SciELO - Scientific Electronic Library Online

 
vol.41 número4Almacenamiento refrigerado y aplicaciones de 1-metilciclopropeno (1-MCP) en frutos de chicozapote (Manilkara sapota (L.) P. Royen) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Agrociencia

versión On-line ISSN 2521-9766versión impresa ISSN 1405-3195

Agrociencia vol.41 no.4 Texcoco may./jun. 2007

 

Protección vegetal

Fenoles, Peroxidasa y fenilalanina amonio-lyasa: su relación con la resistencia genética de clones de papa (Solamun tuberosum L.) contra el tizón tardío (Phytophthora infestans Mont. De Bary)

Héctor Lozoya-Saldaña1 

Rodolfo Rivera-Hinojosa2 

María Teresa Colinas-León3 

1Departamento de Fitotecnia. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México. (lozoya@correo.chapingo.mx)

2Departamento de Fitotecnia. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México

3Departamento de Fitotecnia. Universidad Autónoma Chapingo. 56230. Chapingo, Estado de México. (mtcolina@correo.chapingo.mx)


Resumen

La resistencia horizontal de las plantas a las enfermedades involucra la activación de varios genes de defensa. Para comprobar este tipo de mecanismos se cuantificaron actividades enzimáticas relacionadas con diversos niveles de resistencia genética en genotipos de papa (Solanum tuberosum L.) contra el tizón tardío (Phytophthora infestans Mont. de Bary), expuestos a infección natural en el valle de Toluca, con y sin protección con fungicidas. Hubo respuesta diferencial en presencia y actividad enzimática entre genotipos en función de su resistencia genética y de la presencia o ausencia de fungicidas. En el cultivar Alpha, susceptible, sin fungicidas, hubo correlación positiva significativa entre el nivel de la infección y la actividad de la fenilalanina amonio-liasa (PAL), así como de fenoles-peroxidasa (FEN-POX; r=0.9 en ambos casos), mientras que con protección química los fenoles se correlacionaron positivamente con ambas enzimas. En los clones resistentes hubo correlación positiva directa entre el porcentaje de infección y la presencia de fenoles, con y sin fungicidas, pero no se observó la relación inversa esperada (a mayor cantidad de fenoles menor infección). También en los genotipos resistentes (cv. Zafiro y los clones), sin fungicidas, hubo correlación positiva significativa entre infección/POX, FEN/POX y POX/PAL. Además, con fungicidas, los clones mostraron correlación positiva significativa entre todas las variables y sus combinaciones (r>0.73; Infección, FEN, POX, PAL). Se concluye que la resistencia genética no fue el resultado de reacciones aisladas contra el patógeno, sino de la combinación de los factores estudiados, sugiriendo el carácter poligénico o de resistencia horizontal.

Palabras clave: FEN; papa; PAL; POX; resistencia genética

Abstract

Horizontal resistance to diseases in plants involves activation of several defense genes. In order to prove this type of mechanism, a quantification was made of enzymatic activities related to diverse levels of genetic resistance in potato genotypes (Solanum tuberosum L.) against late blight (Phytophthora infestans Mont. De Bary), exposed to natural infection in the Toluca Valley, with and without protection with fungicides. There was a differential response in enzymatic presence and activity among genotypes as a function of their genetic resistance and of the presence or absence of fungicides. In the Alpha cultivar, susceptible, without fungicides, there was significant positive correlation between the infection level and the activity of the phenylalanine ammonia-lyase (PAL), as well as of phenols-peroxidase (FEN-POX; r=0.9 in both cases), whereas with chemical protection, the phenols were positively correlated with both enzymes. In the resistant clones there was direct positive correlation between the percentage of infection and the presence of phenols, with and without fungicides, but the expected inverse relationship was not observed (the higher the amount of phenols, the lower the infection). Also, in the resistant genotypes (cv. Zafiro and the clones), without fungicides, there was significant positive correlation among infection/POX, FEN/POX and POX/PAL. Furthermore, with fungicides, the clones showed significant positive correlation among all of the variables and their combinations (r>0.73; Infection, FEN, POX, PAL). It is concluded that the genetic resistance was not the result of isolated reactions against the pathogen, but rather of the combination of the factors studied, suggesting the polygenic trait or horizontal resistance.

Key words: FEN; potato; PAL; POX; genetic resistance

Texto completo disponible sólo en PDF.

LITERATURA CITADA

Alia-Tejacal, I., M. T. Martínez-Damián, y M. R. Soto-Hernández. 2002. Factores fisiológicos, bioquímicos y de calidad en frutos de zapote mamey (Pouteria sapota Jacq. H. E. Moore & Stearn) durante poscosecha. Revista Chapingo. Serie Horticultura 8:263-271. [ Links ]

Andreu, A., C. Oliva, S. Distel, and G. Daleo. 2000. Production of phytoalexins, glycoalkaloids and phenolics in leaves and tubers of potato cultivars with different degrees of field resistance after infection with Phytophthora infestans. Potato Res. 44:1-9. [ Links ]

Arora, K., and D. S. Wagle. 1985. Interrelationship between peroxidase, polyphenol oxidase activities and phenolic content of wheat for resistance to loose smut. Biochem. Physiol. Pflanzen. 180:75-80. [ Links ]

Arz, C. M., and J. H. Grambow. 1995. Elicitor and suppressor effects on phospholipase C in isolated plasma membranes correlate with alterations in phenylalanine ammonia-lyase activity of wheat leaves. J. Plant Physiol. 146: 64-70. [ Links ]

Bashan, Y. 1986. Phenols in cotton seedlings resistant and susceptible to Alternaria macrospora. Phytopathology. 116: 11-17. [ Links ]

Buchanan, B. B., W. Gruissem, and R. L. Jones. 2000. Biochemistry and Molecular Biology of Plants. Am. Soc. Plant Physiologists, Rockville, MD, USA. 1367 p. [ Links ]

Boller T. 1982. Ethylene-induced biochemical defenses against pathogens. In: Wareing, P. F. (ed). Plant Growth Substances. Academic Press. London. pp: 303-312. [ Links ]

Cahill, D. M., and E. W. B. Ward. 1989. Effects of metalaxyl on elicitor activity, stimulation and glyceollin production and growth of sensitive and tolerant isolates of Phytophtora megasperma f. sp. glycinea. Physiol. Mol. Plant Pathol. 35:97-112. [ Links ]

Dercks, W., and L. Creasy. 1989. Influence of fosetyl-Al on phytoalexin accumulation in Plasmopara viticola-grapevine interaction. Physiol. Mol. Plant Pathol. 34:203-213. [ Links ]

Dixon, R. A., and M. J. Harrison. 1991. Activation, structure, and organization of genes involved in microbial defense in plants. Adv. Genet. 28:166-234. [ Links ]

Flurkey, W. H., and J. J. Jen. 1978. Peroxidase and polyfenol oxidase activities in developing peaches. J. Food Sci. 43:1828-1831. [ Links ]

Fry, W.O., and S. B. Goodwin. 1997. Resurgence of the Irish potato famine fungus. BioScience 47: 363-371. [ Links ]

Goodman, N. R., Z. Kiraly, and K. R. Wood. 1986. The Biochemistry and Physiology of Plant Disease. University of Missouri Press. Columbia, Missouri, U.S.A. 433 p. [ Links ]

Goowdin, S. B. 1996. Origin and ecology of Phytophthora infestans. Rev. Mex. Fitopatol. 14: 143-147. [ Links ]

Henfling, W. J. 1987. Late blight of potato (Phytophthora infestans). Technical information bulletin 4. International Potato Center (CIP). Lima, Perú. 25 p. [ Links ]

Lozoya-Saldaña H., y A. Hernández-Vilchis. 2001. Compuestos registrados y de la sección 18 para el control del tizón tardío (Phytophthora infestans Mont. De By) en papa en Toluca, México. Agrociencia 35: 451-458. [ Links ]

Lozoya-Saldaña, H., O. Barrios, and J. Bamberg. 2005. Phytophthora infestans; Races vs genotypes in the Toluca Valley, México. Potato Association of América 89th Annual Meeting, Calgary, Alberta, Canadá. Resumen G-40. [ Links ]

Luthra, Y. P., S. K. Gandhi, U. N. Joshi, and S. K. Arora. 1988. Total phenols and their oxidative enzymes in sorghum leaves resistant and susceptible to Ramulispora sorghicola Harris. Acta Phytopathol. Entomol. Hungarica 23: 393-399. [ Links ]

Manibhushanrao, K., Z. Mohammed, and N. Matsuyama. 1988. Phenol metabolism and plant disease resistance. Acta Phytopathol. Entomol. Hungarica 23: 103-114. [ Links ]

Martínez-Téllez, M. A., and M. T. Lafuente. 1997. Effect of high temperature conditioning on ethylene, phenylalanine ammonialyase and polyphenol oxidase activities in flavedoof chilled fortune marduly fruit. J. Plant Physiol. 150: 674-678. [ Links ]

Mozzetti, C., L. Ferraris, G. Tamietti, and A. Matta. 1995. Variation in enzime activities in leaves and cell suspensions as markers of incompatibility in different Phytophthora-pepper interactions. Physiol. Mol. Plant Pathol. 46:95-107. [ Links ]

Mucharromah, H. R. Burton, and J. Kuae. 1995. The effect of sterols on phytoalexin, steroid glycoalkaloid, and sterol accumulation in potato tuber discs inoculated with Phythophthora infestans or treated with arachidonic acid. Physiol. Mol. Plant Pathol. 47: 13-27. [ Links ]

Niederhauser, J. S. 1962. Evaluation of multigenic “field resistance” of the potato to Phytophthora infestans in 10 years of trials at Toluca, México. Phytopathology 52: 746 (abstract). [ Links ]

Patil, S. H., R. K. Hedge and K. H. Anahosur. 1985. Role of sugars and phenols in charcoal rot resistance of sorghum. Phytopathology. Z. 113: 30-35. [ Links ]

Robinson, D. S. 1991. Peroxidases and their significance in fruits and vegetables. In: Fox, P. F. (ed). Food Enzimology. Vol. 1. Elsevier, London. pp: 399-426. [ Links ]

Robinson, R. A. 1996. Return to Resistance. Breeding Crops to Reduce Pesticide Dependence. Agaches, Davis, CA, USA. 480 p. [ Links ]

Rubio C., O., V. Magallanes, C. Díaz, A. Rivera, H. López, y T. Zavala. 2001. Zafiro y Malinche: nuevas variedades de papa mexicanas. In: Fernández-Northcote, E. N. (ed). Memorias del Taller Internacional Complementando la resistencia al tizón (Phytophthora infestans) en los Andes. Cochabamba, Bolivia. pp: 3. [ Links ]

Trujillo, A., O. Navia, J. Gabriel, A. Gandarillas, y E. N. Fernández-Northcote. 2001. Utilización de un activador de resistencia en estrategias de control químico del tizón de la papa (Phytophthora infestans) en un cultivar resistente. In: Fernández-Northcote, E. N. (ed). Memorias del Taller Internacional: Complementando la Resistencia al Tizón (Phytophthora infestans) en los Andes. Cochabamba, Bolivia. pp: 5. [ Links ]

Velazhahan, R., and P. Vidhyasekaran. 1994. Role of phenolic compounds, peroxidase and polyphenol oxidase in resistance of groundnut to rust. Acta Phytopathol. Entomol. Hungarica 29: 23-29. [ Links ]

Waterman, P. G., and S. Mole. 1994. Analysis of Phenolic Plant Metabolites. Ed. Blackwell Scientific Publications. Oxford, UK. 238 p. [ Links ]

Winkel-Shirley, B. 1999. Evidence for enzyme complexes in the phenylpropanoid and flavonoid pathways. Physiol. Pl. 107: 142-149. [ Links ]

Zacheo G., T. Bleve-Zacheo, D. Pacoda, C. Orlando, and R. D. Durbin. 1995. The association between heat-induced susceptibility of tomato to Meloidogyne incognita and peroxidase activity. Physiol. Mol. Plant Pathol. 46:491-507. [ Links ]

Recibido: Noviembre de 2006; Aprobado: Febrero de 2007

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons