SciELO - Scientific Electronic Library Online

 
vol.23 número1A Comparative Study of Sorting Algorithms with FPGA Acceleration by High Level SynthesisIdentificación de especies de roedores usando aprendizaje profundo índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Computación y Sistemas

versión On-line ISSN 2007-9737versión impresa ISSN 1405-5546

Comp. y Sist. vol.23 no.1 Ciudad de México ene./mar. 2019  Epub 26-Feb-2021

https://doi.org/10.13053/cys-23-1-2881 

Articles

A Comparative Study of Evolutionary Computation Techniques for Solar Cells Parameter Estimation

Omar Avalos1  * 

Erik Cuevas1 

Arturo Valdivia-González1 

Jorge Gálvez1 

Salvador Hinojosa1 

Daniel Zaldívar1 

Diego Oliva1 

1 Universidad de Guadalajara, CUCEI, Departamento de Electrónica, Mexico. omar.avalos@cutonala.udg.mx, erik.cuevas@cucei.udg.mx


Abstract:

Recently, the use of renewable energy has attracted the interest of several scientific communities due to the environmental consequences of fossil fuels. Many different technologies have been proposed for the exploitation of clean energies. One of most used is the solar cells considering their unlimited source power characteristics. The estimation of solar cell parameters represents a critical task since its efficiency directly depends on their operative values. However, the determination of such parameters presents several difficulties because of the non-linearity and the multimodal properties from the estimation process. The problem of solar cell parameter estimation has been widely faced through Evolutionary Computation (EC) techniques. Essentially, these methods have produced better results than those obtained by classical methods regarding accuracy and robustness. Each EC algorithm has been designed to fulfill the conditions of specific problems since no one approach can optimize all problems effectively. Under such circumstances, the performance of each EC approach must be correctly assessed considering the application context. Several proposals of EC methods to estimate the parameters of solar cells have been reported in the literature. However, most of them report only a single EC technique considering a minimal number of solar cell models. In this paper, a comparative study of EC techniques used for solar cells parameter estimation is proposed. In the study, the most popular EC approaches currently in use are considered, evaluating their performance over the complete set of solar cell models.

Keywords: Solar cells; evolutionary computational techniques; parameter estimation; three diode model

1 Introduction

The growing demand and the lack of fossil fuels [1], along with their effects such as air pollution and global warming, have forced to consider alternative energy sources. Solar energy is one of the most promising renewable energy due to its unlimited source of power. Nowadays, the solar photovoltaic energy has attracted the attention in many areas of engineering, increasing its use through the years [2] as a result of its free-emission electrical power generation [3], easy maintenance and availability in isolated areas.

The modeling of solar cells is a complex task attributable to their nonlinear (I - V) behavior and their high dimensionality. Moreover, there exist several factors that adversely affect the modeling of solar cells such as the temperature, the partially shaded conditions [4], just for mention a few. The most efficient method for generating solar cell models is the use of an equivalent electrical system. In the literature, there are two main models reported: the single and the double diode model. The most common configuration is the single diode model which considers five design parameters [5]. On the other hand, the double diode model involves seven design parameters [6] that must be defined. Recent advances in solar cell systems have conducted to the development of more accurate models than those produced by the electronic circuits of one or two diodes. One example of these new models is the configuration of three diodes proposed in [7].

Under this approach, other important factors of the solar cell can be characterized to improve its operative precision by considering ten different design parameters. Different to other studies, in this paper, the three-diode model is considered for the experimental comparisons.

Several methods have been reported in the literature for the estimation of parameters in solar cells. Some examples involve those based on Newton methods [7], the Lambert functions [8] and least squares [10,11]. Such techniques can determinate solar cells parameters with a relative good precision; however, they frequently deliver sub-optimal solutions because of their inability to overcome local optima [11].

Evolutionary Computation (EC) techniques are optimization approaches that solve difficult engineering problems due to their efficient search strategies which allow finding optimal solutions. Several EC methods and their variations have been proposed as an alternative to classical techniques for estimating the parameters of solar cells. Essentially, these methods have produced better results than those obtained by classical methods regarding accuracy and robustness. Some examples of such proposals involve Genetic Algorithms (GA) [13,14], Particle Swarm Optimization (PSO) [15,16], Artificial Bee Colony (ABC) [17,18], Differential Evolution (DE) [19,20], Harmony Search (HS) [21,22], Cuckoo Search (CS) [23,24], just for mention a few. However, most of these studies report only a single EC technique considering a minimal number of solar cell models [25-27].

Each EC algorithm has been designed to fulfill the conditions of specific problems since no one approach can optimize all problems effectively. Under such circumstances, the performance of each EC approach must be correctly assessed considering the application context. This paper presents a comparative study of the most popular EC algorithms currently in use for the parameter estimation of single, double and three diode models in solar cells. The techniques considered in the study involve Artificial Bee Colony (ABC) [27], Differential Evolution (DE) [28], Harmony Search (HS) [29], Gravitational Search Algorithm (GSA) [30], Cuckoo Search (CS) [31], Differential Search Algorithm (DSA) [32], the Crow Search Algorithm (CSA) [33], and Covariant Matrix Adaptation with Evolution Strategy (CMA-ES) [35,36]. The experimental results of this study present the relative performance of each EC technique validated under statistical tests.

This paper is organized as follows; Section 2 presents a brief description of evolutionary computation techniques used in this work. Section 3 details the three equivalent circuit models for the solar cell parameter estimation. In Section 4, the experimental results are reported. In Section 5, the non-parametric statistical tests used for the experimental validation is presented. Finally, in Section 6 the conclusions are discussed.

2 Evolutionary Computation (EC) Techniques

EC techniques are useful tools that allow solving complex problems with a good performance. These algorithms are designed to optimize a set of the task with specific characteristics. Under such circumstances, no one method can solve all problems efficiently. The performance of an EC method is directly determined by the balance between the exploration and exploitation of its optimization process. Therefore, different EC approaches have been developed, where both concepts are specifically combined to produce a particular search strategy. In this section, a brief description of the EC methods used in the comparisons is presented.

2.1 Artificial Bee Colony (ABC)

Artificial Bee Colony was proposed by Karaboga [27] inspired by the behavior of honeybee swarm. The ABC employs a population Sks1k,s2k,sNk of N food sources randomly distributed from an initial point k = 0 to a total number of iterations k = iterations. In ABC, each food source siki1,,N is represented as a m-dimensional vector si,1k,si,2k,,si,mk, where m is the number of decision variables of the optimization problem. After initialization, the food source quality is evaluated considering a fitness function that determinates if is a feasible solution or not. If the solution sik is a candidate, the operators of ABC evolved this candidate to generate a new food source v i that is defined as follows:

vi=sik+ϕsik-sjk, i,jϵ1,2,,N, (1)

where sjk is a random food source that satisfies and ϕ is a random scale factor between [-1,1]. The fitness function for a minimization problem assigned to a candidate solution can be defined as follow:

fitsik=11+fsik,  if fsik 0,1+absfsik,  if fsik<0, (2)

where f(•) is the fitness function to be minimized. When a new food source is computed, a greedy selection handle, if the new food source v i is better than the actual sik, the actual food source sik is replaced for the new one v i , otherwise the actual food source sik reminds.

2.2 Differential Evolution (DE)

Storn and Price developed Differential evolution algorithm [28], which is a stochastic vector-based evolutionary technique, which utilizes m-dimensional vectors defined as follow:

xik=xi,1k,xi,2k,,xi,mk,  i=1,2,N, (3)

where xik is the i-th vector at iteration k. The DE uses the weighted difference between two vectors to generate a third vector; this process is known as mutation and is described below:

vik+1=xpk+Fxqk-xrk, (4)

where F is a constant that controls the magnitude of differential variation within the interval [0, 2]. On the other hand, to increment the diversity of the mutated vector, a crossover is incorporated. It is represented as follows:

uj,ik+1=vj,i  if riCrxj, ik  otherwise ,  j=1,2,d,  i=1,2,,n, (5)

Finally, the vector selection produces the final value comparing the fitness values between the can didate vector against the original as follows:

xit+1=uit+1  if fuit+1fxit,xit  otherwise, (6)

2.3 Harmony Search (HS)

Harmony search algorithm was introduced by Geem [29]. This optimization method is particularity based on the improvisation process taking place in jazz music. HS defines a harmony memory with a population of N individuals represented as HMkH1k,H2k,,HNk. Each harmony Hik represents a m-dimensional vector of the decision variables. After initialization, HS generates new solutions by considering a pitch adjustment or with a random re-initialization.

When a new harmony is produced, a uniform random number between [0,1] is generated r 1 , if this number is less than the harmony-memory consideration rate (HMCR), the new harmony is generated with memory considerations, otherwise, the new harmony is re-initialized with random values between bound limits. The generation process of a new harmony is described below:

Hnew=Hjϵx1,j,x2,j,,xHMS,j  with probability HMCR,lower+uper-lowerrand  with probability 1-HMCR. (7)

To determinate which element should be adjusted by the pitch process, further examinations must be considered. For this operation two parameters are defined: The pitch-adjusting rated (PAR) and bandwidth factor (BW). PAR considers the frequency of adjustment while BW controls the magnitude of the local search process. This complete operation can be described as follows:

Hnew=Hnew±rand0,1BW  with probability PAR,Hnew  with probability 1-PAR. (8)

2.4 Gravitational Search Algorithm (GSA)

Rashedi proposed Gravitational Search Algorithm [30] which is based on the laws of gravity. This technique emulates the candidate solutions as masses, which are attacked one each other by the gravitational forces. Under this approach, the quality (mass) of an individual is determined by its fitness value. The GSA uses a population of N individuals that represent an m-dimensional vector xikx1,x2,,xN, where the dimension is the number of decision variables. A force from a mass i to a mass j in a defined time t is determined as follows:

Fijht=GtMpit×MajtRijt+εxjht-xiht, (9)

where Ma j is the active gravitational mass related to individual j, Mp i . is the passive gravitational mass of individual i, G(t) is the gravitational constant, ε is a constant, and R ij is the Euclidian distant between i and j individuals. In GSA, the balance between exploration and exploitation is made by modifying G(t) through the iterations. The sum of all forces acting on individual i is expressed bellow:

Fiht=j=1, jiNFijht, (10)

the acceleration of each individual at time t is given bellow:

aiht=FihtMnit, (11)

where Mn i is the inertia mass of individual i, with this, the velocity and position for each individual are computed as follows:

xiht+1=xiht+viht+1,viht+1=randviht+aiht, (12)

After evaluating the fitness of each individual, their inertia, and gravitational masses are updated, where a heavier individual means a better solution, fort this, GSA uses the follows equations:

Mai=Mpi=Mii=Mi, (13)

mit=fxit-worsttbestt-worstt, (14)

Mit=mitj=1Nmjt, (15)

where are the fitness function and best (t) and worst (t) represent the best and worst solution of the complete population at time t.

2.5 Particle Swarm Optimization (PSO)

Particle Swarm Optimization, introduced by Kennedy [36], is based on the behavior of birds flocking. The PSO uses a group of N particles Pkp1k,p2k,,pNk which after being evaluated by a cost function, the best positions are storage pi,j*. To calculate the velocity of each candidate solution for the next iteration, the following model is used:

vi,jk+1=ωvi,jk+c1r1pi,j*-pi,jk+c2r2gi,j*-pi,jk, (16)

where ω is the inertia weighs used to control the velocity (i = 1,2,..,N), (j = 1,2,...,p). c 1 and c 2 are the acceleration coefficients that adjust the movement of each individual in the positions g and p * respectively. r 1 and r 2 are two random numbers between [0,1]. Therefore, to calculate the new position of the individuals used the following equation is employed:

pi,jk+1=pi,jk+vi,jk+1 (17)

Once the new position is computed, it is evaluated by a cost function. If the new solution is better that the last one, then it is replaced, otherwise it remains.

2.6 Cuckoo Search (CS)

The cuckoo search was proposed in 2009 by Deb and Yang [31]. This technique emulates the parasite behavior of cuckoo birds through the use of the Lévy flights [37]. CS uses a population of Eke1k,e2k,,eNk individuals (eggs) in a determined number of generations (N = gen), where each individual eiki=1,2,,N represent a m-dimensional vector ei,1k,ei,2k,,ei.mk. To improve the exploration of the search space, CS includes the Lévy flights which perturb each individual with a position c i using a random step s i generated with a symmetric distribution computed as follows:

si=uu1/β, (18)

where uu1,u2,,un and vv1,v2,,vn are n-dimensional vectors and β = 3/2. The elements of u and v are calculated by the following normal distribution:

uN0,σu2,vN0,σu2, (19)

σu=Γ1+βsinπβ/2Γ1+β/2β2β-1/2,σv=1, (20)

where Γ(•) is the Gamma distribution. Once s i is calculated, c i is computed as follows:

ci=0.01sieik-ebest, (21)

where ⊕ is the element-wise multiplications. Ones are obtained, the new candidate solution is estimated as bellow:

eik+1=eik+ci. (22)

2.7 Differential Search Algorithm (DSA)

Differential search algorithm [32] imitates the Brownian-like random-walk movement used by an organism to migrate. In the DSA a population Xkx1k,x2k,,xNk of individuals (artificial organisms) is initialized randomly through the search space. After the initialization, a stopover vector is generated described by the Brownian-like random-walks for each element of the population; this stopover is described below:

si,N=Xi,N+AXri,N-Xi,N, (23)

where ri ∈ [1, NP] is a random integer within the population range and rii. A is a scale factor that regulate the position changes of the individuals. For the search process, the stopover position is determined as below:

si,j'=si,j   if ri,j=0,Xi,j  if ri,j=1, (24)

where j = [1,…, d] and r i,j can take the value of 0 or 1. After the selection of the candidate solution, each individual is evaluated by a cost function f(•) to determinate their quality, then a criterion of selection is used which is described as follows:

Xik+1=sik  if fsi'fXik,Xik  if fsi'>fXik, (25)

2.8 Crow Search Algorithm (CSA)

The crow search algorithm was originally proposed by Askarzadeh [33], based on the intelligent behavior of crows. CSA uses a population of ckc1k,c2k,,cNkN individuals (crows), where each individual represents a m-dimensional vector ci,1k,ci,2k,,ci,mk. The search strategy of CSA can be summarized in two steps. In the first one, it is when a crow is aware that is being followed for another crow while the second is when is not aware. The states of each crow are determined by a probability factor APik. Therefore, the new candidate solution is computed as follows:

cik+1=cik+ri×fl×mjk-cjk  rjAPik,random position  otherwise, (26)

where r i and r j are random numbers between [0,1], fl is a parameter that controls the flight length. mjk is the memory of the crow j which stores the best solution at iteration k.

2.9 Covariant Matrix Adaptation with Evolution Strategy (CMA-ES)

CMA-ES [35,36] is an evolutionary algorithm proposed by Hansen based on the estimation of the covariant matrix on the search data. The CMA-ES uses a population of Xkx1k,x2k,,xNkN individuals, which are randomly initialized. In the each generation, λ individuals are selected to be updated using the following equation:

xNk+1Nxwk,σk2Ck, (27)

where N(μ, C) is a normally distributed random vector with a mean μ and a covariance matrix C. The next weighted mean xwk selected as the best interval is computed as follows:

xwk=i=1μwixik, (28)

where i=1μwi=1. To carry out the modification in the parameters, the CMA-ES uses two different adaptations, on the covariance matrix C k and on the global step size σ k . For the covariance matrix adaptation case, an evolution path Pck+1 is used, which depends on the parent's separation with xwk and the recombination points xwk+1 as is shown below:

pck+1=1-ccpck+Hck+1cc2-ccμeffσkxwk+1-xwk, (29)

Cck+1=1-ccovCkccov1μcovpck+1pck+1T+ccov1-1μcovi=1μwiσkxik+1-xikxik+1-xik, (30)

Hσk+1=1  pσk+11-1-cσ2k+1<1.5+1n-0.5EN0,1,0  otherwise, (31)

where μeff=i=1μwi2/i=1μwi is the effective variance selection and ccovmin1,2μeff/n2 is the learning rate. For the global step size adaptation a parallel path is used to modify σ k , this process is described below:

pσk+1=1-cσpσk+cσ2-cσBk.Dk-1BkT×μeffσk×xwk+1-xwk, (32)

where B k is an orthogonal matrix and D k is a diagonal matrix. The adaptation of global step size for the next generation is given by the following equation:

σk+1=σkexpcσdσpσk+1EN0,1-1, (33)

where EN(0,1)=2Γn+1/2/Γn/2n1-1/4n+1/21n2 is the length of p σ

3 Modeling of Solar Cells

Solar cells are one of the most essential and increasingly clean energy sources. For this reason, their correct modeling has become an important task nowadays. Several alternatives for the solar cell modeling have been proposed in the literature [38-40]. However, the most common models are the equivalent circuits models [5, 6, 41], known as Single diode model (SDM), Double diode model (DDM) and Three diode model (TDM).

3.1 Single Diode Model (SDM)

The single diode model is the basic and most used model for the representation of the solar cell behavior. This model uses a diode connected in parallel with the source of current. Fig. 1 presents a representation of this model. Considering the circuit theory, the total current of single diode model is calculated as follows:

Icell=IL-ISDexpqvcell+IcellRsnkT-1-vcell+IcellRsRp, (34)

Fig. 1 Single diode model 

where k is the Boltzmann constant, q is the electron charge, I SD is the diffusion current, V cell is the terminal voltage, R p and R S are the parallel and serial resistances. For the single diode model, the parameters that determinate its performance is given by five parameters; R S , R p , I L , I SD and n.

3.2 Double Diode Model (DDM)

The double diode model is another alternative to characterize the solar cell behavior. Under this circuit, instead of using only one diode, it involves two diodes in a parallel array as is shown in Fig. 2. Therefore, the total current of this model is calculated as follows:

Icell=IL-ID1-ID2-Ip, (35)

Fig. 2 Double diode model 

where the diodes and leakage currents are calculated as follows:

ID1=ISD1expqvcell+IcellRsn1kT-1, (36)

ID2=ISD2expqvcell+IcellRsn2kT-1, (37)

Ip=vcell+IcellRsRp. (38)

In the double diode model, the elements that must be determined are R s , R p , I L , I SD1 , I SD2 , n 1 and n 2 .

3.3 Three Diode Model (TDM)

Recent advances in solar cell systems have conducted to the development of more accurate models than those produced by the electronic circuits of one or two diodes. One example of these new models is the configuration of three diodes proposed in [7]. The three diode model is a representation of the solar cell models which include a third diode in parallel with the original two diodes. The model considers the effects of a new current ID 3 and factor n 3 that allow improving the modeling accuracy. Similarly to the two diode model, the total current is calculated as:

Icell=IL-ID1-ID2-ID3-Ip, (39)

ID1=ISD1expqVcell+IcellRSO1+KIn1kT-1, (40)

ID2=ISD2expqVcell+IcellRSO1+KIn2kT-1, (41)

ID3=ISD3expqVcell+IcellRso1+KIn3kT-1, (42)

Ip=Vcell+IcellRso1+KIRp, (43)

Fig. 3 Three diode model 

In the case of three diode model, the parameter R S is replaced by R SO (1+KI) to find the variation of R S with I cell . Where I cell is the load current and K is a parameter that must be determined as the other parameters, for this, the parameters to be tuned are R SO , R p , I L , I D1 , I D2 , I D3 , n 1, n 2, n 3 and K.

The solar cells can be configured as modules [42,43], which are an array of individual solar cells connected in serial and parallel. When the cells are connected to serial the voltages increases N S times, in the case of cells connected in parallel only the current components increases in N P times. So that, the output of a module of N s × N p cells is computed as follows:

Im=NpIcell, (44)

Vm=NsVcell, (45)

Rsm=NsNpRs,Rpm=NsNpRp. (46)

3.4 Solar Cells Parameter Identification as an Optimization Problem

The identification of solar cells can be faced as an optimization problem. Under this approach, the objective is the correct approximation of the I - V output between the true model and the equivalent circuit model. With this results, each optimization technique is evaluated by a cost function to determinate the quality of the approximation. For the identification process, the equations (23, 24) and (28) are rewritten to reflex the difference of the experimental data as follows:

fSDMVcell,Icell,x=Icell-IL+ID+Ip, (47)

fDDMVcell,Icell,x=Icell-IL+ID1+ID2+Ip, (48)

fTDMVcell,Icell,x=Icell-IL+ID1+ID2+ID3+Ip. (49)

For the three models x represents the parameters to be estimated, for the single diode model (SDM) x = [R s , R p , I L , I SD , n], in the double diode model (DDM) x = [R s , R p , I L , I SD1 , I SD2 , n 1, n 2] and for the three diode model (TDM) x = [R so , R p , I L , I SD1 , I SD2 , I SD3 , n 1, n 2, n 3. K]. In order to evaluate the quality of each candidate solution, the root means square error (RMSE) is considered:

RMSE=1Ni=1NfiVcell,Icellx2. (50)

During the optimization process, the parameters are adjusted to minimize the cost function until a stop criterion is reached. Since the data acquisition is in variant environmental conditions, the objective function presents noisy characteristics and multimodal properties [44]. Under such circumstances, the estimation process is considered as a complex task [45].

4 Experimental Results

For the experiments, an illustrative set of three different solar cell devices have been considered to examine the performance of our approach: the C60 mono-crystalline solar cell (SUNPOWER), the D6P Multi-crystalline Photovoltaic Cell (DelSolar) and KC200GT Photovoltaic Solar Module (Shell Solar). The experimental section consists of three experiments.

In the first experiment, The SUNPOWER solar cell has been used for parameter estimation considering the single and double diode models over different operative conditions. In the second experiment, the DelSolar cell is identified considered the single, double and three diode models. Finally, in the third experiment, the Shell Solar system is identified by using the single and double diode models.

For the Single Diode Model, the number of parameters to be determined is five, in the Double Diode Model 7 and for the Three Diode Model 10. It is important to remark that the three Diode Model involves three fixed parameters [46]. In the three diode model, I SC is the short circuit current and R S is also replaced with R SO (1+KI) to find the variation of R S respect to the current I. The lower and upper solar cells parameters ranges for each model are shown in Table 1.

Table 1 Solar cells parameters ranges for Single, Double, and Three Diode Model 

Single Diode Model Double Diode Model Three Diode Model
Parameter Lower Upper Parameter Lower Upper Parameter Lower Upper
R S (Ω) 0 0.5 R S (Ω) 0 0.5 R SD (Ω) 0 1
R P (Ω) 0 200 R P (Ω) 0 100 R P (Ω) 0 100
I L (A) I SC I L (A) I SC I L (A) I SC
I SD A) 0 1 I SD1 A) 0 1 I SD1 A) 0 1
n 1 1 2 I SD1 A) 0 1 I SD2 A) 0 1
- - - n 1 0 2/3 I SD3 A) 0 1
- - - n 2 0 2/3 n 1 1
- - - - - - n 2 2
- - - - - - n 3 0 3
- - - - - - k 0 1

In the experiments, each algorithm is compared regarding its estimation accuracy. The methods considered in the comparison are the Artificial Bee Colony (ABC), Crow Search Algorithm (CSA), Cuckoo Search (CS), Differential Evolution (DE), Differential Search Algorithm (DSA), Gravitational Search Algorithm (GSA), Harmony Search (HS), Particle Swarm Optimization (PSO) method [12], and the Co-variance Matrix Adaptation Evolution Strategies (CMA-ES).

These methods are considered as the most popular EC algorithms currently in use. The parameter setting of each EC method for the experimental analysis is defined according to its own references which have demonstrated through experimentation produce the best optimization results. Such configurations are summarized below:

  1. ABC: limit = 100 , by using [16].

  2. CSA: AP = 0.1 and fl = 2.

  3. CS: p a = 0.25 in concordance with [23].

  4. DE: F = 0.4 and C r = 0.4 [47].

  5. DSA: p 1 = 0.3 and p 2 = 0.3 according to [32].

  6. GSA: G 0 = 100 and α= 20 [30].

  7. HS: HMRC = 0.95 and PAR = 0.3 [22].

  8. PSO: c 1 = 0.5, c 2 = 2.5 , the weight factor w decreases from 0.9 to 0.4 according to [48].

  9. CMA-ES: The parameters are configured according to [34, 35].

In the study, two performance indexes are compared: the root means square error (RMSE) and standard deviation after 40 individual executions. The first index evaluates the accuracy of the algorithm whereas the latter measures its robustness.

In the comparisons, each algorithm is set with 50 individuals.

To eliminate the random effect, each experiment is tested for 40 independent runs. In the comparison, a fixed number of iterations (2000) has been considered as a stop criterion. This stop criterion has been decided to keep compatibility with similar works published in the literature.

4.1 Identification of C60 Mono-Crystalline Solar Cell

The first experiment involves the parameter estimation of a solar cell C60 Mono-crystalline, considering four different sun irradiations: (1000 W/m2), (800 W/m2 ), (500 W/m2) and (300 W/m2) at T = 25°C. In the estimation process, the SDM, as well the DDM models, are used. Table 2, 3, 4 and 5 present the results for the cases of (1000 W/m2), (800 W/m2), (500 W/m2) and (300 W/m2), respectively.

Table 2 Solar cells (Mono-crystalline C60) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 1000 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.005065 0.006535176 0.00168 0.00466 0.0051363 0.00542089 0.00920948 0.0034763 0.00662421
Rp (Ω) 183.463 114.252273 199.3241 199.4603 152.35831 79.83066 164.621448 39.481739 200
IL (A) 6.240779 6.21459738 6.546991 6.23187 6.2295673 3.53701901 6.41504223 6.2343094 6.21432845
ID (A) 2.08E-06 2.79016E-07 6.27E-08 3.3E-06 2.197E-06 2.4077E-06 5.3421E-06 3.595E-06 2.41E-07
n 1.697168 1.496370914 1.345742 1.7507 1.7033435 1.87810036 1.82172571 1.7523015 1.48357172
Min RMSE 0.010921 0.009935587 0.267794 0.010551 0.0099479 0.03315632 0.01324157 0.0113077 0.00992256
Max RMSE 0.014243 0.01156138 0.268449 0.012094 0.0115475 0.20423651 0.07939054 0.0369322 0.0104022
Average RMSE 0.011869 0.010522777 0.268275 0.011191 0.0106624 0.1058941 0.02830248 0.0169241 0.00995462
std 0.00066 0.000461744 0.000122 0.000316 0.0004252 0.04410207 0.01343111 0.0047521 0.00010586
DDM
Parameters ABC CSA S DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.005678 0.006503674 0.002098 0.006623 0.006368 4.6383E-05 0.00585544 0.0058646 6.62E-03
Rp (Ω) 104.5934 191.2923658 188.4067 135.4169 161.64551 89.7438772 23.2336847 70.063423 2.00E+02
IL (A) 6.226711 6.214465293 6.54696 6.216998 6.2162283 3.29376151 6.09719654 6.2251079 6.21432845
ID1 (A) 2.52E-06 2.98848E-09 6.48E-07 1.29E-06 2.551E-07 3.5163E-06 8.3191E-07 8.32E-07 2.41E-07
ID2 (A) 1.01E-06 2.86929E-07 2.73E-08 1.91E-07 1.984E-07 9.9952E-07 9.2192E-07 5.353E-07 4.16E-16
n1 2.996087 1.548379914 1.936987 2.1322 21.4991135 1.96725788 1.7084817 1.8053035 1.48357169
n2 1.619807 1.499321137 1.290596 1.466079 1.6776963 1.90130136 1.66715067 1.5634685 1.48324541
Min RMSE 0.010186 0.009922907 0.267669 0.009963 0.0099278 0.01742442 0.01243733 0.0104161 0.00992256
Max RMSE 0.011947 0.021592727 0.26857 0.03142 0.0309824 0.05321138 0.04337821 0.0137103 0.01167399
Average RMSE 0.010878 0.018137755 0.268162 0.014355 0.0128385 0.03266309 0.01869163 0.0115566 0.00994816
std 0.000528 0.000230786 0.000189 0.000341 0.0002764 0.00833028 0.00624268 0.0008043 0.00124354

Table 3 Solar cells (Mono-crystalline C60) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 800 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.000488 0.000804375 2E-05 0.000608 0.0009882 0.00513349 0.00031329 0.0206406 0.00163057
Rp (Ω) 120.7382 98.41301429 192.0449 199.9999 131.57376 105.754974 77.0013758 66.393912 24.8933861
IL (A) 4.882213 4.881234281 5.130919 4.878856 4.8774982 3.76620098 4.70079256 4.8472653 4.88245696
ID (A) 2.15E-06 1.80815E-06 2.96E-09 2.12E-06 1.464E-06 2.9701E-06 3.8413E-06 6.636E-06 6.87E-07
n 1.728899 1.709113752 1.170159 1.727269 1.684991 1.85447388 1.80017479 1.8717672 1.60471698
Min RMSE 0.004947 0.004868946 0.490195 0.004944 0.004869 0.01796734 0.00803614 0.0059932 0.00486895
Max RMSE 0.006511 0.00633468 0.490546 0.005489 0.0051846 0.16861586 0.0824437 0.0320081 0.0050412
Average RMSE 0.005311 0.005094385 0.490393 0.005165 0.0049925 0.08699095 0.02791164 0.0169787 0.00487734
std 0.000262 0.000331104 7.47E-05 0.000131 7.706E-05 0.03347491 0.01654392 0.0070283 3.0309E-05
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.001232 0.001737993 4.04E-05 0.001437 0.0012232 0.00013346 0.00077359 0.0005271 0.00163057
Rp (Ω) 119.4226 74.60410516 192.1913 31.65655 92.170396 94.7860962 38.135595 54.42826 24.8933897
IL (A) 4.87627 4.876536455 5.130963 4.880101 4.8766252 2.94761087 4.87654863 4.8827055 4.88245696
ID1 (A) 1.33E-06 1.72118E-06 6.3E-10 1.25E-06 7.495E-07 1.1397E-06 5.4769E-06 1.97E-06 4.12E-20
ID2 (A) 0.004192 2.67912E-07 1.94E-08 6.06E-07 4.097E-07 9.9984E-07 2.4922E-07 3.501E-07 6.87E-07
n1 1.674555 1.920364455 1.090282 2.045905 1.6671119 1.9393706 1.89673872 1.7292267 1.96919786
n2 51.2116 1.533094915 1.999292 1.598242 1.6469724 1.81085015 1.65114007 1.812426 1.60471696
Min RMSE 0.004884 0.004870705 0.489958 0.004879 0.00487 0.01021258 0.00666149 0.0049378 0.00486895
Max RMSE 0.005309 0.005923922 0.490594 0.005059 0.0053881 0.03878291 0.02295133 0.0077401 0.00505602
Average RMSE 0.005044 0.004957579 0.490274 0.004934 0.0050934 0.02353969 0.01157486 0.0057249 0.00491157
std 0.000144 0.000171857 0.000156 3.71E-05 0.0001448 0.00730923 0.00383631 0.0008088 3.6698E-05

Table 4 Solar cells (Mono-crystalline C60) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 500 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.0016 0.003883448 1.17E-05 0.003187 0.0039048 0.00821181 0.00642602 0.4181931 0.00441815
Rp (Ω) 163.4687 199.973256 198.2291 200 130 115.937296 109.512364 168.0123 48.9235971
IL (A) 3.038953 3.037506852 3.364666 3.039108 3.0385235 1.59703402 3.09297001 3.0363817 3.04073716
ID (A) 2.33E-06 7.66902E-07 4.89E-11 1.16E-06 7.455E-07 8.4011E-07 7.4442E-06 1.78E-06 4.93E-07
n 1.769269 1.640749248 1.006255 1.685994 1.6376616 1.94585248 1.93745184 1.7383762 1.59453154
Min RMSE 0.004097 0.003977713 0.775675 0.004006 0.0039789 0.00621321 0.00573558 0.0043468 0.00397771
Max RMSE 0.004518 0.00485107 0.775887 0.004348 0.0043833 0.05531805 0.03164257 0.0079782 0.00404263
Average RMSE 0.004288 0.00408547 0.775706 0.004139 0.0040739 0.03202631 0.01165965 0.0055138 0.00398091
std 9.52E-05 0.000195093 3.73E-05 8.61E-05 9.076E-05 0.01185082 0.00541076 0.0009191 1.2258E-05
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.004034 0.004177475 7.24E-05 0.003613 0.0041682 0.00056852 6.1811E-05 0.0009983 0.00441815
Rp (Ω) 77.26164 53.46679376 199.3801 190.1412 76.437153 83.6005286 105.243007 193.65696 48.9235809
IL (A) 3.045323 3.03984558 3.364619 3.03873 3.0393953 1.84818457 3.0452358 3.0414082 3.04073717
ID1 (A) 6.91E-07 3.52681E-06 6.22E-11 8.18E-07 7.987E-10 1.8939E-06 5.2676E-06 3.468E-06 4.93E-07
ID2 (A) 0.000382 6.38146E-08 1.01E-10 5.59E-07 5.927E-07 9.9958E-07 6.8983E-07 9.414E-07 2.05E-20
n1 1.630061 1.995274001 1.63944 1.950576 1.7433395 1.98517022 1.88922847 1.9159403 1.59453153
n2 30.69521 1.439759222 1.03605 1.617409 1.6134584 1.91104148 1.99442602 1.7420063 1.9973227
Min RMSE 0.003986 0.003977746 0.775707 0.003984 0.003978 0.00519559 0.00485494 0.0040001 0.00397771
Max RMSE 0.004303 0.00445058 0.776099 0.004639 0.0041926 0.01890252 0.01283665 0.0046005 0.00407281
Average RMSE 0.004106 0.004025824 0.775866 0.004214 0.0040236 0.01149578 0.00692778 0.00416 0.00402082
std 0.000113 9.35314E-05 9.82E-05 2.21E-05 5.435E-05 0.0032242 0.00151241 0.0001555 0.00016829

Table 5 Solar cells (Mono-crystalline C60) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 300 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.022856 0.024935901 1.28E-07 0.021591 0.019553 0.0057405 0.01079812 0.0157213 0.03784345
Rp (Ω) 89.60072 96.99719894 199.9309 200 196.57055 95.1381775 117.815101 198.31323 20.3660429
IL (A) 1.815495 1.799703082 2.16471 1.804586 1.8048883 0.647616 1.81085624 1.8076504 1.8066546
ID (A) 6.67E-07 1.66103E-07 1.75E-11 6.07E-07 1.356E-06 2.2364E-08 4.8415E-06 4.25E-06 4.88E-11
n 1.680349 1.537152887 1.000012 1.669162 1.7645843 1.97885237 1.93524352 1.9192075 1.02519908
Min RMSE 0.005007 0.004163427 0.972854 0.004777 0.0041294 0.00669648 0.00603242 0.0050737 0.00324028
Max RMSE 0.00604 0.005120555 0.972854 0.005612 0.0055624 0.02650582 0.0148986 0.0069059 0.00484652
Average RMSE 0.005533 0.004597845 0.972854 0.005207 0.0049094 0.01435318 0.00831713 0.0059562 0.00364383
std 0.000167 0.000266064 7.89E-08 0.000162 0.0003 0.00500556 0.00195439 0.0003223 0.00060098
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.019759 0.009998557 1.11E-06 0.019881 0.0099999 0.00294815 0.00572879 0.0049867 0.03453452
Rp (Ω) 108.4338 190.951882 198.7353 199.9866 199.49798 89.6325187 29.6722844 60.11981 1.28E+02
IL (A) 1.808202 1.801598482 2.164701 1.806197 1.8026873 1.64108059 1.79601671 1.7960872 1.80E+00
ID1 (A) 1.4E-06 5.36334E-06 1.3E-09 1.12E-06 6.436E-06 2.6725E-06 2.3832E-06 5.283E-06 2.87E-08
ID2 (A) 9.51E-07 9.9852E-07 1.77E-11 6.06E-07 9.032E-07 9.8344E-07 7.7925E-07 5.803E-07 1.12E-09
n1 1.767764 1.999925106 1.941844 1.744111 1.9999988 1.97590137 1.8494644 1.968805 1.85070386
n2 4.789302 1.892108949 1.0004 2.260392 1.999976 1.81370144 1.96612708 1.9296981 1.18E+00
Min RMSE 0.004836 0.00683517 0.972855 0.004646 0.0068351 0.0076357 0.00749499 0.0069709 0.00349494
Max RMSE 0.00596 0.007264676 0.972864 0.005748 0.0068425 0.01570402 0.01230902 0.0075616 0.00573986
Average RMSE 0.005606 0.006895311 0.972859 0.005281 0.0068354 0.01074707 0.00871806 0.0071482 0.00489288
std 0.000299 8.98654E-05 2.38E-06 0.000227 1.212E-06 0.00152859 0.00095817 0.0001411 0.0005975

Experimental results from Tables 2, 3, 4 and 5 show that the CMA-ES presents the best possible performance; however, CSA and DSA maintain also very good index values. The rest of the algorithms produce results with different performance levels.

One exception, in the results, was the standard deviation in which the lower values have been reached by the CS in the single diode at (1000 W/m2), the DE in the double diode at (800 W/m2), the CS and DSA at (300 W/m2) for the single and double diode, respectively.

4.2 Identification of multi-crystalline solar cell D6P

The second experiment considers the parameter estimation of a multi-crystalline solar cell D6P. The identification examines two different solar irradiations (1000 W/m2) and (500 W/m2) at T = 25°C, for the Single Diode Module (SDM), double Diode Model (DDM) and the Three Diode Model (TDM). Table 6 and 7 present the results for the cases of (1000 W/m2) and (500 W/m2), respectively.

Table 6 Solar cells (Mono-crystalline D6P) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM), Double Diode Model (DDM) and Three Diode Model (TDM) at 1000 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 4.93E-03 0.00550083 0.006453 0.005662 0.005988 0.005038 0.001861 0.4709873 0.47098731
Rp (Ω) 7.50E+01 100 99.45801 100 99.99615 66.07779 80.98159 57.768198 57.7681979
IL (A) 8.31E+00 8.30252074 8.299179 8.300678 8.294515 6.897731 8.23392 8.2149683 8.21496834
ID (A) 1.57E-06 5.34E-07 6.53E-08 3.51E-07 1.64E-07 1E-05 7.31E-06 8.249E-06 8.2489E-06
n 1.606934 1.50376702 1.335087 1.466456 1.404038 1.90333 1.776386 1.7966804 1.79668045
Min RMSE 0.023204 0.02320388 0.015645 0.019481 0.019044 0.034982 0.034982 0.0260146 0.01552954
Max RMSE 0.025538 0.02553847 0.023851 0.023045 0.024382 0.216904 0.216904 0.0447331 0.02003157
Average RMSE 0.024574 0.02457448 0.019163 0.020916 0.021132 0.108073 0.108073 0.0311407 0.01892337
std 0.00069 0.00068966 0.002722 0.000794 0.001218 0.047229 0.047229 0.0036418 0.00082729
DDM
Parameters ABC CSA CS DE DSA GSA HSz PSO CMA-ES
RS (Ω) 5.70E-03 0.00555699 0.006699 0.006064 0.006557 0.002284 0.003773 0.0041813 0.00418127
Rp (Ω) 6.71E+01 100 89.09031 100 99.96804 35.31513 55.90306 79.052877 79.0528766
IL (A) 8.29E+00 8.30146867 8.281023 8.296526 8.288297 7.172523 8.287227 8.3190704 8.31907043
ID1 (A) 3.82E-06 3.92E-07 3.55E-08 1.57E-07 1.71E-10 3.94E-06 4.96E-06 4.837E-06 4.8375E-06
ID2 (A) 2.48E-07 4.30E-07 2.22E-11 1.8E-07 4.63E-08 1E-06 9.89E-07 1.198E-08 1.198E-08
n1 5.71E+00 1.88991907 1.293362 23.35675 1.176865 1.86705 1.770647 1.7332564 1.73325637
n2 1.438037 1.48667571 1.389624 1.412048 1.313473 1.62115 1.712209 1.8487766 1.84877659
Min RMSE 0.02146 0.02146031 0.017369 0.019226 0.017316 0.029422 0.029422 0.0215297 0.01707178
Max RMSE 0.025601 0.02560146 0.027343 0.023371 0.02305 0.06036 0.06036 0.0281581 0.02145989
Average RMSE 0.023643 0.02364294 0.024494 0.021652 0.020183 0.039861 0.039861 0.0252211 0.01940024
std 0.001206 0.0012056 0.002065 0.001091 0.001305 0.00789 0.00789 0.0016887 0.00098192
TDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
ID1 (A) 1.21E-10 1.177E-10 1.21E-10 8.59E-26 1.21E-10 1.23E-10 1.24E-10 1.249E-08 1.2486E-08
ID2 (A) 8.23E-11 2.1463E-07 2.13E-13 3.31E-05 3.82E-21 9.20E-13 7.97E-07 2.312E-07 2.3123E-07
ID3 (A) 4.92E-04 9.9377E-06 1.2E-15 2.52E-19 3.14E-14 2.33E-10 8.69E-06 7.016E-06 7.0156E-06
n3 8.80E+01 2.41406574 0.863338 2.993156 98.52522 2.996657 2.97427 2.6504631 2.65046313
Rso (Ω) 8.02E-03 0.00738269 0.008045 0.002745| 0.008045 0.008008 0.005064 0.0063443 0.00634432
K 6.74E-04 0.01435204 9.35E-09 1.74E-16 1.91E-15 0.004806 0.016666 0.0474956 0.04749557
Rsh (Ω) 1.84E+00 2.12835817 1.819064 4.077476 1.818718 99.99369 36.85799 69.683667 69.6836673
Min RMSE 0.020393 0.02039341 0.020388 0.020393 0.019618 0.023934 0.062702 0.0262095 0.01949509
Max RMSE 0.020471 0.02047111 0.020393 0.020393 0.03713 0.0333 39.09412 0.0550369 0.02038819
Average RMSE 0.020404 0.02040431 0.020393 0.020393 0.025195 0.0535 9.684074 0.0400163 0.02010918
std 1.62E-05 1.6213E-05 9.3E-07 5.66E-09 0.00665 0.000455 8.682488 0.0052987 0.00028239

Table 7 Solar cells (Mono-crystalline D6P) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM), Double Diode Model (DDM) and Three Diode Model (TDM) at 500 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.004157 0.01159328 2E-09 0.005909 0.00681 0.001227 0.000849 0.0029151 0.00749966
Rp (Ω) 69.17906 100 99.99913 100 99.99975 35.77021 94.14903 43.577466 100
IL (A) 4.156335 4.13161166 4.6471 4.142898 4.141783 2.647298 4.202613 4.1544498 4.140932
ID (A) 1.49E-06 2.27E-10 7.22E-11 3.12E-07 1.51E-07 7.05E-06 9.55E-06 3.263E-06 7.25E-08
n 1.586101 1 1.000001 1.435838 1.376114 1.933243 1.807051 1.6732462 1.31973729
Min RMSE 0.017136 0.01713641 0.567476 0.016359 0.015404 0.018751 0.018751 0.017759 0.01416909
Max RMSE 0.018008 0.01800797 0.567477 0.017199 0.017287 0.076983 0.076983 0.0188433 0.01740387
Average RMSE 0.017607 0.01760732 0.567476 0.016775 0.016542 0.043495 0.043495 0.0183816 0.01611262
STD 0.000187 0.00018661 8.51E-08 0.00021 0.000376 0.013287 0.013287 0.0002893 0.00111236
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 6.51E-03 0.00711864 7.29E-05 0.005624 0.006064 0.00253 0.004874 0.0055739 0.00557385
Rp (Ω) 7.98E+01 100 99.91123 100 61.38597 49.47878 82.65916 82.816173 82.816173
IL (A) 4.16E+00 4.14223473 4.646989 4.144588 4.144383 4.158399 4.146255 4.1468956 4.14689559
ID1 (A) 8.07E-07 1.19E-07 8.61E-11 1.59E-06 2.08E-07 4.32E-06 9.28E-07 7.139E-06 7.1389E-06
ID2 (A) 1.87E-07 9.57E-08 9.06E-10 1.32E-07 9.99E-07 9.94E-07 8.06E-07 3.587E-07 3.5869E-07
n1 3.66E+01 1.35906364 1.007153 1.800635 1.404134 1.81406 1.980265 1.5796227 1.5796227
n2 1.392767 1.77294891 1.950849 1.380061 1.999837 1.603871 1.528525 1.4499956 1.44999562
Min RMSE 0.015887 0.01588696 0.567477 0.016084 0.01645 0.017171 0.017171 0.0165929 0.01519835
Max RMSE 0.017786 0.01778611 0.567613 0.017333 0.018129 0.019554 0.019554 0.0174407 0.01735582
Average RMSE 0.017235 0.01723534 0.567503 0.016818 0.017597 0.018417 0.018417 0.017041 0.01624427
std 0.000408 0.000408 2.78E-05 0.000279 0.000373 0.000565 0.000565 0.0002042 0.00048383
TDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
ID1 (A) 2.10E-10 2.1006E-10 1.58E-13 1.55E-10 6.72E-11 1.21E-10 1.65E-10 4.144E-08 4.1445E-08
ID2 (A) 3.24E-15 2.1954E-07 2.93E-10 6.89E-21 6.02E-19 5.47E-07 6.31E-07 4.874E-07 4.8742E-07
ID3 (A) 4.83E-10 3.4658E-11 7.69E-14 1.02E-15 3.12E-13 1.19E-14 9.28E-06 4.896E-06 4.8958E-06
n3 9.32E+01 1.78535981 0.784333 0.684267 0.792991 0.99053 1.945619 2.1120764 2.11207644
Rso (Ω) 1.03E-02 0.00999985 0.001608 0.011271 0.01 0.007961 0.002745 0.0071011 0.00710112
K 4.35E-11 2.4762E-06 0.002556 4.17E-15 0.039095 0.003907 0.098125 0.0547249 0.05472488
Rsh (Ω) 7.10E-01 0.70491482 99.97324 0.707655 0.69295 67.37059 0.632458 70.815981 70.8159813
Min RMSE 0.042226 0.04222615 0.567153 0.042226 0.041832 0.043415 0.089162 0.0439661 0.04059946
Max RMSE 0.042227 0.04222669 0.567277 0.042226 0.042156 1.6245 5.652148 0.0800799 0.04197422
Average RMSE 0.042226 0.04222618 0.5672 0.042226 0.04195 0.2893 1.757516 0.0592006 0.04142937
Std 1.03E-07 1.0326E-07 3.12E-05 9.81E-18 0.000115 0.000455 1.565291 0.0102721 0.00034344

According to the Tables, the CMA-ES obtains the best results in comparison with the others techniques for the SDM, DDM and TDM models. In case of the standard deviation, the best results were obtained by the ABC in the single diode at (1000 W/m2), DE in the three-diode model at (1000 W/m2) and CS in the single and double diode at (500 W/m2).

4.3 Identification of Multi-Crystalline Module KC200GT

Finally, the third experiment analyzes the parameter estimation of a Multi-crystalline module KC200GT. The identification examines the Single Diode Model (SDM) and the Double Diode Model (DDM) for the conditions of (1000 W/m2), (800 W/m2), (600 W/m2), (400 W/m2 ) and (200W/m2). Table 8, 9, 10, 11 and 12 present the results of each algorithm for the cases of (1000 W/m2), (800 W/m2), (600 W/m2 ), (400 W/m2) and (200W/m2), respectively. Tables 8 and 9 demonstrate that CMA-ES shows competitive results finding the minimum RMSE value in the most of the cases; however, the CS and DE are also able to find a good solution with considerable precision. In the experiments, the CMA-ES obtains the best result for almost all cases, except the standard deviation in several cases such as CS in the single diode model at (800 W/m2) and (600 W/m2). On the other hand, the DSA obtain the lower standard deviation for the single and double diode model at (400 W/m2 and (200 W/m2).

Table 8 Solar cells Module (Multi-crystalline KC200GT) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 1000 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.00819725 0.008598412 0.009702 0.008254 0.0085027 0.00532522 0.006372 0.0086455 0.00838946
Rp (Ω) 14.2746543 287.7649217 278.3281 300 274.24082 162.599163 145.730272 70.236383 500
IL (A) 8.45231967 8.401473158 8.395708 8.405986 8.4081122 5.51397782 8.1667034 8.4517976 8.40253114
ID (A) 2.1304E-06 8.80807E-07 1.02E-07 1.24E-06 1.218E-06 4.8699E-06 9.1479E-06 5.298E-06 1.23E-06
n 1.63367968 1.542895531 1.361663 1.575057 1.5744236 1.83695064 1.81751613 1.7462203 1.57520904
Min RMSE 0.00619726 0.005158409 0.006143741 0.006055 0.0051727 0.01676816 0.0077667 0.0071031 0.00506031
Max RMSE 0.00819386 0.006852389 0.006919949 0.006854 0.0066646 0.08468712 0.03851485 0.0182919 0.00594658
Average RMSE 0.00697368 0.006031249 0.006439478 0.00623 0.0059189 0.05137936 0.01626893 0.0110058 0.00536039
Std 0.00051988 0.000375625 0.000262026 0.000192 0.0003831 0.0164289 0.00766401 0.0026008 0.00013732
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.01018216 0.010537688 0.010568 0.010349 0.0105334 0.00579965 0.0125366 0.4753595 0.01040301
Rp (Ω) 136.897439 133.9638333 264.3318 299.9873 299.97365 169.410993 245.068672 141.23624 197.337864
IL (A) 8.37444967 8.371571382 8.371119 8.371028 8.3703729 4.12627659 8.01575802 8.074969 8.37548908
ID1 (A) 6.439E-08 2.32597E-15 7.8E-09 1.36E-08 3.258E-13 9.9792E-09 4.8326E-09 2.546E-09 1.15E-10
ID2 (A) 2.2274E-08 8.47844E-09 2.55E-09 2.69E-08 8.692E-09 9.9249E-09 5.1778E-09 1.771E-09 1.25E-08
n1 8.73132142 1.351574739 1.194356 1.227365 1.1265378 1.6933772 1.17566595 1.5137775 1.24036008
n2 1.25726919 1.199160692 1.875205 1.747515 1.2006042 1.89036558 1.51451236 1.1106203 1.22215402
Min RMSE 0.00473273 0.004717362 0.004821636 0.004718 0.0047173 0.01310982 0.00566407 0.0061483 0.00471767
Max RMSE 0.00518495 0.004856829 0.004741333 0.004753 0.004756 0.09772879 0.06769827 0.0190041 0.00472145
Average RMSE 0.00487024 0.004737393 0.00482412 0.004728 0.0047213 0.05200618 0.0274881 0.0114809 0.004719
Std 0.00011032 2.80154E-05 8.61837E-07 8.93E-06 6.524E-06 0.01691836 0.01305747 0.0041682 7.0567E-06

Table 9 Solar cells Module (Multi-crystalline KC200GT) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 800 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.00560748 7.82E-05 2.84E-05 5.75E-03 1.08E-03 0.00473677 1.76E-03 0.5313321 0.00392955
Rp (Ω) 156.472585 499.9948083 472.2883 500 499.99812 2.86E+02 115.897865 98.146888 500
IL (A) 6.74823457 5.13E+00 5.130815 6.745251 5.131 1.35389938 5.13099889 2.9315738 5.131
ID (A) 3.56E-06 5.16E-09 3.67E-07 2.53E-06 1.80E-08 7.58E-08 4.55E-06 3.48E-06 2.60E-10
n 1.6482632 1.187243554 1.441785 1.610137 1.2151826 1.84E+00 1.71599654 1.7138988 1.00003708
Min RMSE 0.00607673 0.153164765 0.153071491 0.006144 0.1530621 0.15859113 0.15484765 0.1549824 0.00596914
Max RMSE 0.00770129 0.154739618 0.153109032 0.006847 0.1532002 0.21342771 0.1611923 0.1601034 0.00681995
Average RMSE 0.0069878 0.153856882 0.153088145 0.006439 0.1531086 0.16944026 0.15669185 0.15735 0.00637779
Std 0.00037055 0.000400204 8.81371E-06 0.00023 3.457E-05 0.01004141 0.00143392 0.0013584 0.00015752
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.00652112 0.002510291 0.004005 0.007576 0.0039691 0.00323222 8.39E-04 2.61E-01 0.00400321
Rp (Ω) 290.306499 471.3428232 499.4977 5.564204 5.00E+02 2.75E+02 2.55E+02 365.18762 500
IL (A) 6.72995842 5.130923625 5.131 6.775167 5.1309999 2.85E+00 5.13E+00 3.89E+00 5.131
ID1 (A) 7.78E-07 1.48E-10 4.82E-10 4.07E-08 2.58E-10 1.96E-10 9.69E-09 6.76E-09 2.57E-10
ID2 (A) 7.30E-07 1.71E-10 2.56E-10 6.39E-08 3.03E-11 9.92E-09 4.43E-09 5.24E-09 8.86E-21
n1 1.49260116 1.014655345 1.787907 1.347456 1.0001267 1.73017437 1.17802325 1.808445 1
n2 50.4069533 1.764172097 1.00E+00 1.317329 1.9897464 1.61841891 1.66892515 1.1611895 1.99938964
Min RMSE 0.00474219 0.153022239 0.152992432 0.004718 0.1529846 0.1550537 0.15346329 0.1534739 0.00471636
Max RMSE 0.00535054 0.153360344 0.153025772 0.004818 0.1530329 0.1682246 0.16383126 0.1604568 0.00475133
Average RMSE 0.00495841 0.153098018 0.15301046 0.00473 0.1530076 0.1619196 0.15583403 0.1556357 0.00472412
STD 0.00016899 6.08071E-05 9.66935E-06 1.58E-05 1.29E-05 0.00284984 0.00231309 0.0015596 7.5167E-06

Table 10 Solar cells Module (Multi-crystalline KC200GT) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 600 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.00579404 4.69E-06 0.000354 0.00471 1.99E-09 0.02399241 3.23E-04 0.4360552 9.29E-19
Rp (Ω) 103.380418 494.4540364 4.19E+02 11.75391 499.99974 2.75E+02 297.465108 2.40E+02 500
IL (A) 5.03219147 3.364709848 3.36464 5.064251 3.36471 1.52204555 3.36E+00 2.97E+00 3.36471
ID (A) 4.38E-07 5.72E-11 6.08E-08 1.25E-06 4.86E-10 1.76E-09 2.17E-06 2.79E-06 2.61E-10
n 1.43825761 1.00107902 1.320566 1.535283 1.029505 1.926606 1.68277169 1.76E+00 1
Min RMSE 0.00656172 0.240433034 0.240272335 0.006144 0.2402715 0.24175207 0.24147391 0.2415572 0.00589603
Max RMSE 0.00937572 0.241981687 0.240302873 0.007021 0.2404957 0.26679805 0.24479858 0.2442355 0.00681995
Average RMSE 0.00737129 0.241182992 0.240281109 0.006459 0.2403316 0.24944009 0.24224258 0.2426385 0.00623948
Std 0.00064136 0.000392438 8.22765E-06 0.000235 5.655E-05 0.00521166 0.00076707 0.0006874 0.00013652
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.00663807 1.81E-06 7.46E-06 7.65E-03 5.30E-12 3.95E-03 1.67E-03 0.0156249 6.69E-18
Rp (Ω) 6.47586816 493.0062779 4.80E+02 3.829101 499.99997 2.51E+02 3.67E+02 2.41E+02 500
IL (A) 5.06785663 3.364709691 3.364706 5.10E+00 3.36471 2.08921992 3.36404429 8.69E-01 3.36471
ID1 (A) 1.11E-07 5.25E-11 3.02E-10 2.82E-10 2.61E-10 4.09E-10 6.27E-09 5.54E-09 2.61E-10
ID2 (A) 1.28E-08 5.64E-11 9.76E-09 1.59E-08 5.06E-15 4.18E-10 4.48E-09 4.12E-09 1.69E-20
n1 1.32627965 1.813680317 1.007273 1.287049 1 1.67217836 1.16332975 1.4373337 1
n2 16.9103492 1.000368025 1.772075 1.195659 1.9984145 1.58346052 1.61249948 1.1380601 1.98601177
Min RMSE 0.00474395 0.240326451 0.2402723 0.004719 0.2402715 0.24114319 0.24074788 0.2410345 0.00471636
Max RMSE 0.00527847 0.241718986 0.240276037 0.004751 0.2402715 0.24875306 0.24933665 0.2423547 0.00474795
Average RMSE 0.00494073 0.240753244 0.240274015 0.004727 0.2402715 0.24357299 0.24184863 0.2417584 0.00472412
Std 0.00013252 0.000424668 9.58666E-07 6.2E-06 2.082E-09 0.00155382 0.00139945 0.000263 7.8217E-06

Table 11 Solar cells Module (Multi-crystalline KC200GT) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 400 W/m 2 

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.00828988.73E-09 0.00013 0.008543 1.01E-09 8.84E-03 0.00262176 0.4076231 2.47E-16
Rp (Ω) 244.788126 499.9985195 5.00E+02 15.25072 499.99657 226.435541 364.481124 341.52765 5.00E+02
IL (A) 3.37145929 2.164709998 2.164709 3.388371 2.16E+00 1.47930568 2.16E+00 1.1096869 2.16E+00
ID (A) 2.24E-06 1.64E-11 1.04E-08 2.03E-06 4.69E-10 8.90E-09 9.91E-07 1.72E-06 2.43E-10
n 1.61640042 1.000000439 1.20E+00 1.606847 1.029216 1.69801672 1.63653468 1.6495691 1
Min RMSE 0.00645975 0.300912307 0.300845399 0.006144 0.3008454 0.30158912 0.30100127 0.3010593 0.00543773
Max RMSE 0.01174902 0.302867207 0.300845464 0.007065 0.3008454 0.32471022 0.3035138 0.3040074 0.00681995
Average RMSE 0.00764025 0.301076997 0.300845412 0.006528 0.3008454 0.3082867 0.30152288 0.3023678 0.00643948
Std 0.00094938 0.000375184 1.30416E-08 0.000307 1.585E-15 0.0050065 0.00053007 0.0007353 0.00025252
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.01188791 2.04E-07 6.97E-05 0.012755 1.98E-12 2.24E-02 1.25E-03 2.70E-01 8.77E-18
Rp (Ω) 16.8146454 5.00E+02 448.477 5.031745 5.00E+02 2.45E+02 3.64E+02 4.35E+02 500
IL (A) .37079874 2.16E+00 2.164703 3.41E+00 2.16E+00 2.16E+00 2.16E+00 9.38E-01 2.16471
ID1 (A) 1.67E-07 1.66E-11 2.50E-10 4.89E-09 1.74E-15 1.00E-08 9.39E-09 6.64E-09 1.71E-21
ID2 (A) 1.33E-09 3.20E-11 7.17E-09 4.18E-08 2.43E-10 9.98E-09 7.20E-09 1.86E-09 2.43E-10
n1 1.36986811 1.000009475 1.000271 2.454186 1.9889716 1.78140319 1.26138542 1.5581188 1.98855852
n2 310.20159 1.95998006 1.857724 1.266697 1 1.80164641 1.22777934 1.1065305 1
Min RMSE 0.00476202 0.300849656 0.300845428 0.004718 0.3008454 0.30106051 0.30097447 0.3009636 0.00378198
Max RMSE 0.00633534 0.301050402 0.300845888 0.004845 0.3008454 0.30564935 0.30159409 0.3014975 0.00476034
Average RMSE 0.00501231 0.300961924 0.30084558 0.004725 0.3008454 0.3023613 0.30114073 0.301172 0.0045456
Std 0.00026864 3.31744E-05 9.054E-08 8.71E-06 7.976E-14 0.00092921 0.0001444 0.0001434 8.7065E-06

Table 12 Solar cells Module (Multi-crystalline KC200GT) parameters estimation, Mean and Standard deviation for the Single Diode Model (SDM) and Double Diode Model (DDM) at 200 W/m 2

SDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.01141702 5.44E-08 1.61E-02 1.05E-02 0.0145769 0.01762537 0.0018854 1.79E-01 0.02447924
Rp (Ω) 147.191212 499.9912692 167.8188 201.0279 339.93184 2.21E+02 1.70E+02 429.52154 24.3117548
IL (A) 1.68087497 2.164709998 1.675382 1.676926 1.6757034 1.41175765 1.68040673 1.6786414 1.68007665
ID (A) 3.78E-07 1.65E-11 7.55E-08 6.07E-07 1.66E-07 9.70E-06 6.38E-06 2.40E-06 4.50E-10
n 1.43443606 1.000000995 1.300344 1.481847 1.3638056 1.91865929 1.75798573 1.6323506 1
Min RMSE 0.00640138 0.300942015 0.3008454 0.006144 0.3008454 0.30114476 0.30098639 0.3011497 0.00606314
Max RMSE 0.00965965 0.302323073 0.300845451 0.007015 0.3008454 0.32671827 0.30270375 0.3048593 0.00681995
Average RMSE 0.00744433 0.301011783 0.30084541 0.00653 0.3008454 0.30861766 0.30154735 0.3025211 0.00643948
Std 0.00077881 0.000243937 1.10173E-08 0.000198 5.385E-16 0.00578398 0.00043297 0.0008678 0.00043752
DDM
Parameters ABC CSA CS DE DSA GSA HS PSO CMA-ES
RS (Ω) 0.02301243 6.55E-08 0.024463 0.022756 0.0240381 1.65E-02 0.02084871 2.29E-02 2.45E-02
Rp (Ω) 257.694441 499.1710598 23.34492 51.2072 3.62E+01 255.333055 402.097715 4.02E+02 24.3117565
IL (A) 1.67617312 2.164709912 1.680472 1.68E+00 1.68E+00 1.60E+00 1.66829732 1.6706903 1.68E+00
ID1 (A) 3.47E-09 1.00E-11 4.50E-10 1.66E-09 6.67E-10 4.74E-11 6.83E-09 1.84E-09 1.47E-21
ID2 (A) 1.08E-09 1.65E-11 2.71E-09 8.54E-10 2.93E-10 7.87E-09 7.08E-09 2.45E-09 4.50E-10
n1 6.73073562 1.92E+00 1.000026 1.062261 1.018037 1.64570227 1.19967205 1.0677641 1.86977567
n2 1.04000367 1.000039816 1.777667 2.290439 1.9428294 1.14876342 1.17225141 1.670724 1
Min RMSE 0.00472589 0.300855771 0.300845424 0.004718 0.3008454 0.30118528 0.30096118 0.3009839 0.00471636
Max RMSE 0.00535393 0.301022601 0.300845711 0.004851 0.3008454 0.30648166 0.30158047 0.3015689 0.00474499
Average RMSE 0.00494432 0.30095187 0.300845559 0.004725 0.3008454 0.30264489 0.30111403 0.3011762 0.00472412
Std 0.00016301 3.00989E-05 7.51683E-08 6.7E-06 6.492E-14 0.00130048 0.00014352 0.0001382 6.1847E-06

4.4 Statistical Analysis

For the validation of the obtained results, we proceed to statistically analyze the data acquired for each EC technique during the estimation process. The study combines the Wilcoxon test and the Bonferroni correction. The Wilcoxon analysis [49, 50] measure the difference between two related methods. This test considers the 5% of significance level over the Average RSME values (p-value, 0.05). Since the results reveal that the alleged best algorithm is the CMA-ES, the comparison considers seven groups for the test: CMA-ES vs ABC, CMA-ES vs CSA, CMA-ES vs CS, CMA-ES vs DE, CMA-ES vs DSA, CMA-ES vs HS and CMA-ES vs PSO. In the Wilcoxon test, the null hypothesis is considered as there is not difference enough between approaches, and as an alternative hypothesis if exists significance difference between both approaches.

On the other hand, as the number of elements in the comparison is high, the possibility to produce an error type 1 increases. In order to avoid this problem, the significance value (p-value) must be readjusted using the Bonferroni correction [51,52].

Therefore, once we have the p-values obtained by Wilcoxon method, they are compared with the new n-value calculated by the Bonferroni test, if is n>p the null hypothesis is rejected, avoiding the error type 1. With the intention to simplify the analysis of the results, in table 13, the symbols ▲, ► and ▼ are used.

Table 13 Wilcoxon test for the SDM and DDM for the Mono-crystalline cell and the Multi-crystalline Module and SDM, DDM and TDM for the Multi-crystalline cell at different irradiation conditions after the Bonferroni correction 

C60 Mono-crystalline
IR CMA-ES vs
ABC CROW CS DE DS GSA HS PSO
1000 SDM 1.43E-14 ▲ 1.43E-14 ▲ 1.28E-14 ▲ 1.28E-14 ▲ 1.51E-13 ▲ 1.33E-14 ▲ 1.39E-14 ▲ 1.43E-14 ▲
DDM 1.01E-05 ▲ 0.100873 ▲ 1.53E-14 ▲ 1.64E-14 ▲ 5.2E-05 ▲ 1.45E-14 ▲ 1.14E-13 ▲ 6.90E-08 ▲
800 SDM 1.66E-14 ▲ 1.66E-14 ▲ 1.30E-14 ▲ 1.28E-14 ▲ 1.03E-12 ▲ 1.34E-14 ▲ 1.58E-14 ▲ 1.43E-14 ▲
DDM 1.76E-05 ▲ 0.176388 ▲ 1.35E-14 ▲ 1.51E-14 ▲ 1.12E-07 ▲ 1.48E-14 ▲ 1.46E-14 ▲ 7.21E-08 ▲
500 SDM 1.43E-14 ▲ 1.43E-14 ▲ 1.29E-14 ▲ 1.29E-14 ▲ 3.58E-13 ▲ 1.42E-14 ▲ 1.63E-14 ▲ 1.43E-14 ▲
DDM 1.29E-06 ▲ 0.012867 ▲ 1.24E-14 ▲ 1.39E-14 ▲ 1.74E-05 ▲ 1.50E-14 ▲ 1.45E-14 ▲ 1.56E-08 ▲
300 SDM 1.44E-14 ▲ 1.57E-08 ▲ 1.44E-14 ▲ 1.67E-12 ▲ 2.22E-12 ▲ 1.35E-13 ▲ 1.54E-14 ▲ 1.31E-14 ▲
DDM 4E-09 ▲ 1.44E-14 ▲ 1.38E-14 ▲ 1.39E-14 ▲ 1.44E-14 ▲ 1.28E-14 ▲ 1.53E-14 ▲ 1.36E-14 ▲
D6P100 Multi-crystalline
IR CMA-ES vs
ABC CROW CS DE DS GSA HS PSO
1000 SDM 2.81E-14 ▲ 9.96E-06 ▲ 1.99E-06 ▲ 5.84E-04 ▲ 1.74E-04 ▲ 1.44E-14 ▲ 1.44E-14 ▲ 1.44E-14 ▲
DDM 5.04E-04 ▲ 1.28E-12 ▲ 2.08E-12 ▲ 1.56E-09 ▲ 1.38E-11 ▲ 1.44E-14 ▲ 2.22E-12 ▲ 2.22E-12 ▲
TDD 8.66E-04 ▲ 3.47E-04 ▲ 6.91E-08 ▲ 5.10E-05 ▲ 7.98E-09 ▲ 1.43E-14 ▲ 2.92E-12 ▲ 2.92E-12 ▲
500 SDM 4.08E-14 ▲ 6.56E-04 ▲ 1.24E-14 ▲ 1.23E-04 ▲ 1.59E-04 ▲ 1.44E-14 ▲ 1.44E-14 ▲ 1.44E-14 ▲
DDM 3.44E-05 ▲ 7.91E-14 ▲ 1.44E-14 ▲ 1.69E-11 ▲ 1.64E-13 ▲ 6.73E-09 ▲ 1.11E-12 ▲ 1.11E-12 ▲
TDDD 1.06E-14 ▲ 1.06E-14 ▲ 1.06E-14 ▲ 1.06E-14 ▲ 1.06E-14 ▲ 1.06E-14 ▲ 1.06E-14 ▲ 1.06E-14 ▲
Mod. kc200gt Mono-crystalline
IR CMA-ES vs
ABC CROW CS DE DS GSA HS PSO
1000 SDM 2.08E-11 ▲ 1.36E-14 ▲ 2.36E-11 ▲ 7.18E-04 ▲ 6.55E-08 ▲ 2.85E-14 ▲ 1.28E-14 ▲ 2.44E-14 ▲
DDM 1.94E-14 ▲ 1.63E-14 ▲ 1.63E-14 ▲ 2.79E-05 ▲ 1.55E-06 ▲ 1.51E-14 ▲ 1.24E-14 ▲ 2.44E-14 ▲
800 SDM 1.58E-11 ▲ 1.35E-14 ▲ 2.44E-11 ▲ 4.05E-04 ▲ 7.44E-08 ▲ 2.75E-14 ▲ 1.25E-14 ▲ 2.54E-14 ▲
DDM 2.81E-14 ▲ 1.45E-14 ▲ 1.44E-14 ▲ 9.31E-05 ▲ 2.14E-06 ▲ 1.61E-14 ▲ 1.22E-14 ▲ 2.50E-14 ▲
600 SDM 6.35E-14 ▲ 1.36E-14 ▲ 2.44E-11 ▲ 4.73E-04 ▲ 5.44E-08 ▲ 3.14E-14 ▲ 1.30E-14 ▲ 2.49E-14 ▲
DDM 1.55E-14 ▲ 1.44E-14 ▲ 1.44E-14 ▲ 1.13E-05 ▲ 1.35E-06 ▲ 1.71E-14 ▲ 1.24E-14 ▲ 2.44E-14 ▲
400 SDM 1.94E-12 ▲ 1.40E-14 ▲ 2.44E-11 ▲ 2.71E-04 ▲ 7.84E-08 ▲ 2.94E-14 ▲ 1.25E-14 ▲ 2.44E-14 ▲
DDM 1.44E-14 ▲ 1.49E-14 ▲ 1.44E-14 ▲ 7.47E-05 ▲ 1.51E-06 ▲ 1.55E-14 ▲ 1.23E-14 ▲ 2.42E-14 ▲
200 SDM 8.1E-12 ▲ 1.33E-14 ▲ 2.44E-11 ▲ 2.72E-04 ▲ 6.74E-08 ▲ 3.12E-14 ▲ 1.21E-14 ▲ 2.41E-14 ▲
DDM 3.27E-14 ▲ 1.41E-14 ▲ 1.44E-14 ▲ 2.13E-05 ▲ 1.46E-06 ▲ 1.89E-14 ▲ 1.27E-14 ▲ 2.49E-14 ▲

Here ▲ indicates that CMA-ES performs better than its respective counterpart, ▼ means that CMA-ES performs worse than the compared technique, and ► symbolizes that there is no significant difference between the compared techniques.

The n-value determined by Bonferroni correction considering the value of 0.00139. Table 13 presents the result of the statistical study. It analyzes the indexes of all estimation process for the solar cells.

According to Table 13, the CMA-ES outperforms (▲) the rest of the techniques used in this study for the three equivalent models regarding the statistical analysis.

4.5 Response Graphics

Figure 4 shows the absolute error curves between the measured data and the values determined by the CMA-ES model under 1000 W/m 2 and 500 W/m 2 for the SDM, DDM and TDM. In figure 5, the I-V characteristics between the measured data and the approximate model found by the CMA-ES are shown. This figure considers two different conditions. In the condition A, the irradiation is set in 1000 W/m 2 while for the condition B, the irradiation is 500 W/m 2. The D6P100 Multi-crystalline solar cell is used to represent the responses for the SDM, DDM and TDM.

Fig. 4 Absolute error curves generated by the CMA-ES for the D6P100 Multi-crystalline solar cell under two irradiation conditions: 1000 W/m 2 (Condition A) and 500 W/m 2 (Condition B) for the SDM, DDM and, TDM 

Fig. 5 Comparison of I-V characteristic between the measured data and the approximate model determined by CMA-ES for the D6P100 Multi crystalline solar cell under two irradiation conditions: 1000 W/m 2 (Condition A) and 500 W/m 2 (Condition B) 

5 Conclusions

Several proposals of evolutionary computation (EC) methods to estimate the parameters of solar cells have been reported in the literature. However, most of them report only a single EC technique considering a minimal number of solar cell models. In this work, a comparative study of solar cells parameter estimation is discussed. In the comparison different EC Techniques are used, such as Artificial Bee Colony (ABC), Crow Search Algorithm (CSA), Cuckoo Search (CS), Differential Evolution (DE), Differential Search (DSA), Gravitational Search Algorithm (GSA), Harmony Search (HS), Particle Swarm Optimization (PSO) and Covariant Matrix Adaptation with Evolution Strategy (CMA-ES). The comparison was developed over three equivalent solar cell models, the Single Diode (SDM), Double Diode Model (DDM) and Three Diode Model (TDM) using a Mono-crystalline solar cell for the SDM and DDM, a Multi-crystalline solar cell for the SDM, DDM and TDM and a solar cell module for the SDM and DDM.

The estimation of parameters in solar cells represents a complex task due to their dimensionality and non-linearity of the generated error surface. After comparing the capabilities of each EC technique, it has found that the CMA-ES outperformed the rest of the techniques regarding minimum and average root mean square error (RMSE). In the case of the standard deviation, the best results were distributed among CMA-ES, CS, DE, and DSA. The results have been validated through a statistical study that combines the Wilcoxon test and the Bonferroni correction.

References

1. Shafiee, S. & Topal, E. (2009). When will fossil fuel reserves be diminished?. Energy Policy, Vol. 37, No. 1, pp. 181-189. DOI: 10.1016/j. enpol.2008.08.016. [ Links ]

2. REN21 (2017). Peer Review of Renewables 2017. Global Status Report. http://www.ren21.net/peer-review-renewables-2017-global-status-report/. [ Links ]

3. Town, C. (2012). CIE42 Proceedings, Cape Town, CIE & SAIIE, pp. 16-18. [ Links ]

4. Quaschning, V. & Hanitsch, R. (1996). Numerical simulation of current-voltage characteristics of photovoltaic systems with shaded solar cells. Solar Energy, Vol. 56, No. 6, pp. 513-520. DOI:10.1016/0038-092X(96)00006-0. [ Links ]

5. Farivar, G. & Asaei, B. (2010). Photovoltaic module single diode model parameters extraction based on manufacturer datasheet parameters. IEEE International Conference Power Energy, No. 2, pp. 929-934. DOI: 10.1109/PECON.2010.5697712. [ Links ]

6. Sudhakar, T., Babu, J., Prasanth, R., Sangeetha, K., Laudani, A., & Rajasekar, N. (2016). Parameter extraction of two diode solar PV model using Fireworks algorithm. Solar Energy, Vol. 140, pp. 265-276. [ Links ]

7. Easwarakhanthan, T., Bottin, J., Bouhouch, I., & Boutrit, C. (1986). Nonlinear Minimization Algorithm for Determining the Solar Cell Parameters with Microcomputers. Int. J. Sol. Energy, Vol. 4, pp. 1-12. [ Links ]

8. Ortiz-Conde, A., García Sánchez, F. J., & Muci, J. (2006). New method to extract the model parameters of solar cells from the explicit analytic solutions of their illuminated I-V characteristics, Sol. Energy Mater. Sol. Cells, Vol. 90, No. 3, pp. 352-361. [ Links ]

9. Jain, A., & Kapoor, A. (2004). Exact analytical solutions of the parameters of real solar cells using Lambert W-function. Sol. Energy Mater. Sol. Cells, Vol. 81, No. 2, pp. 269-277. [ Links ]

10. Saleem, H. & Karmalkar, S. (2008). An Analytical Method to Extract the Physical Parameters of a Solar Cell From Four Points on the Illuminated J-V Curve. IEEE Electron Device Lett. Vol. 30, No. 4, pp. 349-352. [ Links ]

11. Appelbaum, J. & Peled, A. (2014). Parameters extraction of solar cells - A comparative examination of three methods. Sol. Energy Mater. Sol. Cells, Vol. 122, pp. 164-173. [ Links ]

12. Zagrouba, M., Sellami, A., & Bouai, M. (2010). Identification of PV solar cells and modules parameters using the genetic algorithms : Application to maximum power extraction. Sol. Energy, Vol. 84, No. 5, pp. 860-866. [ Links ]

13. Bastidas-Rodriguez, J. D., Petrone, G., Ramos-Paja, C. A., & Spagnuolo, G. (2015). A genetic algorithm for identifying the single diode model parameters of a photovoltaic panel. Math. Comput. Simul., Vol. 131, pp. 38- 54. [ Links ]

14. Khare, A. & Rangnekar, S. (2013). A review of particle swarm optimization and its applications in solar photovoltaic system. Appl. Soft Comput. [ Links ]

15. Bana, S. & Saini, R. P. (2017). Identification of unknown parameters of a single diode photovoltaic model using particle swarm optimization with binary constraints. Renew. Energy, Vol. 101, pp. 1299-1310. [ Links ]

16. Oliva, D., Cuevas, E., & Pajares, G. (2014). Parameter identification of solar cells using artificial bee colony optimization. Energy, Vol. 72, pp. 93-102. [ Links ]

17. Wang, R., Zhan, Y. & Zhou, H. (2015). Application of artificial bee colony in model parameter identification of solar cells. Energies, Vol. 8, No. 8, pp. 7563-7581. [ Links ]

18. Jack, V., Salam, Z., & Ishaque, K. (2016). An accurate modelling of the two-diode model of PV module using a hybrid solution based on differential evolution. Energy Convers. Manag., Vol. 124, pp. 42-50. [ Links ]

19. Abido, M. A. & Khalid, M. S. (2017). Seven-parameter PV model estimation using Differential Evolution. Electr. Eng ., pp. 1-11. [ Links ]

20. Askarzadeh, A. (2013). A discrete chaotic harmony search-based simulated annealing algorithm for optimum design of PV/wind hybrid system. Sol. Energy. [ Links ]

21. Askarzadeh, A. & Rezazadeh, A. (2012). Parameter identification for solar cell models using harmony search-based algorithms. Sol. Energy. [ Links ]

22. Jovanovic, R., Kais, S., & Alharbi, F. H. (2016). Cuckoo Search Inspired Hybridization of the Nelder-Mead Simplex Algorithm Applied to Optimization of Photovoltaic Cells. Appl. Math. Inf. Sci, Vol. 10, No. 3, pp. 961-973. [ Links ]

23. Ma, J., Ting, T. O., Man, K. L., Zhang, N., Guan, S. U., & Wong, P. W. H. (2013). Parameter estimation of photovoltaic models via cuckoo search. J. Appl. Math ., Vol. 2013, pp. 1-8. [ Links ]

24. Humada, A. M., Hojabri, M., Mekhilef, S., & Hamada, H. M. (2016). Solar cell parameters extraction based on single and double-diode models: A review. Renew. Sustain. Energy Rev ., Vol. 56, pp. 494-509. [ Links ]

25. Tamrakar, R. & Gupta, A. (2015). A Review: extraction of solar cell modelling parameters. Vol. 3, No. 1. [ Links ]

26. Chan, D. S. H., Phillips, J. R., & Phang, J. C. H. (1986). A comparative study of extraction methods for solar cell model parameters. Scopus. [ Links ]

27. Karaboga, D. (2005). An idea based on Honey Bee Swarm for Numerical Optimization. Tech. Rep. TR06, Erciyes Univ ., No. TR06, pp. 10. [ Links ]

28. Storn, R. & Price, K. (1997). Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim ., pp. 341-359. [ Links ]

29. Geem, Z. W. (2001). A New Heuristic Optimization Algorithm: Harmony Search. Simulation. [ Links ]

30. Rashedi, E., Nezamabadi-Pour, H., & Saryazdi, S. (2009). GSA: A Gravitational Search Algorithm. Inf. Sci. (Ny) ., Vol. 179, No. 13, pp. 2232-2248. [ Links ]

31. Yang, X. S. & Deb, S. (2009). Cuckoo search via Lévy flights. World Congr. Nat. Biol. Inspired Comput. (NABIC’09) Proc., pp. 210-214. [ Links ]

32. Civicioglu, P. (2012). Transforming geocentric cartesian coordinates to geodetic coordinates by using differential search algorithm, Comput. Geosci .,Vol. 46, pp. 229-247. [ Links ]

33. Askarzadeh, A. (2016). A novel metaheuristic method for solving constrained engineering optimization problems: Crow search algorithm. Comput. Struct., Vol. 169, pp. 1-12. [ Links ]

34. Hansen, N. & Ostermeier, A. (2016). Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation. Proceedings of IEEE International Conference on Evolutionary Computation, pp. 312-317. [ Links ]

35. Hansen, N. & Ostermeier, A. (2001). Completely Derandomized Self-Adaptation in Evolution Strategies. Evol. Comput., Vol. 9, No. 2, pp. 159-195. [ Links ]

36. Kennedy, J. & Eberhart, R. (1995). Particle swarm optimization. Neural Networks, Proceedings., IEEE Int. Conf., Vol. 4, pp. 1942- 1948. [ Links ]

37. Barthelemy, P., Bertolotti, J., & Wiersma, D. S. (2008). A Lévy flight for light. Nature, Vol. 453, No. 7194, pp. 495-498. [ Links ]

38. Yona, A., Senjyu, T., Funabshi, T., & Sekine, H. (2008). Application of Neural Network to 24-hours-Ahead Generating Power Forecasting for PV System. IEEJ Trans. Power Energy, Vol. 128, No. 1, pp. 33-39. [ Links ]

39. Hiyama, T., Kouzuma, S., & Imakubo, T. (1995). Identification of optimal operating point of PV modules using neural network for real time maximum power tracking control. IEEE Trans. Energy Convers., Vol. 10, No. 2, pp. 360-367. [ Links ]

40. Karatepe, E., Boztepe, M., & Colak, M. (2006). Neural network based solar cell model. Energy Convers. Manag., Vol. 47, No. 9-10, pp. 1159- 1178. [ Links ]

41. Khanna, V., Das, B. K., Bisht-Vandana, D., & Singh, P. K. (2015). A three diode model for industrial solar cells and estimation of solar cell parameters using PSO algorithm. Renew. Energy, Vol. 78, pp. 105-113. [ Links ]

42. Ishaque, K. , Salam, Z. , & Taheri, H. (2011). Simple, fast and accurate two-diode model for photovoltaic modules. Sol. Energy Mater. Sol. Cells, Vol. 95, No. 2, pp. 586-594. [ Links ]

43. Ji, Y.-H., Kim, J.-G., Park, S.-H., Kim, J.-H., & Won, C.-Y. (2012). C-language Based PV Array Simulation Technique Considering Effects of Partial Shading. [ Links ]

44. Beyer, H.-G. (1999). Evolutionary algorithms in noisy environments: theoretical issues and guidelines for practice. [ Links ]

45. Jun-Hua, L. & Ming, L. (2013). An analysis on convergence and convergence rate estimate of elitist genetic algorithms in noisy environments. Opt. - Int. J. Light Electron Opt., Vol. 124, No. 24, pp. 6780-6785. [ Links ]

46. Nishioka, K., Sakitani, N., Uraoka, Y., & Fuyuki, T. (2007). Analysis of multicrystalline silicon solar cells by modified 3-diode equivalent circuit model taking leakage current through periphery into consideration. Sol. Energy Mater. Sol. Cells, Vol. 91, No. 13, pp. 1222-1227. [ Links ]

47. Ishaque, K. & Salam, Z. (2011). An improved modeling method to determine the model parameters of photovoltaic (PV) modules using differential evolution (DE). Sol. Energy, Vol. 85, pp. 2349-2359. [ Links ]

48. Abdul-Hamid, N. F., Rahim, N. A., & Selvaraj, J. (2013). Solar cell parameters extraction using particle swarm optimization algorithm. IEEE Conference on Clean Energy and Technology (CEAT), pp. 461-465. [ Links ]

49. Wilcoxon, F. (1992). Breakthroughs in Statistics: Methodology and Distribution. Kotz S. & Johnson, N. L. eds. Springer New York, 1992, pp. 196-202. [ Links ]

50. García, S., Molina, D., Lozano, M., & Herrera, F. (2009). A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: A case study on the CEC'05 Special Session on Real Parameter Optimization. J. Heuristics, Vol. 15, No. 6, pp. 617-644. [ Links ]

51. Hochberg, Y. (1988). A sharper Bonferroni procedure for multiple tests of significance. Biometrika, Vol. 75 , No. 4 , pp. 800-802. [ Links ]

52. Armstrong, R. A. (2014). When to use the Bonferroni correction. Ophthalmic Physiol. Opt., Vol. 34, No. 5, pp. 502-508. [ Links ]

Received: January 15, 2018; Accepted: September 12, 2018

* Corresponding author is Omar Avalos. omar.avalos@cutonala.udg.mx

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License