Servicios Personalizados
Revista
Articulo
Indicadores
- Citado por SciELO
- Accesos
Links relacionados
- Similares en SciELO
Compartir
Revista mexicana de ingeniería química
versión impresa ISSN 1665-2738
Rev. Mex. Ing. Quím vol.14 no.3 Ciudad de México sep./dic. 2015
Biotecnología
Effect of Cr and Pb on the activity antioxidant enzymes in a cell suspension culture of Jatropha curcas
Efecto del Cr y Pb en la actividad de enzimas antioxidantes de un cultivo de células en suspensión de Jatropha curcas
A. Valadez-Villarreal1,2, A. Maldonado-Magaña3, A. Bernabé-Antonio4, M.E. Estrada-Zúñiga5, A Román-Guerrero1, F. Cruz-Sosa1*
1 Departamento de Biotecnología Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186 Col. Vicentina, C.P. 09340, México D.F. * Corresponding author. E-mail: cuhp@xanum.uam.mx Tel. +52 (55) 5804 4714.
2 Universidad Tecnológica de Tabasco, Carretera Villahermosa-Teapa, Km. 14+600, Col. Centro, CP. 86280, Villahermosa, Tabasco, México.
3 Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, C.P. 62209, Cuernavaca, Morelos, México.
4 Departamento de Madera, Celulosa y Papel, Centro Universitario de Ciencias Exactas e Ingenierías, Universidad de Guadalajara, Km 15.5 Carretera Guadalajara-Nogales, Col. Las Agujas, C.P. 45010, Zapopan, Jalisco, México.
5 Facultad de Ciencias, Universidad Autónoma del Estado de México, Campus El Cerrillo, km. 15.5 Carretera Toluca-Ixtlahuaca, C.P. 50200, Toluca, Estado de México, México.
Received April 24, 2015;
Accepted October 27, 2015.
Abstract
Jatropha curcas is a tolerant and accumulator plant of heavy metals (HMs). Little is known about the mechanisms behind this ability. It is suggested that antioxidant enzymes might participate; however, there are no studies reporting the relationship between the activities of antioxidant enzymes and the presence of HMs in an in vitro cell suspension culture of J. curcas. The aim of this study was to determine the effect of chromium (Cr) or lead (Pb) at 0.0 to 3.0 mM on the activity of three antioxidant enzymes superoxide dismutase (SOD), catalase (CAT), and peroxidase (POX) through the growth of cell suspension cultures (CSC) of J. curcas. The activity displayed by those enzymes was statistically significant (P≤0.05) when Cr or Pb was used. The greatest enzymatic activity was noted at the first hour of culture for SOD and at five h for POX and CAT. After 192 h, the activity of these three enzymes decreased, which coincided with the exponential growth phase of the cell culture. The results indicated that there is a close relationship between the presence of Cr and Pb and SOD, CAT, and POX activities in a cell suspension culture of J. curcas, which can explain the plant's capability for tolerating and accumulating high concentrations of Cr and Pb.
Keywords: Jatropha curcas; cell cultures; heavy metal; chromium; lead; enzymatic activity.
Resumen
Jatropha curcas es una especie tolerante y acumuladora de metales pesados (HMs), pero poco se sabe sobre el mecanismo que le confiere esta habilidad. Se sugiere que las enzimas antioxidantes pueden ser partícipes; pero no hay reportes relacionandos a la actividad enzimática y HMs en cultivos de células en suspensión (CSC) de J. curcas. Se determinó el efecto del cromo (Cr) o plomo (Pb) (0.0 a 3.0 mM) sobre la actividad de las enzimas antioxidantes: superóxido dismutasa (SOD), catalasa (CAT) y peroxidasas (POX) en diferentes tiempos de crecimiento de CSC de J. curcas. Hubo diferencias significativas (P≤0.05) en la actividad de SOD, POD y CAT por la adición de Cr o Pb. La mayor actividad de SOD ocurrió durante la primera hora, y en POX o CAT se observó a las 5 h. Después de las 192 h, la actividad de todas las enzimas disminuyó, lo cual coincidió en el mayor crecimiento del cultivo celular Hubo una relación cercana entre el Cr o Pb y la actividad de SOD, POD y CAT, que podría relacionarse con la capacidad de J. curcas para acumular y tolerar altas concentraciones de Cr o Pb.
Palabras clave: Jatropha curcas; cultivo de células; metales pesados; cromo; plomo; actividad enzimática.
DESCARGAR ARTÍCULO EN FORMATO PDF
References
Aebi, H. (1984). Catalase in vitro. Methods in Enzymology 105, 121-126. [ Links ]
Ahmadpour, P., Azmi, M.N., Arfin, A., Hassandy, A.H., Karam D.S., Affendy, H., Majid N.M. and Schamshuddin, J. (2010). Uptake of heavy metals by Jatropha curcas L. planted in soils containing sewage sludge. American Journal of Applied Sciences 7, 1291-1299. [ Links ]
Assche, F.V. and Clijsters, H. (1990). Effects of metals on enzyme activity in plants. Plant Cell and Environment 13, 195-206. [ Links ]
Bernabé-Antonio, A., Álvarez, L., Buendía-González, L., Maldonado-Magaña, A. and Cruz-Sosa, F. (2015). Accumulation and tolerance of Cr and Pb using a cell suspension culture system of Jatropha curcas. Plant Cell Tissues and Organ Culture 120, 221-228. [ Links ]
Blokhina, O., Virolainen, E. and Fagerstedt, K.V. (2003). Antioxidants, oxidative damage and oxygen deprivation stress: a review. Annals of Botany 91, 179-194. [ Links ]
Buendía-González, L., Estrada-Zúñiga, M.E., Orozco-Villafuerte, J., Cruz-Sosa, F. and Vernon-Carter, E.J. (2012). Somatic embryogenesis of the heavy metal accumulator Prosopis laevigata. Plant Cell Tissues Organ Culture 108, 287-296. [ Links ]
Buendía-González, L., Orozco-Villafuerte, J., Cruz-Sosa, F., Barrera-Díaz, C.E. and Vernon-Carter, E.J. (2010). Prosopis laevigata a potential chromium (VI) and cadmium (II) hyperaccumulator desert plant L. Bioresource Technology 101, 5862-5867. [ Links ]
Dazy, M., Masfaraud, J.F. and Ferard, J.F. (2009). Induction of oxidative stress biomarkers associated with heavy metal stress in Fontinalis antipyretica Hedw. Chemosphere 75, 297-302. [ Links ]
Errabii, T., Gandonou, C.B., Essalmani, H. Abrini, J. Idaomar, M. and Senhaji N.S. (2007). Effects of NaCl and mannitol induced stress on sugarcane (Saccharum sp.) callus cultures. Acta Physiologiae Plantarum 29, 95-102. [ Links ]
Fryer, M.J., Andrews, J.R., Oxborough, K., Blowers, D.A. and Baker, N.R. (1998). Relationships between CO2 assimilation, photosynthetic electron transport and active CO2 metabolism in leaves of maize in the field during periods of low temperature. Plant Physiology 116, 571-580. [ Links ]
Hassan, M. and Mansoor, S. (2014). Oxidative stress and antioxidant defense mechanism in mung bean seedlings after lead and cadmium treatments. Turkish Journal of Agriculture and Forestry 38, 55-61. [ Links ]
Jahan, A.A., Anis, M. and Aref, I.M. (2014). Relative examination of antioxidative enzymatic activities in plantlets of Cardiospermum halicacabum L. differentiated from hypocotyls in in vivo and ex vitro environment. Biotechnology Reports 4, 66-72. [ Links ]
Jain, R., Srivastava, S., Solomon, S., Shrivastava, A.K. and Chandra, A. (2010). Impact of excess zinc on growth parameters, cell division, nutrient accumulation, photosynthetic pigments and oxidative stress of sugarcane (Saccharum spp.). Acta Physiologiae Plantarum 32, 979-986. [ Links ]
Juknys, R., Vitkauskaité, G., Račaite, M. and Vencloviené, J. (2012). The impacts of heavy metals on oxidative stress and growth of spring barley. Central European Journal of Biology 7, 299-306. [ Links ]
Kachout, S.S., Mansoura, A.B., Leclerc, J.C., Jaffel, K., Rejeb, M.N. and Ouerghi, Z. (2009). Effects of heavy metals on antioxidant activities of Atriplex hortensis and Atriplex rosea. Journal of Applied Botany and Food Quality 83, 37-43. [ Links ]
Kar, M. and Mishra, D. (1976). Catalase, peroxidase, and polyphenoloxidase activities during rice leaf senescence. Plant Physiology 57, 315-319. [ Links ]
Klavina, D. and Ievinsh, G. (2008). Growth of tissue culture and changes in oxidative enzyme activity of Sorbus and tayberry cultivars during cold storage. Acta Universitatis Latviensis 745, 179-186. [ Links ]
Lizhong, Z. and Cullen, W.R. (1995). Effect of some heavy metals on cell suspension cultures of Catharanthus roseus. Journal of Enviromental Sciences 7, 60-65. [ Links ]
Lombardi, L., Sebastiani, L. and Vitagliano, C. (2003). Physiological, biochemical, and molecular effects of in vitro induced iron deficiency in peach rootstock Mr.S 2/5. Journal of Plant Nutrition 26, 2149-2163. [ Links ]
Lukatin, A., Egorova, I., Michailova I., Malec, P. and Strzalka, K. (2014). Effect of copper on pro-and antioxidative reactions in radish (Raphanus sativus L.) in vitro and in vivo. Journal of Trace Elements in Medicine and Biology 28, 80-86. [ Links ]
Maksymiec, W. (1997). Effect of copper on cellular processes in higher plants. Photosynthetica 34, 321-342. [ Links ]
Maldonado-Magaña, A., Orozco-Villafuerte, J., Buendía-González, L., Estrada-Zuñiga, M.E., Bernabé-Antonio, A. and Cruz-Sosa, F. (2013). Establishment of cell suspension cultures of Prosopis leavigata (Humb. and Bonpl. Ex willd) M.C. Johnst to determine the effect of zinc on the uptake and accumulation of lead. Revista Mexicana de Ingeniería Química 12, 489-498. [ Links ]
Malecka, A., Jarmuszkiewicz, W. and Tomaszewska, B. (2001). Antioxidative defense to lead stress in subcellular compartments of pea root cells. Acta Biochimica Polonica 48, 687-698. [ Links ]
Mani, D. and Kumar, C. (2014). Biotechnological advances in bioremediation of heavy metals contaminated ecosystems: an overview with special reference to phytoremediation. International Journal of Environmental Science and Technology 11, 843-872. [ Links ]
McKersie, B.D. and Leshem, Y.Y. (1994). Stress and Stress Coping in Cultivated Plants. Springer. 256 p. [ Links ]
Mohamed, A.A. and Aly, A.A. (2004). Iron deficiency stimulated some enzymes activity, lipid peroxidation and free radicals production in Borage officinalis induced in vitro. International Journal of Agriculture and Biology 6, 179-184. [ Links ]
Murashige, T. and Skoogs F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiology Plantarum 15, 473-497. [ Links ]
Noctor, G. and Foyer, C.H. (1998). Ascorbate and glutathione: keeping active oxygen under control. Annual Review of Plant Physiology and Plant Molecular Biology 49, 249-279. [ Links ]
Peer, W.A., Baxter, I.R., Richards, L., Freeman J.L. and Muyphy, A.S. (2005). Phytoremediation and hyperaccumulator species. In: Topics in Current Genetics, (M.J. Tamas and E. Martinoia, eds.), Pp. 299-340. Springer-Verlag, Berlin Heidelberg. [ Links ]
Sánchez-Rangel, J.C., Benavides, J., Jacobo-Velázquez, D.A. (2014). Abiotic stress based bioprocesses for the production of high value antioxidant phenolic compound in plants: An overview. Revista Mexicana de Ingeniería Química 13, 49-61. [ Links ]
Siedlecka, A. and Krupa, Z. (2002). Functions of enzymes in heavy metal treated plants. In: Physiology and biochemistry of metal toxicity and tolerance in plants, (M.M.V. Prasad and S. Kazimierz, eds.), Pp. 303-324. Springer, Netherlands. [ Links ]
Srivastava, S., Tripathi, R.D. and Dwivedi, U.N. (2004). Synthesis of phytochelatins and modulation of antioxidants in response to cadmium stress in Cuscuta reflexa-an angiospermic parasite. Journal of Plant Physiology 161, 665-674. [ Links ]
Szollosi, R. (2014). Superoxide Dismutase (SOD) and Abiotic Stress Tolerance in Plants: An Overview. In: Oxidative Damage to Plants, (P. Ahmad, ed.), Pp. 89-129. Academic Press, Elsevier, USA. [ Links ]
Tanyolac, D., Ekmekci, Y. and Unalan A.E. (2007). Changes in photochemical and antioxidant enzyme activities in maize (Zea mays L.) leaves exposed to excess copper. Chemosphere 67, 8998. [ Links ]
Tewari, R.K., Kumar, P., Sharma, P.N. and Bisht, S.S. (2002). Modulation of oxidative stress responsive enzymes by excess cobalt. Plant Science 162, 381-388. [ Links ]
Weckx, J.E.J. and Clijsters, H.M.M. (1997) Zn phytotoxicity induces oxidative stress in primary leaves of Phaseolus vulgaris. Plant Physiology Biochemistry 35, 405-410. [ Links ]
Yadav, S.K., Juwarkar, A.A., Kumar, G.P., Thawale, P.R., Singh, S.K. and Chakrabarti, T. (2009). Bioaccumulation and phyto-translocation of arsenic, chromium and zinc by Jatropha curcas L.: impact of dairy sludge and biofertilizer. Bioresource Technology 100, 4616-4622. [ Links ]
Youssef, M.M. and Azooz, M.M. (2013). Biochemical studies on the effects of zinc and lead on oxidative stress, antioxidant enzymes and lipid peroxidation in Okra (Hibiscus esculentus cv.Hassawi). Science International 1, 12-16. [ Links ]