SciELO - Scientific Electronic Library Online

 
vol.4 número17EdiorialModelización del crecimiento de Pinus teocote Schltdl. et Cham. en el noreste de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.4 no.17 México may./jun. 2013

 

Artículo

 

Vacíos y omisiones en conservación de las ecorregiones de montaña en México

 

Gaps and omissions in conservation of mountain ecoregions in Mexico

 

César Martín Cantú Ayala1, Josué Raymundo Estrada Arellano1, María Magdalena Salinas Rodríguez1, José Guadalupe Marmolejo Moncivais1, Eduardo Andrés Estrada Castillón1

 

1 Facultad de Ciencias Forestales. Universidad Autónoma de Nuevo León. Correo-e: cantu.ayala.cesar@gmail.com

 

Fecha de recepción: 9 de febrero de 2013.
Fecha de aceptación: 10 de abril de 2013.

 

RESUMEN

Las montañas son ecosistemas que albergan gran biodiversidad y representan una fuente importante de servicios ambientales para la sociedad. En el presente estudio se determinó la representatividad en áreas naturales protegidas, y su grado de cobertura de vegetación, así como los usos del suelo para las montañas clase 5 (clasificación de Kapos) dentro de las ecorregiones nivel IV de México, para lo cual se aplicó la metodología análisis de vacíos y omisiones de conservación (Gap). En 45 ecorregiones se registraron 20 109 804 ha montañosas, que comprenden las siete categorías del nivel I (Semiáridas). En las ecorregiones Sierras Templadas 30 % de su superficie son montañas, que equivalen a 2.1% del territorio de las Grandes Planicies; mientras que a las áreas naturales protegidas les corresponde 14.4%; en cambio, en el mundo el porcentaje es de 32%. La vegetación natural de las montañas contribuye con 11.9% al total del país, con 11.5% de la vegetación primaria, y para las zonas con usos antrópicos con 2.9%, muy por debajo del 13.3% registrado a nivel mundial. Las ecorregiones de la Sierra Madre del Sur tienen la segunda mayor cobertura nacional de montañas con 20.5%, después de las existentes en la Sierra Madre Occidental (25.3%). Situación alarmante, dada la elevada tasa de deforestación existente en el sureste, donde solo 21.4% de su territorio tiene vegetación primaria, respecto al 49.3% registrado en el país. Es necesario emprender acciones para proteger los ecosistemas de montaña en México, principalmente, en la región sureste.

Palabras clave: Análisis de vacíos y omisiones, áreas naturales protegidas, ecorregiones, montañas, uso del suelo, vegetación primaria.

 

ABSTRACT

Mountains are ecosystems that harbor great biodiversity and represent important source of environmental services to society. In the present study it was determined for the class 5 mountains (Kapos classification) of Mexico in level IV ecoregions, their level of representation in protected areas and their vegetation and land use coverage, following the methodology developed by the gap analysis program (GAP) of the USA. In 45 of the 99 ecoregions of Mexico exist mountains which cover 20,109,804 hectares, representing 10.3% of the country. The mountains are present in the seven categories of level I ecoregions of Mexico: Great Plains, North American Deserts, California Mediterranean, Southern Semi-Arid, Temperate Sierras, Tropical Dry Forests and Tropical Humid Forests. The 30.1% of Temperate Sierras ecoregions surface are mountains, while they cover only 2.1% of the Great Plains ecoregion territory. In Mexico, only 14.4% of protected areas surface corresponds tomountains, while worldwide, 32% of protected areas are located in these ecosystems. The natural vegetation of mountains represents11.9% of this type in Mexico and 11.5% of primary vegetation, while areas with anthropic uses represent only 2.9%, well below the 13.3% recorded worldwide. Ecoregions of the Sierra Madre del Sur are the second largest covered mountains of Mexico with 20.5%, after those in the Sierra Madre Occidental (25.3%). This situation is alarming, given the high rate of deforestation recorded in southeastern Mexico, where only 21.4% of its territory has primary vegetation, compared to 49.3% for Mexico. Actions are needed to adequately protect mountain ecosystems in Mexico, given special attention to southeast region of the country.

Key words: Gap Analysis, mountains, protected areas, ecoregions, soil use, primary vegetation.

 

INTRODUCCIÓN

Las montañas comprenden 40 millones de kilómetros cuadrados, es decir, 27% de la superficie continental del planeta, en donde vive 22% de la población total; estos ecosistemas proveen el agua fresca para más de la mitad de la humanidad (Kapos et al. 2000). No obstante, que se carece de su inventario biológico se tiene el registro de al menos, 10 mil especies de plantas endémicas, para los cinturones alpinos, y que albergan 4% de la flora mundial; por lo que la riqueza vegetal de estas regiones es mayor a la que se distribuye en superficies equivalentes de regiones bajas. Para el caso de la fauna, tampoco existen estimaciones disponibles, aunque en regiones de climas templados a fríos el número de taxa animales es 10 veces superior al de las plantas. La rica y compleja biodiversidad de las montañas es el resultado de la compresión de zonas climáticas en distancias cortas (Spehn et al., 2010). Por otra parte, los ecosistemas de montaña son de gran importancia para la sociedad, ya que de su integridad ecológica depende la provisión de múltiples servicios ambientales entre los que destaca la producción de agua limpia, por lo que son llamadas "torres de agua". Las montañas descargan aproximadamente el doble de este líquido que podría esperarse, a partir de la superficie territorial que cubren (Viviroli et al., 2003; Koerner y Ohsawa, 2005).

Los ecosistemas de montaña son de los más extensos del país. Desde épocas prehispánicas, por cuestiones climáticas e hidrológicas, las estribaciones boscosas han sido las preferidas para el establecimiento de asentamientos humanos, muchos de los cuales se han sobrepoblado, y en consecuencia concentran comunidades de alto marginación social (Sánchez, 2003; Sánchez-Cordero et al., 2001). A pesar de que aproximadamente la mitad del territorio nacional está ubicada por debajo de los 1 000 msnm, 69% de sus habitantes vive en comunidades que se localizan por encima de esta altitud (INEGI, 2005), tan solo las localidades del Eje Neovolocánico Transversal albergan casi 30% de la población total del país (Conabio-INEGI, 2010). Cantú et al. (2004) citan que 16 504 ha ubicados por arriba de la cota de los 4 000 msnm que conforman las cúspides de las montañas de México, se sitúan dentro de áreas naturales protegidas (ANP); sin embargo, no se cuenta con una evaluación sobre el grado de conservación de todos los ecosistemas de montaña del país, pese a que están sometidos a importantes amenazas: la deforestación, incendios forestales y el cambio climático, entre otras (Wallace et al., 2012; Valero, 2001a, 2001b).

La compleja fisiografía de México es el resultado de la interacción de cinco placas tectónicas, cuya acción conjunta ha originado cordilleras por plegamiento (Sierra Madre Oriental, Sierra Madre del Sur), o por vulcanismo (Sierra Madre Occidental, Eje Neovolocánico Transversal); las mesetas (Altiplano Central) y depresiones (Balsas y Chiapas) quedaron confinadas entre las principales cordilleras (Espinosa y Ocegueda et al., 2008). Las montañas son elementos conspicuos del paisaje, pero su definición no es sencilla. Kapos et al. (2000) propusieron una, aceptada globalmente, con base en la combinación de las variables altitud y pendiente, en la que incluyeron siete clases o categorías. En el 2004, se implementó en México el Programa de Trabajo sobre Diversidad Biológica de Montañas, como parte del Acuerdo de las Partes del Convenio para la Diversidad Biológica, su objetivo general era alcanzar una reducción importante en la pérdida de la biodiversidad; con ese propósito se seleccionaron las 60 montañas más relevantes del país, que cubren una superficie de 7.4 millones de hectáreas; sin embargo han sido pocos los trabajos realizados sobre este tema (Pompa, 2008).

El análisis ecorregional se ha utilizado para caracterizar los ecosistemas terrestres (Koleff et al., 2009; Koleff y Urquiza-Haas, 2011) y para orientar las acciones de conservación o, de acuerdo con el estado de conservación, las amenazas a la biodiversidad y el grado de protección que han alcanzado (CCA 1997; Olson y Dinerstein 1998; Olson et al. 2001a; Loucks et al., 2003). Las ecorregiones son uno de los niveles de organización de la diversidad biológica (Challenger y Soberón 2008); se pueden definir como áreas geográficamente distintivas que contienen un conjunto de comunidades naturales que comparten la gran mayoría de sus especies, condiciones ambientales y dinámicas ecológicas (Dinerstein et al. 1995; Olson et al. 2001b; Ricketts et al. 1999). Para Norteamérica se cuenta con una clasificación ecorregional común (niveles I a III, anidados) (CCA 1997; Challenger y Soberón 2008) y para México se reconocen 99 ecorregiones de nivel IV (INEGI-Conabio-INE, 2007).

Koleff y Urquiza-Haas (2011) caracterizaron las siete ecorregiones de nivel 1 del país, las cuales presentan intervalos altitudinales de, al menos, 2 400 m, lo que indica la marcada heterogeneidad del territorio y explica su gran biodiversidad. Con base en lo anterior, el objetivo del presente estudio fue determinar los sitios de montaña clase 5 (intervalo de altitud superior a 1 000 m y pendiente igual o mayor a 5 grados), a partir del criterio de Kapos et al. (2000) dentro de las ecorregiones nivel IV de México, a fin de conocer su representatividad en las ANP, así como el grado de su cobertura vegetal, y sus tipos de uso del suelo.

 

MATERIALES Y MÉTODOS

El estudio se realizó con la metodología desarrollada por el programa de análisis de vacíos y omisiones de conservación (Gap) de los Estados Unidos de América (Scott et al., 1993, Cantú et al., 2003, 2004, 2011a), que consiste en determinar en qué proporción de superficie las Áreas Naturales Protegidas (ANP) representan la diversidad biológica, en este caso de los ecosistemas de montaña y sus tipos de vegetación natural y primaria. Para ello se utilizaron las ANP de jurisdicción federal, estatal y municipal (Bezaury-Creel et al., 2007). El mapa digital de uso del suelo y vegetación Serie IV (INEGI, 2009), el mapa de ecorregiones nivel IV (INEGI-Conabio- INE, 2007), el mapa de geoformas (INEGI, 2011) y el modelo digital de elevación en formato reticulado de 1 km2 de resolución (INEGI, 1998). Todas las cubiertas digitales fueron combinadas y analizadas con los programas ArcGis®; versión 10.1 y ArcView®; versión 3.2, y se utilizaron mapas vectoriales y raster con la proyección Cónica Conforme de Lambert y el Datum NAD27.

Para determinar los ecosistemas de montaña de México se seleccionaron 61 de las 99 ecorregiones nivel IV, cuyo gradiente altitudinal era igual o mayor a 1 000 m, las cuales representan 83% del territorio nacional. Posteriormente, se sobrepusieron con la categoría de Sierras del mapa de Sistema de Topoformas (INEGI, 2011), para un total de 45 ecorregiones que sumaron 96 950 363 hectáreas; es decir, 50% de la superficie del país. Los sitios de montaña cubren un total de 20 109 804 hectáreas, que representa 10.3% del territorio nacional (cuadros 1 y 2, Figura 1).

Por último, de estas 45 ecorregiones se obtuvieron, con base en el mapa de pendientes generado a partir del modelo digital de elevación, los sitios cuya pendiente fue igual o superior a cinco grados que corresponde a la categoría 5 de la clasificación de montañas de Kapos et al. (2000); las ecorregiones Sierras Templadas tienen el mayor intervalo altitudinal y pendiente, lo que contrasta con las ecorregiones de las Grandes Planicies (Cuadro 2, Figura 1).

El criterio para definir el nivel de representatividad aceptable en ANP para el presente estudio se basó en la media protegida nacional de 12% (Koleff et al., 2009); por lo anterior, se consideró que cualquier ecosistema de montaña o tipo de vegetación no incluido dentro de las ANP es un vacío de conservación, mientras que los representados en ellas por debajo de 12% (media mundial y nacional protegida) es una omisión de conservación (Cantú et al., 2011).

Cabe destacar que los ecosistemas de montaña existen en todos los estados del país, excepto en Campeche, Yucatán y Quintana Roo, pero están presentes en las siete categorías de ecorregiones nivel I reconocidas para México: Grandes Planicies, Desiertos de América del Norte, California Mediterránea, Elevaciones Semiáridas Meridionales, Sierras Templadas, Selvas Cálido-Secas y Selvas Cálido-Húmedas (Figura 1)

 

RESULTADOS Y DISCUSIÓN

De las 99 ecorregiones terrestres de México, 45 cuentan con montañas clase 5, con una extensión que equivale a 49.9% del total en el país, para 20 109 804 hectáreas que equivalen a 10.3% del territorio nacional. Los ecosistemas de montaña se localizan en los siete grandes sistemas ecológicos o ecorregiones de nivel I; de la superficie de las ecorregiones Sierras Templadas, 30 % son montañas; mientras que solo 2.1% de las Grandes Planicies tienen este tipo de ecosistemas orográficos (cuadros 1 y 2; figuras 1 y 2).

En 17 de las 21ecorregiones nivel IV Sierras Templadas, existen montañas y cuentan con la mayor cobertura (64.7%); en cambio, únicamente una de las cuatro ecorregiones de las Grandes Planicies y tres de las cinco que corresponden a la California Mediterránea poseen montañas, que a su vez constituyen la menor superficie, con 1.1% de cobertura, en cada caso; sin embargo, California Mediterránea es un sistema de ecorregiones topográficamente más complejo, ya que 8.9% de su área es montañosa, algo similar ocurre con las Selvas Cálido Secas (Cuadro 1; figuras 2 y 3).

Las ecorregiones de nivel I, Desiertos de América del Norte, poseen la mayor cobertura en ANP de México, seguidas de las correspondientes a Selvas Cálido-Húmedas y Sierras Templadas. No obstante, al considerar exclusivamente la superficie de montañas, las ecorregiones de Sierras Templadas son las que abarcan la superficie más grande de los ecosistemas orográficos (30.1%), pero solo 15.6% de su extensión está dentro de ANP, y son superadas por las ecorregiones de Desiertos de América del Norte, Grandes Planicies y Selvas Cálido-Húmedas (Cuadro 3; Figura 4). Esto es importante desde el punto de vista de la conservación de la biodiversidad y la protección de las cuencas hidrológicas, ya que los ecosistemas de montaña contienen más diversidad de ecosistemas y especies por unidad de superficie, en relación con las zonas planas (Koerner y Ohsawa, 2005; Spehn et al., 2010), además de aportar mayor cantidad de agua por unidad de superficie, respecto a los valles (Kapos et al., 2000).

De las 45 ecorregiones con montañas (96 950 363 hectáreas), la de la Sierra Madre Occidental es la de mayor cobertura con 18.1% del país, seguida de la Sierra Madre del Sur con 9.6%, el Eje Neovolcánico con 7.2%, y la Sierra Madre Oriental con 5.4% (Cuadro 4; Figura 2). Si se considera la superficie relativa con montañas destacan las cubiertas por Bosques Mesófilos de Montaña de la Sierras Madre del Sur, Sierra Madre Oriental y los Altos de Chiapas, las cuales tienen, a su vez, las menores coberturas en ANP, y corresponden a las omisiones de conservación. Esto significa que solo las ecorregiones de montaña del Eje Neovolcánico Transversal, Sierra Madre Occidental, Sierra Madre Oriental con excepción de la ecorregión 13.3.1.2: Sierra con Bosque Mesófilo de Montaña de la Sierra Madre Oriental y parte de los Altos de Chiapas están representadas por encima de la media nacional protegida (12%) (Cuadro 4; Figura 4). Aunque, a nivel mundial 32% de la superficie incluida en áreas protegidas se ubica en montañas (UNEP-WCMC, 2002), en México solamente 14.4% de la superficie en ANP son montañas.

Esta situación resulta alarmante, dada la elevada tasa de deforestación existente en el sureste de México (Kolb, 2013) donde 21.4% del territorio de los estados de Campeche Yucatán, Quintana Roo, Chiapas, Tabasco, Oaxaca y Guerrero cuenta con vegetación primaria, en comparación con 49.3% que hay en la república mexicana (Cantú et al., 2011).

La riqueza de especies tiene una tendencia general a incrementarse hacia el sur del país y alcanza su valor máximo en el centro-noreste de Oaxaca, en el que convergen la Sierra Madre del Sur, el Eje Neovolcánico, la Sierra Madre Oriental, la Sierra del Norte de Oaxaca y el Valle de Tehuacán-Cuicatlán (Villaseñor et al., 2005). Allí se observa la mayor heterogeneidad de hábitat y la historia geológica y paleoclimática más compleja. En cambio, los endemismos son más frecuentes tanto en las montañas del sur de México, como en las áreas tropicales semiáridas y subhúmedas (Rzedowski, 1991; Llorente-Bousquets y Luis-Martínez, 1993). En las ecorregiones de la Sierra Madre del Sur se presenta la segunda mayor cobertura de montañas con 20.5%, después de las existentes en la Sierra Madre Occidental, que constituyen 25.3% de la superficie con montañas del país (Cuadro 4). En el sureste se concentra la biodiversidad más alta, con seis ecorregiones de la Sierra Madre del Sur y cuatro de los Altos de Chiapas en una superficie relativamente pequeña, lo que determina la heterogeneidad de ambientes, ya que el gradiente altitud-temperatura en las montañas es entre 600 y 1 000 veces mayor en comparación con el de los gradientes latitudinales (Koerner y Ohsawa, 2005).

 

Vegetación y uso del suelo

La capa de vegetación y uso del suelo (INEGI, 2009) indica que en México hay 51 tipos de vegetación que equivalen a 137 856 247 ha; es decir, 71% del territorio nacional; la primaria cubre 49%, seguida de los usos antrópicos con 29%; esta última cifra corresponde con la media mundial de 30% (MEA, 2005). La vegetación natural cubre 16 396 163 hectáreas en las montañas; esto es 11.9% de la existente en el país, mientras que la vegetación primaria representa 11.5% del total. Sobresale que los usos antrópicos se registran en 2.9% de las montañas, muy por debajo del valor que citan Kapos et al. (2000) en ese tipo de ecosistemas en el mundo (13.3%), lo que se puede explicar por la dificultad que representa la pendiente pronunciada para la realización de actividades productivas, excepto la actividad ganadera en agostaderos, por lo que la cubierta de vegetación secundaria constituye casi 13% del total nacional (Cuadro 5).

La vegetación natural incluye seis tipos (75.3%): Bosque de Encinos, Selva Baja Caducifolia, Bosque de Pino-Encino, Bosque de Pino, Bosque de Encino-Pino y Bosque Mesófilo de Montaña, los cuales están representados con valores de 16.2, 12.8, 14.0, 13.4, 16.1 y 17.2 % de su cobertura en ANP, respectivamente.

En cuanto a la vegetación primaria, en las montañas se distribuyen 43 de los 51 tipos identificados para México; los faltantes son Selva Mediana Perennifolia, Matorral de Coníferas, Selva Baja Perennifolia, Vegetación de Petén, Vegetación de Dunas Costeras, Vegetación Halófila-Hidrófila, Selva Baja Espinosa Subperennifolia y Matorral Sarco-crasicaule de Neblina; que equivalen a 1.7% de las 95 129 711 hectáreas de vegetación primaria del país (cuadros 5 y 6).

De las 20 109 804 hectáreas del territorio de montañas, 54.2% está cubierto con vegetación primaria, por encima de la media nacional (49%) (Cuadro 5), 80% de la vegetación primaria de las montañas corresponde a siete tipos de vegetación: Bosque de Encino, Bosque de Pino-Encino, Selva Baja Caducifolia, Bosque de Pino, Matorral Desértico Rosetófilo, Bosque de Encino-Pino, Bosque Mesófilo de Montaña (Cuadro 6; Figura 5).

Los seis tipos de vegetación de zonas de montaña que no están representados en las ANP suman 103 328 hectáreas, lo que significa 0.5% de la superficie montañosa del país. Mientras que nueve tipos de vegetación, entre los que está el Bosque de Pino con una superficie total de 1 599 186 hectáreas son omisiones de conservación, pues su presencia en ANP está por debajo de la media nacional protegida (12%). Finalmente, los 29 tipos de vegetación primaria restantes, cuya cobertura es 45.8% de las zonas de montaña tienen una distribución superior a la media nacional protegida en ANP (Cuadro 6, Figura 5).

Las montañas son cruciales para la humanidad, ya que proporcionan entre 60 y 80% de los recursos mundiales de agua dulce para el consumo doméstico, agrícola e industrial; además son un motor fundamental de la seguridad alimentaria y la energía limpia. También proporcionan importantes minerales y los recursos genéticos de los principales cultivos alimentarios y, de hecho, la agricultura de montaña es intrínsecamente sostenible debido a su carácter de pequeña escala y baja huella de carbono. Un tercio de todas las ANP se ubican en las cuencas montañosas y son una fuente segura de agua para muchas de las grandes ciudades del mundo. Debido a que las montañas se localizan entre las regiones más sensibles al cambio climático actúan como sistemas de alerta temprana (Kohleret al., 2012).

La Organización para la Alimentación y la Agricultura de las Naciones Unidas (FAO, 2002) registra que 40% de los 720 millones de personas que viven en las montañas son vulnerables a la inseguridad alimentaria, de los cuales la mitad padece hambre crónica. Las necesidades calóricas son mayores en las zonas altas, en las que las estaciones de crecimiento son más cortas. Tampoco puede la mayoría de sus 250 millones de habitantes emigrar de las montañas hacia las tierras bajas debido a que por su sobrepoblación, estas no pueden absorberlos (Kohler et al., 2012). La marginación social es un problema que en México se acentúa en los estados del sureste, lo que genera una fuerte presión sobre los ecosistemas naturales que se traduce en elevadas tasas de deforestación (Kolb 2013). Las zonas de montaña resultan ecosistemas muy sensibles dado el patrón de lluvias torrenciales que presentan, que aunado a la pronunciada pendiente de estos ecosistemas genera severos problemas de erosión y pérdida de la biodiversidad.

 

CONCLUSIONES

El presente análisis de vacíos y omisiones en conservación permite visualizar cuáles son las ecorregiones terrestres que tienen una alta importancia en la representación de las montañas mexicanas, que en conjunto abarcan la mitad del territorio nacional (49%). La Sierra Madre Occidental es la de mayor cobertura (18%) seguida de la Sierra Madre del Sur (9.6%), el Eje Neovolcánico (7.2%) y la Sierra Madre Oriental con (5.4%).

Las Sierras Templadas son la ecorregión mejor representada dentro de las montañas con (30.1%). Sin embargo, los ecosistemas de montaña no lo están en el sistema actual de áreas naturales, pues solo 15.6% de su extensión queda dentro de las áreas protegidas, de ellas las presentes en la Sierra Madre Occidental son las más continuas y extensas, aunque poco numerosas, en contraste con las del Eje Neovolcánico Transversal que a pesar de ser muchas están muy fragmentadas.

La Sierra Madre del Sur es la más biodiversa y la segunda en extensión (9.6%), pero es la que menor grado de vegetación primaria presenta, y la que más severamente ha sido afectada por las actividades antropogénicas.

Asimismo, este estudio ha facilitado la identificación de áreas prioritarias para la conservación que se ubican fuera de las áreas protegidas, pero que poseen amplias combinaciones de vegetación primaria como el caso de la Sierra Madre Oriental.

Por último, cabe señalar que los ecosistemas de montaña son cruciales para el mantenimiento de los servicios ambientales, la protección de la biodiversidad, la seguridad alimentaria y los procesos ecológicos de los cuales dependemos todos, no solo quienes habitan en estos ecosistemas.

 

REFERENCIAS

Bezaury-Creel, J. E., J. F. Torres y N. Moreno. 2007. Base de datos geográfica de áreas naturales protegidas estatales del Distrito Federal y municipales de México para el análisis de vacíos y omisiones en conservación. 1 capa ArcInfo + 1 archivo de metadatos. TNC-Pronatura-Conabio-Conanp, México.         [ Links ]

Cantú, C., R. G. Wright, J. M. Scott y E. Strand. 2003. Conservation assessment of current and proposed reserves of Tamaulipas state, Mexico. Natural Areas Journal 23: 220-228.         [ Links ]

Cantú, C., R. G. Wright, J. M. Scott and E. Strand. 2004. Assessment of current and proposed nature reserves of Mexico based on their capacity to protect geophysical features and biodiversity. Biological Conservation 115: 411-417.         [ Links ]

Cantú, C., F. N. Gonzalez, P. Koleff, J. I. Uvalle, J.G. Marmolejo et al. 2011. El papel de las Unidades de Manejo Ambiental en la conservacion de los tipos de vegetacion de Coahuila. Revista Mexicanade Ciencias Forestales 2(6) 113-124.         [ Links ]

Cantú, C., J. Marmolejo, J. Uvalle, A. Moreno y F. González. 2011. Diseño de Corredores en el Estado de Guerrero, México. Reporte Técnico para la Comisión para el Conocimiento y Uso de la Biodiversidad. México D.F. México. 61 pp.         [ Links ]

Comisión para la Cooperación Ambiental (CCA). 1997. Regiones Ecológicas de América del Norte: hacia una perspectiva común. Comisión para la Cooperación Ambiental. http://www.cec.org.         [ Links ]

Challenger, A., Soberón, J. 2008. Los ecosistemas terrestres. En: Sarukhán, J. (coord.). Capital natural de México, vol. I: Conocimiento actual de la biodiversidad. Conabio. México, D.F. México. pp.87-108.         [ Links ]

Comisión para la Cooperación Ambiental (CCA). 1997. Regiones Ecológicas de América del Norte: hacia una perspectiva común. Comisión para la Cooperación Ambiental. http://www.cec.org.         [ Links ]

Conabio-Inegi. 2010. Datos vectoriales de Localidades de la República Mexicana. Recuperado el día 24 de Febrero del 2013, de http://www.conabio.gob.mx/informacion/gis/        [ Links ]

Dinerstein, E., D.M. Olson, D.J. Graham, A. Webster, S. Primm, M. Bookbinder, M. Forney y G. Ledec. 1995. A conservation assessment of the terrestrial ecoregions of Latin America and the Caribbean. World Wildlife Fund Report to the World Bank/Laten, Washington, DC USA. 116 p.         [ Links ]

Espinosa, D., S. Ocegueda et al. 2008. El conocimiento biogeográfico de las especies y su regionalización natural, en Capital natural de México, vol. I : Conocimiento actual de la biodiversidad. Conabio, México, pp. 33-65.         [ Links ]

Food and Agriculture Organisation of the United Nations (FAO), 2002. International Year of the Mountains. Food and Agriculture Organisation of the United Nations, Rome, Italy. 75 p.         [ Links ]

Instituto Nacional de Estadística, Geografía e Informática-Comisión Nacional para el Conocimiento y Uso de la Biodiversidad-Instituto Nacional de Ecología (INEGI-Conabio-INE). 2007. Ecorregiones terrestres de México, escala 1:1,000,000. INEGI, Conabio, INE, México, D.F. México.         [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 1998. Modelo digital de elevación de alta resolución LIDAR, tipo terreno, escala 1:250,000. INEGI. Aguascalientes, Ags. México.         [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2001. Conjunto de datos vectoriales de la carta de uso de suelo y vegetación, Serie II (continuo nacional), escala 1:250,000. INEGI. Aguascalientes, Ags. México.         [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2005. Conjunto de datos vectoriales de uso de suelo y vegetación, Serie 3 (continuo nacional), escala 1:250,000. INEGI. Aguascalientes, Ags. México.         [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2009. Conjunto de datos vectoriales de uso de suelo y vegetación, escala 1:250000, serie IV (continuo nacional). INEGI. Aguascalientes, Ags. México.         [ Links ]

Instituto Nacional de Estadística, Geografía e Informática (INEGI). 2011. Conjunto de datos vectoriales de sistema de topoformas, serie 3 (continuo nacional), escala 1:250,000. INEGI. Aguascalientes, Ags. México.         [ Links ]

Kapos, V., J. Rhind, M. Edwards, M.F. Price and C. Ravilious, 2000: Developing a map of theworld'smountainforests. In: Forests in Sustainable Mountain Development: A State-of-Knowledge Report for 2000,M.F. Price and N. Butt (eds.), CAB International, Wallingford: 4–9.         [ Links ]

Koerner, Ch., M. Ohsawa. 2005. Mountain Systems. In: Millenniumm Ecosystem Assessment.

Kohler T; Pratt J; Debarbieux B; Balsiger J; Rudaz G; Maselli D; (eds) 2012. Sustainable Mountain Development, Green Economy and Institutions. From Rio 1992 to Rio 2012 and beyond. Final Draft for Rio 2012. Prepared with an international team of experts.         [ Links ]

Kolb, M. 2013. Dinámica del uso del suelo y cambio climático en la planeación sistemática para la conservación: un caso de estudio en la cuenca Grijalva-Usumacinta. Tesis Doctoral. Universidad Nacional Autónoma de México. 296 pp.         [ Links ]

Koleff, P., M. Tambutti, I. J. March, R. Esquivel, C. Cantú, A. Lira-Noriega et al. 2009. Identificación de prioridades y análisis de vacíos y omisiones en la conservación de la biodiversidad de México, en Capital natural de México, vol. II: Estado de conservación y tendencias de cambio. CONABIO, México, pp. 651-718.         [ Links ]

Koleff, P. y T. Urquiza-Haas (coords.). 2011. Planeación para la conservación de la biodiversidad terrestre en México: retos en un país megadiverso. Comisión Nacional para el Conocimiento y Uso de la Biodiversidad–Comisión Nacional de Áreas Naturales Protegidas, México.         [ Links ]

Kohler T. Pratt J. Debarbieux B. Balsiger J. Rudaz G. Maselli D. (eds) 2012..team of experts s/p.         [ Links ]

Llorente-Bousquets, J. y A. Luis-Martínez. 1993. Conservation – oriented analysis of Mexican butterflies: Papilionidae (Lepidoptera Papilionidae). In: Biological Diversity of Mexico: Origins and distributions (T. P. Ramamoourthy, R. Bye, A. Lot J. Fa, eds.). Oxford University press. New York, 812 p.         [ Links ]

Loucks, C., N. Brown, A. Loucks y K. Cesareo. 2003. USDA forest service roadless areas: Potential biodiversity conservation reserves. Conservation Ecology 7 : 5. Disponible en http://www.ecologyandsociety.org/vol7/iss2/art5/print.pdf.         [ Links ]

Millenium Ecosystem Asessment. 2005. Summary for decision makers. In Ecosystems and human well-being: Synthesis, 1-24. Washington, D. C. Island press.         [ Links ]

Olson, D. M. and E. Dinerstein. 1998. The Global 200: A representation approach to conserving the Earth's most biologically valuable ecoregions.ConservationBiology 12:502–515         [ Links ]

Olson, D. M.; Dinerstein, E.; Wikramanayake, E. D.; Burgess, N. D.; Powell, G. V. N.; Underwood, E. C.; D`amico, J. A; Itouca, I.; Strand, H. E.; Morrison, J. C.; Louckson, C. J.; Allnutt, T. F.; Ricketts, T. H.; Kura, Y.; Lamoreux, J. F.; Wettengel W. W.; Hedao, P. &Kassem, K. R. 2001a. Terrestrial Ecorregions of the World: A New Map of Life on Earth. BioScience Vol. 51 No. 11 Pp. 933-938.         [ Links ]

Pompa, M. 2008. Análisis de la deforestación en ecosistemas montañosos del noroeste de México. Avances en InvestigaciónAgropecuaria. 12(2): 35-43.         [ Links ]

Ricketts, T. H. 1999. Terrestrial ecorregionesof Northamerica: Conservation Assessment. Washington D. C.: Island Press.         [ Links ]

Rzedowski, J. 1991. Diversidad y orígenes de la flora fanerogámica mexicana. Acta Botánica Mexicana 14:3 21        [ Links ]

Sánchez–Cordero, V., A. T. Peterson y P. Escalante–Pliego. 2001. El modelado de la distribución de especies y la conservación de la diversidad biológica. In Enfoques contemporáneos para el estudio de la biodiversidad, H. Hernández M., A. N. García–Aldrete, F. Álvarez y M. Ulloa (eds.). Ediciones Científicas Universitarias, Fondo de Cultura Económica/ Academia Mexicana de Ciencias/Instituto de Biología, UNAM, México, D. F. p 359–379.         [ Links ]

Sánchez, O. 2003. Conservación de ecosistemas templados de montaña en México. In: Ó. Sánchez, E. Vega, E. Peters y O. Monroy-Vilchis(editores). Instituto Nacional de Ecología, México, 112 p.         [ Links ]

Scott, J.M., F. Davis, B. Csuti, R. Noss, B. Butterfield et al. 1993. Gap Analysis: A geographicapproachto the protection of biological diversity. Wildlife Monographs 123 : 3-41.         [ Links ]

Spehn, E.M., Rudmann-Maurer, K., Körner, C., Maselli, D. (eds.) 2010. Mountain Biodiversity and Global Change. GMBA-DIVERSITAS, Basel 59 p.         [ Links ]

United Nations Environment Programme-World Conservation Monitoring Centre UNEP-WCMC. 2002. Mountain Watch: environmental change & sustainable development in mountains. Cambridge, UK 80 p.         [ Links ]

Valero, Alejandra. "Sierra Madre Del Sur pine-oakforests" 2001. www.worldwildlife.org/wildworld/profiles/terrestrial/nt/nt0309_full.html (consultado, marzo de 2013).         [ Links ]

Villaseñor, J.L., G. Ibarra-Manríquez, J.A. Meavey and E. Ortiz. 2005. Higher taxa as surrogates of plant biodiversity in a megadiverse country. Conservation Biology 19 : 232 238.         [ Links ]

Viviroli, D., R. Weingartner, and B. Messerli, 2003: Assessing the hydrological significance of the world's mountains. Mountain Research and Development, 23(1), 32–40        [ Links ]

Wallace, R., K. DeVore, P. Lifton-Zoline, J. Lifton-Zoline (eds.). 2012. Sustainable Mountain Development in North America. From Rio 1992 to Rio 2012 and beyond. Mountain Partnership Report and Aspen International Mountain Foundation. Aspen, CO. USA. 95 P.         [ Links ]

Creative Commons License Todo el contenido de esta revista, excepto dónde está identificado, está bajo una Licencia Creative Commons