SciELO - Scientific Electronic Library Online

 
vol.13 número2The I-V characteristics of organic hole-only devices based on crosslinked hole-transport layerState recognition scheme using feature vector and geometric area ratio techniques índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Journal of applied research and technology

versión On-line ISSN 2448-6736versión impresa ISSN 1665-6423

J. appl. res. technol vol.13 no.2 Ciudad de México abr. 2015

 

Feature extraction of electrocardiogram signals by applying adaptive threshold and principal component analysis

 

R. Rodrígueza*, A. Mexicanob, J. Bilac, S. Cervantesd, R. Ponceb

 

a Department of Mechatronics, Technological University of Ciudad Juarez, Ciudad Juárez, Chihuahua, México. *Corresponding author. E-mail address: ricardo_rodriguez@utcj.edu.mx

b Postgraduate Studies and Research Division, Technological Institute of Ciudad Victoria, Ciudad Victoria, Tamaulipas, México.

c Department of Instrumentation and Control Engineering, Czech Technical University in Prague, Prague, Czech Republic.

d Faculty of Chemical Sciences and Engineering, Autonomous University of the State of Morelos, Cuernavaca, Morelos, México.

 

Abstract

This paper presents a novel approach for QRS complex detection and extraction of electrocardiogram signals for different types of arrhythmias. Firstly, the ECG signal is filtered by a band pass filter, and then it is differentiated. After that, the Hilbert transform and the adaptive threshold technique are applied for QRS detection. Finally, the Principal Component Analysis is implemented to extract features from the ECG signal. Nineteen different records from the MIT-BIH arrhythmia database have been used to test the proposed method. A 96.28% of sensitivity and a 99.71% of positive predictivity are reported in this testing for QRS complexity detection, being a positive result in comparison with recent researches.

Keywords: Adaptive threshold; Hilbert transform; Principal Component Analysis; Electrocardiogram signals.

 

DESCARGAR ARTÍCULO EN FORMATO PDF

 

Acknowledgements

This work was supported by PROMEP, grant No. PROMEP/103.5/13/9045, and by Technological University of Ciudad Juarez.

 

References

Afonso, V., Tompkins, W.J., Nguyen, T.Q., Trautmann, S., & Luo, S. (1995). Filter-bank based processing of the stress ECG. In: The 17th IEEE Annual Engineering Conference in Medicine and Biology Society (pp. 887-888).         [ Links ]

Afonso, V., Tompkins, W.J., Nguyen, T.Q., & Luo, S. (1999). ECG beat detection using filter banks. IEEE Trans. Biomed. Eng., 46, 192-201.         [ Links ]

Ahlstrom, M.L., & Tompkins, W.J. (1983). Automated high-speed analysis of Holter tapes with microcomputers. IEEE Trans. Biomed. Eng., 30, 651-657.         [ Links ]

Alesanco, A., Olmos, S., Istepanian, R., & Garcia, J. (2003). A novel real-time multilead ECG compression and de-noising method based on the wavelet transform. In: Proc. IEEE Computers in Cardiology (pp. 593-596).         [ Links ]

Alwan A. (2011). Global status report on noncommunicable diseases 2010 (pp. 9-31). Geneva, Switzerland: World Health Organization.         [ Links ]

Arzeno, N., Deng, Z.-D., & Poon, C.-S. (2008). Analysis of first-derivative based QRS detection algorithms. IEEE Trans. Biomed. Eng., 55, 478-484.         [ Links ]

Asirvadam, V.S., Pisal, K.S., Izhar, L.I., & Khuzi, N.A.A.M. (2009). ECG viewed using grayscale patterns. Proceedings of the International Conference on Man-Machine Systems 2009 (pp. 1C2.1-1C2.5).         [ Links ]

Ayat, M., Shamsollahi, M.B., Mozaffari, B., & Kharabian, S. (2009). ECG denoising using modulus maxima of wavelet transform (pp. 416-419). In Proc. Annual Int. Conf. IEEE Engineering in Medicine and Biology Society Minneapolis 2009.         [ Links ]

Bashour, C., Visinescu, M., Gopakumaran, B., Wazni, O., Carangio, F., Yared, J.-P., & Starr, N. (2004). Characterization of premature atrial contraction activity prior to the onset of postoperative atrial fibrillation in cardiac surgery patients. Chest, 126, 831S-832S.         [ Links ]

Benitez, D., Gaydecki, P.A., Zaidi, A., & Fitzpatrick, A.P. (2001). The use of the Hilbert transform in ECG signal analysis. Comput. Biol. Med., 31, 399-406.         [ Links ]

Burte, R., & Ghongade, R. (2012). Advances in QRS detection: Modified Wavelet energy gradient method. International Journal of Emerging Trends in Signal Processing, 1, 23-29.         [ Links ]

Castells, F., Laguna, P., Sornmo, L., Bollmann, A., & Roig, J.M. (2007). Principal Component Analysis in ECG signal processing. EURASIP Journal on Advances in Signal Processing, 2007, 1-21.         [ Links ]

Chen, H.C., & Chen, S.W. (2003). A moving average based filtering system with its application to real-time QRS detection. Proc. IEEE Computers in Cardiology, 2003, 585-588.         [ Links ]

Cheng, W., & Chan, K. (1998). Classification of electrocardiogram using hidden Markov models (pp. 143-146). In: Proc. 20th Annual Int. Conf. IEEE Engineering in Medicine and Biology Society.         [ Links ]

Chouakri, S.A., Bereksi-Reguig, F., & Taleb-Ahmed, A. (2011). QRS complex detection based on multi wavelet packet decomposition. Applied Mathematics and Computation, 217, 9508-9525.         [ Links ]

Clifford, G.D., Azuaje, F., & McSharry, P. (2006). Advanced methods and tools for ECG data analysis (pp. 55-99). Norwood, MA: Artech House, Inc.         [ Links ]

Coast, A., & Cano, G. (1989). QRS detection based on hidden Markov modeling (pp. 34-35). In: Proc. Annual International Conference of the IEEE Enginnering in Medicine and Biology Society.         [ Links ]

Deshpande, S., & Rajankar, S.O. (2013). ECG data compression using principal component analysis. International Journal of Electrical, Electronics and Computer Systems. 1, 13-16.         [ Links ]

Dilaveris, P.E., Gialafos, E.J., Sideris, S.K., Theopistou, A.M., Andrikopoulos, G.K., Kyriakidis, M., & Toutouzas, P.K. (1998). Simple electrocardiographic markers for the prediction of paroxysmal idiopathic atrial fibrillation. American Heart Journal, 135, 733-738.         [ Links ]

Dinh, H.A.N., Kumar, D.K., Pah, N.D., & Burton, P. (2001). Wavelets for QRS detection (pp. 1883-1887). In: 23rd Annual International Conference of the IEEE Engineering in Medicine and Biology Society.         [ Links ]

Elgendi, M., Eskofier, B., Dokos, S., & Abbott, D. (2014). Revisiting QRS detection methodologies for portable, wearable, battery-operated, and wireless ECG systems. PLoS ONE, 9, e84018.         [ Links ]

Elgendi, M., Jonkman, M., & De Boer, F. (2009). Improved QRS detection algorithm using dynamic thresholds. International Journal of Hybrid Information Technology, 2, 65-80.         [ Links ]

Goldberger, A.L., Amaral, L.A.N., Glass, L., Hausdorff, J.M., Ivanov, P.Ch., Mark, R.G., & Stanley, H.E. (2000). PhysioBank, PhysioToolkit, and PhysioNet: Components of a New Research Resource for Complex Physiologic Signals. Circulation, 101, e215-e220.         [ Links ]

Hasan, M.A., & Mamun, M.D. (2012). Hardware approach of R-peak detection for the measurement of fetal and maternal heart rates. Journal of Applied Research and Technology, 10, 835-844.         [ Links ]

Kadambe, S., Murray, R., & Boudreaux-Bartels, G.F. (1999). Wavelet transform-based QRS complex detector. IEEE Trans. Biomed. Eng., 46, 838-848.         [ Links ]

Kaplan, D. (1990). Simultaneous QRS detection and feature extraction using simple matched filter basis functions (pp. 503-506). In Proc. IEEE Computers in Cardiology 1990.         [ Links ]

Kher, R., Pawar, T., & Thakar, V. (2014). Comparative analysis of PCA and wavelet based motion artifact detection and spectral characterization in W-ECG. WSEAS Transactions on Signal Processing, 10, 116-123.         [ Links ]

Köhler, B.-U., Hennig, C., & Orglmeister, R. (2003). QRS detection using zero crossing counts. Progress in Biomedical Research, 8, 138-145.         [ Links ]

Kotas, M. (2007). Projective filtering of time-aligned ECG beats for repolarization duration measurement. Comput. Methods Programs Biomed, 85, 115-123.         [ Links ]

Langley, P., Bowers, E.J., & Murray, A., 2010. Principal component analysis as a tool for analyzing beat-to-beat changes in ECG features: Application to ECG-derived respiration. IEEE Trans. Biomed. Eng., 57, 821-829.         [ Links ]

Li, C., Zheng, C., & Tai, C. (1995). Detection of ECG characteristic points using wavelet transforms. IEEE Trans. Biomed. Eng., 42, 21-28.         [ Links ]

Liang-Yu, S., Ying-Hsuan, W., & Hu, W. (2004). Using wavelet transform and fuzzy neural network for VPC detection from the Holter ECG. IEEE Trans. Biomed. Eng., 51, 1269-1273.         [ Links ]

Madeiro, J.P., Cortez, P.C., Oliveira, F.I., & Siqueira, R.S. (2007). A new approach to QRS segmentation based on wavelet bases and threshold technique. Med. Eng. Phys., 29, 26-37.         [ Links ]

Monasterio, V., Laguna, P., & Martínez, J.P. (2009). Multilead analysis of T-wave alternants in the ECG using principal component analysis. IEEE Trans. Biomed. Eng., 56, 1880-1890.         [ Links ]

Moody, G.B., & Mark, R.G. (2001). The impact of the MIT-BIH Arrhythmia Database. IEEE Eng. Med. Biol. Mag., 20, 45-50.         [ Links ]

Morizet-Mahoudeaux, P., Moreau, C., Moreau, D., & Quarante, J.J. (1981). Simple microprocessor-based system for on-line ECG arrhythmia analysis. Med. & Biol. Eng. & Comput., 19, 497-500.         [ Links ]

Okada, M. (1979). A digital filter for the QRS complex detection. IEEE Trans. Biomed. Eng., 26, 700-703.         [ Links ]

Palanivel, S., & Sukanesh, R. (2013). Experimental studies on intelligent, wearable and automated wireless mobile tele-alert system for continuous cardiac surveillance. Journal of Applied Research and Technology, 11, 133-143.         [ Links ]

Pan, J., & Tompkins, W. (1985). A real-time QRS detection algorithm. IEEE Trans. Biomed. Eng., 32, 230-236.         [ Links ]

Rabbani, H., Mahjoob, M.P., Farahabadi, E., & Farahabadi, A. (2011). R peak detection in electrocardiogram signal based on an optimal combination of wavelet transform, Hilbert transform, and adaptive thresholding. J. Med. Signals Sens., 1, 91-98.         [ Links ]

Rajpoot, P.S., Wadhwani, S., & Wadhwani, A.K. (2013). ECG data compression based on principal component analysis. Current Research in Engineering, Science and Technology Journals, 1, 98-104.         [ Links ]

Romero, I. (2010). PCA-based noise reduction in ambulatory ECGs. Computing in Cardiology, 26, 677-680.         [ Links ]

Sharma, L.N., Dandapat, S., & Mahanta A. (2012). Clinical entropy based PCA for multi-lead electrocardiogram signals (pp. 24-28). Proc. of the nternational Conference on Advances in Information Technology 2012.         [ Links ]

Sharma, S., Mittal, V., & Sharma, Y. (2013). Denoising and detection of ECG points using wavelets & PCA. International Journal of Emerging Research in Management & Technology, 2, 15-19.         [ Links ]

Sharmila, K., Krishna, E.H., & Reddy, K.A. (2013). Rule based identification of cardiac arrhythmias from enhanced ECG signals using multi-scale PCA. Signal Processing: An International Journal, 7, 117-130.         [ Links ]

Tang, J.-T., Yang, X.-L., Xu, J.-C., Tang, Y., Zou, Q., & Zhang, X.-K. (2008). The algorithm of R peak detection in ECG based on empirical mode decomposition (pp. 624-627). In: Proc. Fourth International Conference on Natural Computation.         [ Links ]

Trahanias, P., & Skordalakis, E. (1990). Syntactic pattern recognition of the ECG. IEEE Transactions on Pattern Analysis and Machine Intelligence, 12, 648-657.         [ Links ]

Tran, T., McNames, J., Aboy, M., & Goldstein, B. (2004). Prediction of paroxysmal atrial fibrillation by analysis of atrial premature complexes. IEEE Trans Biomed Eng., 51, 561-569.         [ Links ]

Trinder, J., Kleiman, J., Carrington, M., Smith, S., Breen, S., Tan, N., & Kim, Y. (2001). Autonomic activity during human sleep as a function of time and sleep stage. J. Sleep Res., 10, 253-264.         [ Links ]

Tsipouras, M.G., Fotiadis, D.I., & Sideris, D. (2002). Arrhythmia classification using the R-R- interval duration signal. IEEE Computers in Cardiology, 2002, 485-488.         [ Links ]

Xing, H., & Huang, M. (2008). A new QRS detection algorithm based on empirical mode decomposition (pp. 693-696). In: Proc. 2nd International Conference on Bioinformatics and Biomedical Engineering.         [ Links ]

Xu, X., & Liu, Y. (2005). Adaptive threshold for QRS complex detection based on wavelet transform (pp. 7281-7284). In Proc. IEEE 27th Annual International Conference of the Engineering in Medicine and Biology Society.         [ Links ]

Yongli, C., & Huilong, D. (2005). A QRS complex detection algorithm based on mathematical morphology and envelope (pp. 4654-4657). In Proc. 27th Annual International Conference of the Engineering in Medicine and Biology Society.         [ Links ]

Zapanta, L., Poon, C., White, D., Marcus, C., & Katz, E. (2004). Heart rate chaos in obstructive sleep apnea in children (pp. 3889-3892). In Proc. 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.         [ Links ]

Zhang, F., & Lian, Y. (2007). Novel QRS detection by CWT for ECG sensor (pp. 211-214). In: Proc. IEEE Biomedical Circuits and Systems Conference 2007.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons