Servicios Personalizados
Revista
Articulo
Indicadores
Links relacionados
- Similares en SciELO
Compartir
Computación y Sistemas
versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546
Comp. y Sist. vol.9 no.1 Ciudad de México jul./sep. 2005
Implementación de un Multimodelo Neuronal Jerárquico para Identificación y Control de Sistemas Mecánicos
Implementation of a Neural Hierarchical Multimodel for Identification and Control of Mechanical Systems
Ieroham Baruch y José Luis Olivares Guzmán
CINVESTAVIPN Departamento de Control Automático, Av. IPN 2508 Col. San Pedro Zacatenco, A.P. 14740 C.P. 07360, México D.F., México baruch@ctrl.cinvestav.mx ; jolivares@ctrl.cinvestav.mx
Artículo recibido en octubre 17, 2003
Aceptado en abril 01, 2005
Resumen
En este artículo se propone la implementación de un Multimodelo Neuronal Jerárquico (MNJ) basándose en la símilarridad con el modelo difuso de TakagiSugeno. El modelo MNJ tiene tres partes: 1) fuzificación; 2) inferencia en el nivel bajo usando Redes Neuronales Recurrentes, RNR; 3) defuzifición en el nivel jerárquico alto usando una RNR que es en realidad un filtrosumador ponderado de las salidas de las RNR del nivel bajo. El aprendizaje y el funcionamiento de ambos niveles jerárquicos son independientes. El modelo MNJ es implementado como identificador y controlador (feedforward, y feedback) en dos esquemas de control directo adaptable. Ambos esquemas de control son aplicados con una planta mecánica con fricción y comparados con otros esquemas de control neuronal y difuso, mostrando mejores resultados.
Palabras Clave: Control adaptable neuronal con modelo inverso, control neuronal directo adaptable, identificación de sistemas, Multimodelo Neuronal Jerárquico, Red Neuronal Recurrente Entrenable, sistema mecánico con fricción.
Abstract
The present paper proposed to implement a Neural Hierarchical MultiModel (MNJ) based on the similarity with the fuzzy model of TakagiSugeno. The MNJ has three parts: 1) fuzzyfication; 2) inference engine in the lower hierarchical level, using Recurrent Neural Networks, RNR; 3) defuzzyfication in the upper hierarchical level, using one RNR doing a filtered weighted summation of the outputs of the lower level RNRs. The learning and functioning of both hierarchical levels is independent. The MNJ is implemented in two schemes of direct adaptive control as an identifier and as a feedforward/feedback controller, as well. Both control schemes are applied for control of a mechanical plant with friction and compared with other neural and fuzzy control schemes, exhibiting better results.
Keywords: Inverse model adaptive neural control, direct adaptive neural control, systems identification, Neural Hierarchical Multimodel, Recurrent Trainable Neural Network, mechanical system with friction.
DESCARGAR ARTÍCULO EN FORMATO PDF
Referencias
1. Karnopp, D.: Computer Simulation of StickSlip Friction in Mechanical Dynamic Systems. ASME Journal of Dynamic Systems, Measurement, and Control 107(1985) 100103. [ Links ]
2. Lee, S.W., Kim, J.H.: Robust Adaptive StickSlip Friction Compensation. IEEE Trans. Ind. Electr. 42 (1995) 474479. [ Links ]
3. Menon, K., Krihnamurthy, K.: Control of Low Velocity Friction and Gear Backlash in a Machine Tool Feed Drive System. Mechatronics 9 (1999) 3352. [ Links ]
4. Baruch, I., Gortcheva, E.: Fuzzy Neural Model for Nonlinear Systems Identification. In: Proc. of the AARTC'98 IF AC Workshop, Cancun, Mexico, 1517 April, (1998) 283288. [ Links ]
5. Baruch, I., Gortcheva, E., Thomas, F., Garrido, R.: A NeuroFuzzy Model for Nonlinear Plants Identification. In: Proc. of the IASTED Int. Conf. on Modeling and Simulation, MS'99, Philadelphia, PA, USA, May 58, (1999) 16. [ Links ]
6. Baruch, I., Thomas, F., Garrido, R., Gortcheva, E.: A Hybrid Multimodel Neural Network for Nonlinear Systems Identification. In: Proc. of the Int. Joint Conference on Neural Networks, Washington D.C., USA, July 1016, 6 (1999) 42784283. [ Links ]
7. Baruch, I., Garrido, R., Mitev, A., Nenkova, B.: A Neural Network Approach for StickSlip Friction Model Identification. In: Proc. of the 5th Int. Conf. on Engineering Applications of NNs, Warsaw, Poland, Sept. 1315, (1999) 183188. [ Links ]
8. Baruch, I., Flores, J.M., Garrido, R., Gortcheva, E.: Identificación de Sistemas No Lineales Complejos Usando un Multimodelo Neuronal Difuso. Científica, ESIME, 19 (2000) 2940. [ Links ]
9. Baruch, I., Flores, J.M., Thomas, F., Gortcheva, E.: A Multimodel Recurrent Neural Network for Systems Identification and Control. In: Proc. of the International Joint Conference on Neural Networks, Washington D.C., USA, July 1419, (2001) 12911296. [ Links ]
10. Baruch, I., Flores, J.M., Thomas, F., Garrido, R.: Adaptive Neural Control of Nonlinear Systems. In: Proc. of the Artificial Neural Networks Conf. ICANN, Lecture Notes in Comp. Science, Vol. 2130, SpringerVerlag, Berlin, Heidelberg, New York (2001) 930936. [ Links ]
11. Baruch, I., Flores, J.M., Nava, F., Ramirez, R., Nenkova, B.: An Advanced Neural Network Topology and Learning, Applied for Identification and Control of a D.C. Motor. In: Proc. of the 1st Int. IEEE Symposium on Intel. Systems, Varna, Bulgaria, Sept., (2002) 289295. [ Links ]
12. Ramirez, I.R., Baruch, I., Garrido, R.: Neuro Control Adaptable para un Motor CD. Científica, ESIME, 6, 3, JulioSeptiembre, (2002) 133142. [ Links ]
13. Baruch, I., Beltran, R., del Pozo, A., Garrido, R.: Control Multimodelo Neuronal para Sistemas Electromecanicos. Revista Ingeneria Electronica, Automatica y Comunicaciones, ISPJAE, La Habana, Cuba, ISSN 02585944, XXV, 1 (2004) 817. [ Links ]
14. Lin ChinTen, Lee C.S. George: Neural Fuzzy Sistem, A NeuroFuzzy Synergism to Intelliegent Systems. Prentice Hall PTR, New Jersey (1996). [ Links ]
15. Teixeira, M., Zak, S: Stabilizing Controller Design for Uncertain Nonlinear Systems Using Fuzzy Models. IEEE Trans. Syst., Man, and Cyb., 7 (1999) 133142. [ Links ]
16. Mastorocostas, P.A., Theocharis, J.B.: Recurrent FuzzyNeural Model for Dynamic System Identification. IEEE Trans. Syst., Man, and Cyb. Part B: Cybernetics, 32 (2002) 176190. [ Links ]
17. Takagi, T., Sugeno, M.: Fuzzy Identification of Systems and Its Applications to Modeling and Control. In: IEEE Trans. Syst., Man, and Cyb., 15 (1985) 116132. [ Links ]
18. Frasconi, P., Gori, M., Soda, G.: Local Feedback Multilayered Networks. Neural Computation, 4 (1992) 120130. [ Links ]
19. Narendra, K. S., Parthasarathy, K.: Identification and Control of Dynamical Systems Using Neural Networks. IEEE Trans. Neural Networks, 1 (1990) 427. [ Links ]