Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
TIP. Revista especializada en ciencias químico-biológicas
versión impresa ISSN 1405-888X
TIP vol.11 no.1 Ciudad de México jun. 2008
Artículos originales
Método para pronosticar la localización de un nuevo volcán al sur de la Ciudad de México
1 Depto. de Vulcanologia, Instituto de Geofísica, UNAM, Circuito Exterior, CU. Coyoacán 04510, México, D. F. E-mail: hugo@geof1sica.unam.mx
2 Licenciatura en Ingeniería Ambiental, Depto. de Energía, UAM Azcapotzalco.
El pronostico y predicción de erupciones o nacimiento de nuevos volcanes es una tarea difícil de abordar con precisión desde el punto de vista temporal y espacial. Existen estimaciones estadísticas del tiempo de retorno de erupción engrandes volcanes y campos volcánicos monogenéticos, pero la estimación del lugar donde podría nacer un nuevo volcán es un tema que no se ha abordado suficientemente por su complejidad. A diferencia de los grandes volcanes, donde se conoce la localización de su cráter, en los volcanes monogenéticos no se puede pronosticar el lugar donde se verificará la siguiente erupción. Los campos volcánicos manogenéticos san regiones cuyo condicionamiento geológico permite el nacimiento de nuevos volcanes, de acuerdo con una periodicidad propia de cada campo. Aunque los volcanes surgen en la intersección de fallas y fracturas que permiten el ascenso de los magmas, éstas están cubiertas por los productos eruptivos de volcanes previos. El período de retorno promedio para el surgimiento de un nuevo volcán en el Campo Volcánico Chichinautzin (CVC), al sur de la ciudad de México, es <1700 años. La última erupción en el CVC ocurrió hace-1700-2000 años, según los estudios reportados hasta ahora. Esto hace que la región al sur de la ciudad de México sea propensa a registrar un evento eruptivo en el futuro cercano y la probabilidad de que ocurra éste crecerá con el tiempo. Por ello es necesario explorar formas de identificar las zonas más propensas para alojar la próxima erupción en la región, ya que esto permitiría prever los efectos de una erupción en la región más poblada del país. En este trabajo se prepone un método para identificar las zonas de mayor actividad tectónica en el CVC, vías potenciales para el ascenso de magmas, mediante el uso de patrones de distribución de las tasas de emisión de CO2 del suelo. Aquí reportamos dos zonas de emisión anómala de CO2: la más importante en magnitud se encuentra cerca del Colegio Militar y la segunda, de menor magnitud, cercana a Tenango, Estado de México. Estas anomalías están asociadas con rasgos tectónicos activos y son potenciales conductos para magmas en ascenso. Aunque no hay certeza de que así suceda, la información permite tener elementos para establecer planes de mitigación y da indicaciones de la actividad de las fallas de la región. Se requiere que los resultados que se presentan, sean verificados con más mediciones y, mediante comparación, se pueda observar la evolución de las emisiones de CO2 del suelo en el mediano y largo plazo.
Palabras Clave: CO2 en suelos; emisión de CO2; fallas; Sierra Chichinautzin; volcanismo monogenético
Forecast and prediction of eruptions or birth of volcanoes is still a hard-to-tackle issue, temporally and spatially. Statistical estimates of return period for large volcanoes and monogenetic volcanic fields do exist. However, estimating the location for a new volcano to be born is a complex task. In difference with large volcanoes, for which the location of their craters is known, in the case of volcanic fields it is difficult to forecast where the next eruption will take place. Monogenetic volcanic fields are regions whose geologic setting allows the birth of new volcanoes according to a given periodicity. Volcanoes are born at the intersection of faults and fractures, and they are used by the ascending magmas. At monogenetic volcanic fields, eruptive products from previous volcanoes cover the traces of faults and fractures. The Chichinautzin Volcanic Field (CVF), south of Mexico City, has an average return period for new eruptions of <1700 years. The last eruption in the region occurred ~1700-2000años years ago, according to the geologic studies reported so far. This implies that southern Mexico City is prone to witness a new eruptive event in the near future, and the probability for this to occur will increase with the time. Therefore, it is necessary to explore ways to identify the location of the next eruption for planning and prevention purposes to mitigate the effects of an eruption at the most populated region of the country. This study proposes a method to identify the most tectonically active zones in the CVF that might be used by ascending magmas, through the distribution patterns of the CO2 emission rates from soils of the region. We report here two zones of anomalous emission of CO2: the most important is nearby the Colegio Militar, and the second, less important in magnitude, near Tenango, Estado de México. These anomalies are associated to active tectonic features, which might act as conduits for ascending magmas, although no certainty can be claimed; they represent elements for mitigation planning. In addition, our results attest for activity of faults in the region. Further work is required to confirm the results presented here and, through the comparison with more measurements, observe the evolution of CO2 soil degassing in the mid- and long-term.
Key Words: CO2 from soil; CO2 emission; faults; Sierra Chichinautzin; monogenetic volcanism
Agradecimientos
Este trabajo fue desarrollado con el apoyo de la Dirección General de Asuntos del Personal Académico (DGAPA), através del proyecto IN104905. Agradecemos cumplidamente el apoyo del Centro Nacional de Prevención de Desastres (CENAPRED) de la Secretaría de Gobernación, en particular a su titular el M. I. Roberto Quaas, así como al Ing. Enrique Guevara, por prestar amablemente la instrumentación necesaria para realizar esta investigación. Agradecemos a la Dra. Agnes Mazot la lectura de una versión previa y sus útiles comentarios.
Referencias
1. Nakamura, K. Volcanoes as possible indicators of tectonic stress orientation-principle and proposal. J Volcanol Geotherm Res 2, 1-16(1977). [ Links ]
2. Robinson, H.H. The San Francisco volcanic field, Arizona. U.S. Geol. Surv. Profess. Pap. 76, 213 (1913). [ Links ]
3. Tanaka, K.L., Shoemaker, E.M., Ulrich, G.E. & Wolfe, E.W. Migration of volcanism in the San Francisco volcanic field. Arizona. Geol. Soc. Am. Bull. 97, 129-141 (1986). [ Links ]
4. Brown, M.C., McQueen, K.G., Roach, I.E. & Taylor, G. Monaro Volcanic Province. IAVCEI Canberra 1993 excursion guide. Australian Geological Survey Organisation, Record 1993, 61 (1993). [ Links ]
5. Rutten, M.G. The Geology of Western Europe. Amsterdam: Elsevier. 520(1969). [ Links ]
6. Martin del Pozzo, A.L. Monogenetic volcanism in Sierra Chichinautzin. Mexico. Bulletin Volcanologique 45,9-24 (1982). [ Links ]
7. Siebe, С. & Verma, S.P. Major element geochemistry and tectonic setting of Las Derrumbadas rhyolitic domes, Puebla, Mexico. Chem Erde 48,177-189 (1988). [ Links ]
8. Hasenaka, T. & Carmichael, I.SE. The cinder cones of Michoacan- Guanajuato, central Mexico: their age, volumeand distribution, and magma discharge rate. J Vole Geotherm Res 25,105-124 (1985). [ Links ]
9. Luhr, J.F. & Simkin, T. (eds). Parícutin: The Volcano Born in a Mexican Cornfield. Phoenix: Geoscience Press 427 (1993). [ Links ]
10. Connor, C.B. & Conway, F.M. Basaltic volcanic fields. In: Sigurdsson, H., et al. eds. Encyclopedia of volcanoes: Academic. San Diego, CA, p. 331-343 (2000). [ Links ]
11. Connor, C.B. Structure of the Michoacan-Guanajuato Volcanic Field, Mexico. J Volcanol Geotherm Res 33,191-200 (1987). [ Links ]
12. Fries, С. Jr. Volumes and weigts of phyroclastic material, lava and water erupted by Paricutin volcano, Michoacán, Mexico. Transaction of the American Geophisical, Union 34(4), 603-616(1953). [ Links ]
13. Nolan, M.L. Impact of Paricutin on five communities. In: Sheets PD and Grayson DK (eds.) Volcanic Activity and Human Ecology. New York, Academic Press, 293-338 (1979). [ Links ]
14. Delgado Granados,H., Carrasco Nuñez, G., Urrutia Fucugauchi, J. & Casanova Becerra, J.M. Analysis of the eruptive records of the Popocatepetl volcano, Mexico, Kagoshima International Conference on volcanoes, Kagoshima, Japan, Proceedings. 510-513 (1988). [ Links ]
15. De la Cruz Reyna, S. Poisson-distributed patterns of explosive activity. Bull. Volcanol. 54, 57-67 (1991). [ Links ]
16. De la Cruz Reyna, S. Random patterns of occurrence of volcanic eruptions at Colima volcano, Mexico. J. Volcanol. Geotherm. Res. 55, 51-68 (1993). [ Links ]
17. De la Cruz Reyna, S. Probabilistic analysis of future explosive eruptions. In: Scarpa, R., Tilling, R.I. (Eds.), Monitoring and Mtigation of Volcanic Hazards. Springer, Berlin, 599-629 (1996). [ Links ]
18. De la Cruz Reyna, S. & Carrasco Núñez, G. Probabilistic hazard analysis of Citlaltepetl (Pico de Orizaba) Volcano, eastern Mexican Volcanic Belt. J. Volcanol. Geotherm. Res. 113,307-318(2002). [ Links ]
19. Scandone, R. Preliminary evaluation of the volcanic hazard in the southern Valley of Mexico. Geofisica Internacional 18,21-35 (1979). [ Links ]
20. Villalpando Cortés, R.E., Delgado Granados, H. & Farraz Montes. I.A. Use of carbon dioxide soil emisión to forecast eruptions in monogenetic volcanic fields. Fourth Conference: Cities on Volcanoes IAVCEI Quito, Ecuador, January 2006, Abstracts. 184(2006). [ Links ]
21. Garcia, R.L. Assimilationandallocation of carbonin determinate and indeterminate soybeans, 1st Edition, Nebraska University. USA, Nebraska University Press, 230 (1991). [ Links ]
22. García, R. & Verma, B. Soil surface CO2 fluxes and the carbon budget of a grassland. Journal of Geophysical Research 97(D17). 18845-18853 (1992). [ Links ]
23. Miller, S.A., et al. Aftershocks driven by a high-pressure CO2 source at depth. Nature 427, 724-727 (2004). [ Links ]
24. Donnini, M., et al. Carbon dioxide degassing at Bagni San Filippo (Tuscany, Italy): quantification and modeling of gas release. Geophys Res Abs 9:S-Ref-ID:1607-7962/gra/EGU2007-A-02954(2007). [ Links ]
25. Faria, С, Ferreira, T., Gaspar, J.L. & Sousa, F. Tectonic features revealed by CO2 soil diffuse degassing anomalies at Faial Island (Azores). Geophys Res Abs 5, 13119(2003). [ Links ]
26. D'Alessandro, W., Giammanco, S., Parello, F. & Valenza, M. CO2 output and dl3C(CO2) from Mount Etna as indicators of degassing of shallow asthenosphere. Bull Volcanol. 58 ,455-458(1997). [ Links ]
27. Gerlach, T.M., McGee, K.A., Elias, T., Sutton, A.J. & Doukas, MP. Carbon dioxide emisión rate of Kilauea Volcano: Implications for primary magma and the summit reservoir. Journal of Geophysical Research 107(B9), 2189, 1-15. doi: 10.1029/2001JB000407 (2002). [ Links ]
28. McGee, A. & Gerlach, T.M. Annual cycle of magmatic CO2 in a treekill soil at Mammoth Mountain, California: Implication for soil acidification. Geology 26(5), 463-466 (1998). [ Links ]
29. Varley, N.R. & Amienta, M.A. The absence of diffuse degassing at Popocatepetl volcano, Mexico. Chem. Geol. 177,157-173 (2001). [ Links ]
30. Baubron, J.C., Allard, P., Sabroux, J.C., Tedesco, D. & Toutain. Soil gas emanations as precursory indicators of volcanic eruptions. J. P. J. Geol. Soc. Lond. 148, 571-576 (1991). [ Links ]
31. Bloomfield, K. A late Quaternary volcano field in central Mexico. Geologische Rundschau 64,476- 497 (1975). [ Links ]
32. Siebe, С., Rodriguez-Lara, V., Schaaf, P. & Abrams, M. Radiocarbon ages of Holocene Pelado, Guespalapa, and Chichinautzin scoria cones, south of Mexico City: implications for archaeology and future hazards. Bulletin of Volcanology 66. 203-225 (2004). [ Links ]
33. Meriggi, L., Macias, J.L., Tommasini, S., Capra, L. & Conticelli S. Heterogeneous magmas of the Quaternary Sierra Chichinautzin volcanic field (central Mexico): the role of an amphibole-bearing mantle and magmatic evolution processes. Revista Mexicana de Ciencias Geológicas 25(2), 197-216 (2008). [ Links ]
34. Velasco-Таріа, F. & Verma, SP. Estado actual de le investigación geoquímica en el campo monogenètico de la Sierra de Chichinautzin: análisis de información y perspectivas. Revista Mexicana de Ciencias Geológicas 18, 168-203 (2001). [ Links ]
35. Libby, F.W. Radiocarbon dating. Chicago, University Chicago Press, 124 (1955). [ Links ]
36. Siebe, С. Age and archaeological implications of Xitle volcano. southwestern Basin of Mexico-City. J. Volcanol. Geotherm. Res. 104,45-64 (2000). [ Links ]
37. Delgado Granados, H., et al. Geology of Xitle volcano in southern Mexico City, a2000-yearoldmonogenetic volcano in an urban area. Revista Mexicana de Ciencias Geológicas 15, 115-131 (1998). [ Links ]
38. Cervantes, P. & Wallace, P. Magma degassing and basaltic eruption styles: a case of-2000 year BP Xitle volcano in central Mexico. Journal of Volcanology and Geothermal Research 120, 249-270 (2003). [ Links ]
39. Pattey, E., Rochette, P., Desjardins, R.L. & Dube, P.A. Estimation of the net CO2 assimilation rate of maize (Zea mays L.) canopy from leaf chamber measurements. Agrie. For. Meteorol. 55,37-5(1991). [ Links ]
40. Rochette, P., Desjardins, R.L. & Pattey E. Spatial and temporal variability of soil respiration in agricultural fields. Can J Soil Sci 71,189-196(1991). [ Links ]
41. Parkinson, K.J. An improved method for measuring soil respiration in the field. The Journal of Applied Ecology 18(1), 221-228 (1981). [ Links ]
42. LI-COR. LI-6252 CO2 Analyzer Instruction Manual, 1st Edition, Nebraska, USA, LI-COR, Inc., 126 (1992). [ Links ]
43. LI-COR. LI-670 Flow Control Unit Operating and Service Manual, 1st. Edition, Nebraska, USA, LI-COR, Inc., 58 (1990). [ Links ]
44. LI-COR. 6000-09 Soil Respiration Chamber Instruction Manual, 1st. Edition, Nebraska, USA, LI-COR, Inc., 123 (1993). [ Links ]
45. LI-COR. 6400-09 Soil C02 Flux. Chamber, Product Bulletin, 1st. Edition, Nebraska, USA, LI-COR, Inc., 28 (1993). [ Links ]
Recibido: 26 de Mayo de 2008; Aprobado: 16 de Junio de 2008