Introducción
La población humana ha crecido el doble a partir de 1960, demandando alimentos y servicios; este crecimiento se refleja en los incrementos de los inventarios de población animal. En términos de alimentación, la producción de carne, leche y huevo, incrementan en proporción a los inventarios de producción animal; se estima que para el año 2020 se debe generar un aproximado de 200 billones de litros de leche y 100 millones de kilogramos de carne para satisfacer la demanda1. De la misma forma que la producción de alimentos, la generación de residuos orgánicos va en aumento, siendo el sector agropecuario un importante contribuyente a la contaminación atmosférica.
En 2013, a nivel global se estimó que del total de gases de efecto invernadero inducidos por el humano, el 14.5 % (7.1 gigatoneladas de CO2-equivalente para 2005 y 10 Gt para el año 2010) está representado por la cadena de suministro ganadero. De los cuales el 41 % corresponde a la producción de carne de res, 20 % a la leche, 9 % a la producción de carne de cerdo, 8 % a la producción de carne de pollo y huevo, 6 % a la producción de leche y carne de pequeños rumiantes y el resto a otras especies de aves y rumiantes2.
En México, según el inventario nacional de emisiones de gases de efecto invernadero, en 2010 se estimó una emisión de 748.25 megatoneladas (Mt) de CO2-equivalente, de las cuales el 12.3 % (92.18 Mt) corresponde a las emisiones por la agricultura, contribuyendo la fermentación entérica y el manejo de estiércoles con la emisión de 3.74 Mt de CO2-equivalente2,3.
De tal forma, los residuos pecuarios orgánicos representan una creciente y constante fuente de contaminantes. El poder contaminante de dichos residuos (estiércoles o excretas) radica en la presencia de nutrientes no digeridos, ya que ninguna especie aprovecha el total de los nutrientes consumidos en la dieta4,5. Por lo anterior se pueden considerar las excretas, una fuente potencial de nutrientes, los cuales pueden ser aprovechados mediante diversos procesos.
La producción y calidad de las excretas está ligada a factores como: especie, fin zootécnico, etapa productiva, calidad de las dietas, digestibilidad, entre otros. De igual manera, la infraestructura de la unidad de producción, el manejo y los equipos disponibles para su recolección, son factores que están ligados a las características físicas y químicas de los residuos2,3.
La caracterización de los residuos orgánicos pecuarios es pieza clave para planificar su manejo, aprovechamiento y disposición final y así, mitigar las emisiones y su efecto contaminante.
De tal forma, el objetivo de este trabajo es presentar los procesos que pueden ser adoptados bajo un modelo integrado para el aprovechamiento de residuos pecuarios preservando y reciclando los nutrientes derivados de los sistemas de producción animal.
Modelos integrados para el manejo y aprovechamiento de residuos
Los modelos integrados para el manejo y aprovechamiento de residuos consisten en la integración de tecnologías que nos lleven a tal fin. Es requisito de estos modelos su adaptabilidad a los distintos sistemas de producción pecuaria (familiar, mediana escala, gran escala, intensivos, extensivos y mixtos) y la interacción con la agricultura. Su principal objetivo es la diversificación de la producción y de los ingresos, estableciendo procesos amigables con el ambiente para alcanzar la sostenibilidad. El reto más importante y promisorio de estos modelos es la articulación con las cadenas productivas y comerciales locales y nacionales. En este sentido, son muchos, pero aislados, los esfuerzos que se han realizado para abordar distintas problemáticas, siendo la solución un enfoque integral de las necesidades en el sector agropecuario en relación al manejo de residuos.
Desde hace tiempo, se vienen realizando trabajos para identificar, cuantificar y tratar los residuos orgánicos de las explotaciones pecuarias, conceptualizándolos como un desecho, con la finalidad, de establecer estrategias y políticas para mitigar el impacto que tienen sobre el ambiente6-12.
Sin embargo, para la implementación de procesos sostenibles y la consolidación de esquemas integrados que mitiguen el impacto negativo sobre el ambiente y que además, generen estabilidad y rentabilidad, es de vital importancia revalorizar los residuos como materia prima2,13,14 y como tal, es necesario determinar su disponibilidad, composición, características físicas y químicas15,16 e inocuidad17; elementos mínimos inexcusables para determinar el nivel de aprovechamiento en los diversos procesos a los cuales puede ser sometida.
Actualmente se ha dado importancia a tecnologías que priorizan la recuperación de los nutrientes contenidos en los residuos pecuarios (Nitrógeno y Fosforo, principalmente), especialmente de los cerdos, con alternativas como la generación de biomasa proteica para uso en la alimentación animal18, sin embargo, a pesar de ser una alternativa viable para mitigar el impacto ambiental que generan los residuos, es limitada y no considera aspectos de inocuidad y toxicología.
Por otro lado, existen alternativas viables para lograr el objetivo de mitigar el impacto ambiental y aprovechar los residuos; sin embargo, la falta de capacitación para diseñarlos y operarlos, aunado a manejos inadecuados, encamina o sugiere su inutilidad. Un ejemplo de lo anterior son los sistemas de digestión anaerobia (biodigestores), los cuales, cuando no cumplen con el volumen adecuado, un régimen de carga establecido y retenciones hidráulicas adecuadas a las características de los residuos, generan efluentes que no pueden ser dispuestos para su aprovechamiento en la agricultura, debido a la alta concentración de nutrientes presentes19.
De tal manera, es indispensable generar, validar y adaptar tecnologías de acuerdo a las necesidades de una amplia gama de esquemas de producción agropecuaria, pero también a las características de la materia prima que se desee procesar y al objetivo productivo por alcanzar, considerando que, en este sentido, se encuentra implícito el ahorro en el costo ambiental de la producción. Para cumplir con lo anterior, es necesario la generación de modelos integrados, en los cuales, pueden estar incluidos uno o más procesos (tecnologías para el manejo de residuales) coadyuvando para un fin común.
En el Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) se han diseñado y estudiado procesos para el acondicionamiento, manejo, aprovechamiento y revalorización de residuos orgánicos en el sector pecuario, entre los cuales se encuentran: ensilaje o fermentación de cerdaza para la alimentación animal20-22, composta y vermi-composta para la producción de abonos orgánicos23, sistemas de digestión anaerobia para la generación de energías renovables y el tratamiento de aguas residuales24. Estas tecnologías tienen la capacidad de: generar subproductos con valor agregado y acondicionar la materia prima para ser sometida a otro proceso del cual también se obtenga un subproducto o se prepare para un esquema de bio-remediación (Figura 1).
ensilado o fermentación de cerdaza
Desde hace tiempo, el uso de la cerdaza fresca o desecada, para la alimentación animal se ha venido dando, en cierta medida, debido a la falta de información sobre los riesgos y desventajas que representa, generando problemas de salud y probablemente exacerbando enfermedades; y aunque existen estudios en los cuales determinan que es factible su uso, solamente consideran aspectos productivos25-29 y no discurren aspectos concluyentes en relación a: salud animal, calidad de la canal, calidad y propiedades organolépticas de la leche, entre otros de importancia para el bienestar animal y la inocuidad; por otro lado, su inadecuado procesamiento genera un problema ambiental.
Actualmente, el uso de cerdaza desecada, sigue teniendo auge con inclusiones de hasta un 70 % en las dietas, con pérdidas de proteína cruda de hasta 12 %, respecto al contenido total de la excreta fresca30,31, lo que representa una limitante para el aprovechamiento de los nutrientes contenidos en la misma.
En función de las desventajas, riesgos y oportunidades que representa el uso de cerdaza para la alimentación animal, se ha desarrollado y perfeccionado un proceso para su acondicionamiento, denominado ensilaje de cerdaza o fermentación de cerdaza, el cual consiste en someter la excreta (proveniente de cerdos en etapas de destete-finalización) a un proceso de fermentación anaerobia20; el ensilado de cerdaza es el resultado final y puede ser utilizado para la alimentación de rumiantes22,31-34, cerdos35-38 e incluso, dadas las características de este ingrediente, en otras especies como: peces, aves y conejos.
El principal objetivo de dicho proceso, es disminuir el pH a niveles por debajo de 5, con el fin de eliminar microorganismos indicadores de contaminación fecal39, proceso mediante el cual, también son eliminados microrganismos patógenos, virus y parásitos17,40, siempre y cuando, el proceso se realice adecuadamente. El mismo principio de fermentación anaerobia, es utilizado para el procesamiento de los residuos de alimentos humanos y su utilización en la alimentación de cerdos41 confiriendo ventajas sobre las propiedades químicas, físicas y microbiológicas para evitar su putrefacción.
En este sentido, el ensilado de cerdaza también se ha utilizado con el objetivo de conferir inmunidad en cerdos y disminuir el microbismo en granjas porcícolas42, sin que esto represente un riesgo, como el concebido al utilizar estrategias de auto inmunización como las realizadas en presencia de brotes por diarrea epidémica porcina43 u otras enfermedades en México.
Es importante resaltar que el principal beneficio del ensilado de cerdaza, radica en la disminución de los costos de producción; trabajos recientes, sugieren una reducción en el costo de producción de hasta 7 % con inclusiones del 30 % en las etapas de crecimiento-desarrollo-finalización de cerdos21 y de hasta 60 % en la alimentación de rumiantes. Es trascendental considerar que el ensilado de cerdaza es un ingrediente de alta disponibilidad, para la formulación de dietas, por lo tanto, es indispensable conocer su composición química (la cual tiende a variar de acuerdo a la calidad de la materia prima utilizada) para formular en función de las necesidades nutricionales de los animales que se espere alimentar.
Cabe mencionar, que conforme se den investigaciones puntuales sobre los posibles usos y aplicaciones del ensilado de cerdaza, se obtendrá un aprovechamiento integral en beneficio de los distintos sistemas de producción pecuaria, sus productores y el ambiente.
Composta y vermi-composta
A diferencia del ensilaje de cerdaza, en donde solamente se aprovechan las excretas de cerdos en etapas de destete-finalización, el compostaje, es un proceso versátil con el cual es posible acondicionar una gran cantidad de residuos agropecuarios. Si bien, el compostaje no es una práctica nueva, la adecuación de la técnica y el aceleramiento del proceso, lo hace innovador. Aunque en general, el compostaje es considerado un proceso sencillo, la práctica sugiere que necesita de condiciones físicas, químicas y microbiológicas complejas23 y la falta de cuidado o consideraciones repercuten sobre la calidad del producto final (composta estabilizada). La composta, posee un importante contenido de materia orgánica y nutrientes que pueden ser aprovechados de diversas formas en la agricultura y en la preservación del suelo44,45.
Para que el proceso de compostaje se lleve a cabo eficientemente y la composta sea rica en nutrientes, es importante considerar la calidad y la composición de las materias primas, en este sentido las excretas de cerdas en reproducción y rumiantes en general aportan características ideales para mezclarse con una extensa gama de esquilmos agrícolas de alta relación carbono-nitrógeno que son de difícil composteo, para su transformación y aprovechamiento13.
Otra forma de utilizar y dar valor agregado a la composta, es a través de su aprovechamiento como insumo para la generación de vermi-composta mediante la lombricultura46. La lombricultura es considerada una biotecnología, en donde la lombriz funge como herramienta de trabajo para la transformación de residuos en productos orgánicos como la vermi-composta, la cual, contiene sustancias activas que actúan como reguladores de crecimiento en las plantas, tiene alto contenido de ácidos húmicos, y aumenta la capacidad de retención de humedad, lo que facilita la aireación y drenaje del suelo23, además, ostenta un alto contenido de potasio y fosforo46,47. También, la vermi-composta incrementa considerablemente la actividad microbial en el suelo y hay evidencia de que los reguladores en el crecimiento de las plantas como las citoquininas, auxinas, ácidos húmicos y microorganismos promueven el crecimiento de la planta independientemente de la suplementación de nutrientes48,49. Mediante la lombricultura, además de la vermi-composta, se obtienen otros sub-productos de alto valor económico, como lixiviados y biomasa de lombriz44,46.
Actualmente, se ha dado importancia a aspectos de eco-toxicología y seguridad del ambiente50, analizando el riesgo que conlleva el uso de compostas en la generación de resistencia antimicrobiana51, degradación de antibióticos52,53, biodisponibilidad de metales pesados50, emisión de gases54, persistencia de patógenos55, entre otros; sin embargo es importante considerar aspectos básicos, relacionados con la materia prima, a partir de la alimentación animal, manejo, sanidad y bioseguridad, los cuales son garantía de alimentos y residuos inocuos y de calidad.
Sistemas de digestión anaerobia
Los sistemas de digestión anaerobia son una alternativa viable para el pre-tratamiento de los residuos agropecuarios56. Su principal función consiste en degradar la materia orgánica y transformarla en metano; también se le ha dado uso a los efluentes como fertilizantes para terrenos de cultivo57,58. Lo anterior dependerá de la eficiencia del reactor (biodigestor).
Existen distintos tipos de biodigestores, entre los considerados de alta carga se encuentran: el reactor anaerobio discontinuo secuencial (ASBR, por sus siglas en inglés), y el reactor anaerobio de manto de lodos de flujo ascendente (UASB, por sus siglas en inglés), este tipo de biodigestores ofrece la ventaja de disminuir las cargas de sólidos de las aguas residuales en un tiempo relativamente corto, sin embargo, la inversión requerida es alta59.
En México, los biodigestores más utilizados para tratamiento de los efluentes de unidades de producción pecuaria son los de laguna cubierta60, de los cuales existen diversas versiones desarrolladas para facilitar su manejo y vida útil, mediante la implementación de sistemas de extracción de lodos y agitación61.
El manejo común y generalizado de este tipo de biodigestores, consiste en canalizar el 100 % de los residuos sólidos generados en la unidad de producción mediante altos volúmenes de agua, en forma de “acarreo”. Este tipo de prácticas se da, incluso, en zonas en donde existe una marcada escasez de agua, lo que representa un contrasentido para el fin de mitigar el impacto ambiental62. En consecuencia, se requieren biodigestores de gran tamaño que por ende requieren de gran espacio e inversión. Este tipo de biodigestores han demostrado, en algunos casos, eficiencias de un 78 % hasta el 90 % en la remoción de la demanda química de oxigeno63 y en la reducción total de huevos de helmintos60) .
Otro tipo de biodigestores muy populares en México son los tubulares de polietileno (tipo Taiwán), los cuales, han sido eficientes en sistemas de traspatio para la generación y autoconsumo del biogás generado, sin embargo, este tipo de biodigestores bajo esquemas de producción pecuaria suelen quedar rebasados por la producción de residuos, sin que su adopción represente un beneficio. Además, en estudios recientes se ha demostrado que este tipo de biodigestores bajo flujo continuo en granjas porcícolas no son capaces de eliminar ciertos patógenos como: L. intracellularis, S. aureus, E. coli, Salmonella spp, mesófilos aerobios, Clostridium sulfito reductores, coliformes totales y coccidias64,65, lo que hace que represente un riesgo sanitario el uso de sus efluentes como biol o fertilizante.
Por otro lado, diversos sectores (incluyendo el pecuario), han utilizado los biodigestores como generadores de energías renovables y algunas instituciones de investigación le han apostado al desarrollo e industrialización de esta tecnología. La utilización de diversas materias primas66,67, la conservación de materias primas para su utilización en la producción de biogás68, el desarrollo de sistemas de purificación, compresión y uso en motores de encendido por chispa69, son algunos de los tópicos de investigación.
Sin embargo, en el sector pecuario el principal fin de los biodigestores es la producción de energía eléctrica para auto-abastecer sus procesos productivos; en este sentido la producción porcícola es la más promisoria para tal fin, dadas las características de los residuos y sus particularidades en el sistema de producción. Esto da al sector una oportunidad competitiva en términos económicos, sociales y ambientales para la generación eléctrica70,71.
En los últimos años, la adopción de sistemas de biodigestión se ha vuelto popular entre los pequeños y medianos productores, los principales motivos corresponden a: la novedosa idea de generar biogás o energía, presión de las autoridades por establecer un proceso para el tratamiento de residuos, introducción al mercado de diseños económicos y a facilidades de financiamiento.
Sin embargo, antes de implementar un biodigestor (sin importar la escala de la unidad de producción), es necesario conocer la cantidad y características de los residuos generados para poder elaborar una estrategia de integración tecnológica y direccionar los residuos a cada uno de los procesos como mejor convenga. Si el biodigestor queda dentro de los procesos considerados, es de utilidad determinar su fin y su nivel de aprovechamiento, es decir, pretratamiento de aguas residuales, generación de energía (calorífica o eléctrica) o ambas. De esta manera se puede establecer su diseño-operación y se puede medir y maximizar su desempeño.
Bio-remediación
La bio-remediación es una rama de la bio-tecnología que utiliza el potencial metabólico de los microorganismos para transformar los contaminantes orgánicos en compuestos sin efectos o reducidos en sus efectos al mínimo y, por lo tanto, se puede utilizar para limpiar espacios o aguas contaminadas con perspectivas muy amplias72,73.
Sin embargo, existen algunas consideraciones relacionadas con la bio-remediación y que es importante mencionar; en comparación con los métodos químicos que se fundamentan en transferir la contaminación entre los tres estados físicos que presenta (estado gaseoso, líquido y sólido), en la bio-remediación se transfiere poca contaminación de un medio a otro debido a que es tecnología poco intrusiva y generalmente no requiere componentes estructurales o mecánicos dignos de destacar, además, es económicamente rentable, debido a que es un proceso natural con aceptación en contexto más allá de las implicaciones técnicas74.
La bio-remediación presenta algunos inconvenientes y limitaciones. Por ejemplo, la bio-degradación incompleta puede generar intermediarios metabólicos inaceptables, con un poder contaminante similar o incluso superior al producto de partida. Por otra parte, algunos compuestos, son resistentes o inhiben la bio-remediación. El tiempo requerido para el tratamiento adecuado puede ser difícil de predecir, además, el seguimiento, control de la velocidad y extensión del proceso es laborioso.
La eficiencia de esta técnica depende de varios factores como:
a) Propiedades del agente o agentes contaminantes (bio-degradabilidad).
b) Presencia de comunidades microbianas, con capacidad enzimática para metabolizar el o los compuestos. Los microorganismos pueden ser autóctonos (bio-remediación intrínseca o atenuación)75, añadidos al sistema para mejorar la degradación (bio-aumentación) o por suministro de condiciones óptimas que estimulan la actividad microbiana (bio-estimulación), suministro de oxígeno, nutrientes o modificaciones de pH, entre otros.
c) Disponibilidad del contaminante. Es un factor crítico más importante que la propia presencia de comunidades microbianas. Para que la degradación de un contaminante pueda producirse, es necesario que interaccionen las células microbianas directamente con el contaminante, preferentemente en un medio acuoso76.
Bio-remediación para descontaminación en residuos pecuarios
La selección de procesos y el diseño de la estrategia de bio-remediación del agua y suelos contaminados con compuestos orgánicos como los residuos pecuarios, se inicia a través de establecer claramente las características del material a bio-remediar (efluentes de unidades de producción pecuaria o suelos contaminados), los microorganismos a utilizar, tipos de reactor (p. ej. digestores anaeróbicos o sistemas lagunares), pre-tratamiento del material contaminante (excretas principalmente, que se pueden pre-tratar o acondicionar con las alternativas antes citadas) y las condiciones de operación del proceso (dadas por el sistema de producción y el modelo integrado adoptado). Es necesario considerar también las evaluaciones por parte del laboratorio con objeto de explorar alternativas de operación, y cuantificar velocidades de degradación en función de parámetros críticos de operación como pH, oxígeno y potencial de óxido-reducción, con la finalidad de determinar la eficiencia y eficacia del proceso de bio-remediación. A pequeña escala deben observarse los fenómenos fisicoquímicos, así como, determinar condiciones específicas para mejorar el proceso. Estos aspectos proporcionan una base importante para criterios y métodos de escalamiento de procesos (piloto, semi-comercial y comercial), así como los requerimientos de su instrumentación y control77,78.
Características de distribución de los contaminantes
Antes de seleccionar cualquier alternativa de proceso de bio-remediación, debe caracterizarse muy bien el sitio o material a limpiar, hacer un estudio de pre-factibilidad técnica, económica y establecer claramente los aspectos físicos, químicos y microbiológicos. Para establecer con precisión los detalles de velocidad de limpieza, así como los factores que influyen en ello, para luego dar paso a la obtención de datos de cinética y equilibrio en mecanismos de reacción físicos, químicos y biológicos importantes para el diseño del proceso. Tener conocimiento del tipo de contaminante, su concentración, el grado de la problemática y la bio-disponibilidad sobre todo en procesos de lixiviación79.
Determinación de los microorganismos a utilizar
Las pruebas de degradación con distintos microorganismos son indispensables para determinar cual deberá ser utilizado, para esto se requiere información sobre el medio sobre el cual se dará el proceso (agua, suelo), contenido de materia orgánica, así como el perfil de distribución del tamaño de partícula, principalmente77. Los análisis microbiológicos incluyen parámetros como demanda bioquímica de oxígeno, determinación de cuenta viable, estudios de degradación in vitro previo al escalamiento del proceso73; y desde el punto de vista bioquímico, las rutas metabólicas involucradas durante la bio-degradación de los contaminantes y los posibles efectos benéficos o perjudiciales hacia el mismo proceso de degradación80. Es importante considerar las condiciones de temperatura, oxígeno, abastecimiento de nutrientes y la disponibilidad del contaminante, ya que pueden limitar las velocidades de degradación, principalmente al principio de los procesos en donde aún los factores limitantes no están bien definidos.
La experiencia dice que los mejores microorganismos para un proceso de bio-remediación están, precisamente, en el sitio a bio-remediar, es decir, deberá usarse, de preferencia, un microorganismo nativo81, sin embargo, es importante determinar la eficiencia y la velocidad de bio-degradación debido a que la concentración celular o de biomasa de microorganismos nativos, por lo general, es baja, o bien, porque no existen microorganismos capaces de bio-degradar el material contaminante76, dando cabida a emplear un microorganismo de colección82,83.
La bio-remediación de aguas residuales y suelos agropecuarios, con soporte microbiológico, bioquímico y de ingeniería, es una de las estrategias más promisorias para descontaminar estos recursos y es actualmente una alternativa más para los sistemas integrados de manejo y aprovechamiento de residuos y la incubación de negocios a través del uso apropiado de los resultados positivos que se generen de proyectos de investigación con aplicación tecnológica a costos reducidos y con beneficios tangibles hacia la población y el ambiente.
Conclusión
La integración de tecnologías para el manejo y aprovechamiento de los residuos orgánicos pecuarios y la bio-rremediación de suelos y agua, es factible. Este tipo de modelos deberá articularse con los mercados locales, nacionales e internacionales y con las políticas ambientales para satisfacer la demanda de alimentos en cantidad y calidad, con la premisa de aprovechar y conservar los recursos naturales al máximo. Su adopción representa una oportunidad para obtener beneficios económicos, ambientales, sociales y tecnológicos.