidad (Vázquez, Pérez, Fernández-González, & Moreno, 2002). Las expectativas de cambio global conducentes a una mayor recurrencia dentro de estaciones de peligro más extensas (Lloret, 2004) y con mayor severidad (Bodí, Cerdà, Mataix y Doerr, 2012), unidas a las altas incidencias de incendios de origen antrópico que afectan a los ecosistemas del Mediterráneo, escasamente estudiados desde la óptica de emisiones, hacen necesarios estudios ajustados a las condiciones locales, para anticipar y prevenir procesos de degradación y emisiones inasumibles en el futuro.
Los resultados obtenidos con la aplicación del modelo HYSPLIT proporcionan la evolución seguida espacialmente por los contaminantes emitidos e indican que las trayectorias de los penachos de humo procedentes de los incendios estudiados fueron transportados a grandes distancias, incluso de escala continental, de acuerdo con Álvarez, Echeverría, Álvarez y Palomera (2004). La dirección preferente de desplazamiento fue la SE, en correspondencia con el patrón sinóptico predominante en verano, dominado por núcleos de altas presiones (http://www.arl.noaa.gov/HYSPLIT.php), permitiendo identificar poblaciones potencialmente afectadas por las emisiones (Environmental Protection Agency, EPA; http://www.epa.gov/ttnchie1/trends/), aunque el alcance de concentraciones peligrosas en términos de salud humana escapan los objetivos de este estudio, centrado en GEIs.
Conclusiones
Este trabajo ha permitido obtener estimaciones de biomasa consumida según la severidad alcanzada por los grandes incendios, y sus emisiones en dióxido de carbono equivalente (fracciones de CO2, CH4 y N2O), ocurridos en la última década en formaciones mediterráneas de Pinus halepensis Mill., Pinus sylvestris, Quercus ilex, matorral, Pinus pinea y Pinus pinaster. Los grandes incendios de la última década en Cataluña consumieron porcentajes variables entre 44,4% y 70,3% de la biomasa total disponible en las zonas incendiadas, con emisiones totales de carbono equivalente de entre 15 013 t y 387 335 t por incendio (entre 13 t ha-1 y 70 t ha-1). La utilización de factores de emisión publicados en trabajos anteriores evita la utilización de metodologías costosas basadas en trabajo de campo y en un muestreo destructivo, aunque introduce un cierto margen de error debido a la heterogeneidad de condiciones mediterráneas que futuras investigaciones deberían ir ajustando. Las magnitudes estimadas de emisiones totales ponen de manifiesto la relevancia de los incendios forestales como fuente de emisión de gases de efecto invernadero en comparación con otras fuentes de emisión que han sido tradicionalmente consideradas en los inventarios nacionales de GEI y sobre las que se centran los acuerdos firmados en el Protocolo de Kioto para la reducción de emisiones procedentes de la actividad humana. Las emisiones de un solo incendio pueden suponer hasta 1% del total anual en Cataluña.
Las simulaciones de trayectoria de los penachos de incendios con un modelo Lagrangiano (HYSPLIT) permitieron comprobar su potencial de alcance a largas distancias. Las emisiones se dispersaron en dirección preferente SE y a escala continental, alcanzando países como Francia o Italia y países del norte de África (Argelia, Marruecos, Túnez) desde su origen en España.