SciELO - Scientific Electronic Library Online

 
vol.16 número2Aprendizaje de múltiples núcleos esparcidos y no esparcidos para reconocimientoCombinación de clasificadores para bioinformática índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Resumen

MORALES VEGA, Daymi; MARTIN RODRIGUEZ, Diana; WILFORD RIVERA, Ingrid  y  ROSETE SUAREZ, Alejandro. Integration of Association Rules and Clustering Models Obtained from Multiple Data Sources. Comp. y Sist. [online]. 2012, vol.16, n.2, pp.175-189. ISSN 2007-9737.

One possible way to discover knowledge over distributed data sources, using Data Mining techniques, is to reuse the models of local mining found in each data source and look for patterns globally valid. This process can be done without accessing the data directly. This paper focuses on the proposal of two methods for integrating data mining models: Association Rules and Clustering Models, specifically rules were obtained using support and confidence as measures of quality and clustering based on centroids. It was necessary to use metaheuristics algorithms to find a global model that is as close as possible to the local models. These models were obtained using homogeneous data sources. The experimental study showed that the proposed methods obtain global models of quality in a reasonable time when increasing the amount of local patterns to integrate.

Palabras llave : Integration; data mining models; association rules; clustering; patterns.

        · resumen en Español     · texto en Español     · Español ( pdf )

 

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons