SciELO - Scientific Electronic Library Online

 
vol.12 número67Análisis temporal de la distribución de Dendroctonus mexicanus Hopkins (1905) en México (2009-2018)Crecimiento e incremento en biomasa y carbono de Pinus teocote Schltdl. et Cham. y Pinus oocarpa Schiede., Guerrero, México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista mexicana de ciencias forestales

versión impresa ISSN 2007-1132

Rev. mex. de cienc. forestales vol.12 no.67 México sep./oct. 2021  Epub 25-Oct-2021

https://doi.org/10.29298/rmcf.v12i67.991 

Scientific article

Effect of four silvicultural treatments on timber production in a Forest in Durango

Jesús Alejandro Soto Cervantes1 
http://orcid.org/0000-0003-2066-1212

Jaime Roberto Padilla Martínez2 
http://orcid.org/0000-0003-3511-2478

Pedro Antonio Domínguez Calleros3 
http://orcid.org/0000-0001-9520-2817

Artemio Carrillo Parra4 
http://orcid.org/0000-0003-0285-5224

Rodrigo Rodríguez Laguna5 
http://orcid.org/0000-0002-1014-8784

Marín Pompa García3 
http://orcid.org/0000-0001-7156-432X

Emily García Montiel3  * 
http://orcid.org/0000-0002-8814-5655

José Javier Corral Rivas3 

1Universidad Juárez del Estado de Durango, Programa Institucional de Doctorado en Ciencias Agropecuarias y Forestales. México.

2University of Göttingen, Faculty of Forest Sciences and Forest Ecology, Department of Forest Economics and Sustainable Land-use Planning. Germany.

3Universidad Juárez del Estado de Durango, Facultad de Ciencias Forestales. México.

4Universidad Juárez del Estado de Durango, Instituto de Silvicultura e Industria de la Madera. México.

5Universidad Autónoma del Estado de Hidalgo. México.


Abstract

Forest management through the use of the right forestry treatments allows achieving persistence, sustained yield and maximum production of forests. The objective of this work was to assess the increment in stem volume of Pinus durangensis trees, from the analysis of the growth- rings by means of the stem analysis technique in stands subjected to four forestry treatments. The treatments were clear-cutting, regeneration cut with parent trees (applied in 2007), selective cut and thinning, applied in year 2010. A total of sixteen sampling trees of Pinus durangensis collected in sites of 100 m2 distributed randomly by treatment were used in the study. From each tree sections for ring growth analysis were obtained at the base, at 1.3 m and subsequently each meter until reaching the top. The diameter and height of the trees were estimated every two growth rings and later the volume was estimated, to finally estimate the values of ICA and the IMA growth in two-year intervals. The results of the non-parametric Kruskal Wallis test showed significant differences (p <0.05) of ICA and IMA in most of the forestry treatments. The clear-cutting turned out to be the treatment with the highest ICA and IMA values for all ages studied.

Key words: Stem analyzes; growth rings; Annual Current Increase; Average Annual Increase; clear-cutting; Pinus durangensis Martínez

Resumen

El manejo forestal a través de la aplicación de tratamientos silvícolas adecuados permite lograr la persistencia, el rendimiento sostenido y la máxima producción de los bosques. El objetivo de este trabajo fue evaluar el incremento en volumen fustal de árboles de Pinus durangensis, a partir del análisis de los anillos de crecimiento mediante la técnica del análisis troncal en rodales sometidos a cuatro tratamientos silvícolas; los cuales fueron cortas de regeneración con árboles Padre (realizada en 2007), matarrasa, selección y de aclareo aplicados en el año 2010. Se estudiaron 16 árboles muestra de Pinus durangensis recolectados en sitios de 100 m2, distribuidos al azar por cada tratamiento. Para el análisis troncal, por individuo se obtuvo una rodaja a la base, otra a 1.3 m sobre el nivel del suelo y posteriormente cada metro hasta llegar a la punta. Se estimó el diámetro y la altura de los árboles cada dos anillos de crecimiento y se estimó el volumen, para finalmente conocer los incrementos (ICA e IMA) en intervalos de dos años. Los resultados de la prueba no paramétrica de Kruskal Wallis mostraron diferencias significativas (p < 0.05) en el ICA e IMA en la mayoría de los tratamientos silvícolas evaluados. La matarrasa resultó ser la práctica con los mayores valores de ICA e IMA para todas las edades estudiadas.

Palabras clave: Análisis troncales; anillos de crecimiento; Incremento Corriente Anual; Incremento Medio Anual; matarrasa; Pinus durangensis Martínez

Introduction

The state of Durango has a forest area of 5.5 million hectares, of which approximately 2 million are under use (SRNyMA, 2011). In 2017, its net timber production was 2 559 297 m3, which represents 28.4 % of the national total (Semarnat, 2017). The forest management methods mostly used in the forests of the state are the Forestry Development Method (MDS, for its acronym in Spanish), which is characterized by periodic harvesting to ensure that the forest is renewed, through planting or natural regeneration; and with this, contemporary tree masses are induced (Gadow et al., 2004; Solís et al., 2006); and the Mexican Method for the Management of Irregular Forests (MMOBI, for its acronym in Spanish), which is aimed at the application of selective fellings that promote the maintenance of an irregular structure, composed of individuals of different size (Gadow and Pummalainen, 2000; Lira-Tuero et al., 2019).

Sustainable forest management currently requires studies that describe the dynamics of increase and timber yield of forest masses (Návar-Cháidez, 2010; Fierros-Mateo et al., 2017), in order that forestry practices favor the residual mass (Monárrez-González et al., 2018). In addition, it provides elements to improve productivity, based on the characteristics of the composition and structure of the forest (Solís et al., 2006; Návar-Cháidez and González-Elizondo, 2009). Additionally, the main challenge of sustainable forest management is the correct application of cutting intensities that conserve the biological diversity of forests, their productivity, their regeneration capacity and their capacity to fulfill, in the present and in the future, other ecological, economic and social functions. (Aguirre-Calderón, 2015; Manzanilla et al., 2020). In the same way, such studies should consider the conservation of species composition, of forest structure, of landscape and their added values; key factors in the new standards of sustainable forest management (Hernández-Salas et al., 2013).

The assessment of the effects of forestry treatments in different types of forest stands is a key element for optimizing forest productivity in areas subject to timber harvesting (Gadow et al., 2004). The volume and basal area per hectare are elements used to determine forest productivity, and their control is carried out through forestry practices such as thinning or selective felling (Daniel et al., 1982). However, it must be considered that the optimal number of residual trees in a stand depends on biological, technological and operational factors (Diéguez-Aranda et al., 2009; Cabrera-Pérez et al., 2019).

On the other hand, site quality is a factor, too, that influences the timber production of a stand, from the interaction of climatic, topographic and edaphic factors which, combined, are favorable for the development of trees (Clutter et al., 1983; Castillo et al., 2013).

The Annual Current Increase (ICA, for its acronym in Spanish) and the Annual Average Increase (IMA, for its acronym in Spanish) allow knowing the optimal rotation or cutting age of a plantation and maximize the usable volume (Santiago-García et al., 2015; Cardalliaguet et al., 2019). These estimates are a crucial element in forest management, as they help to calculate the harvest, the shift and the periodicity of forestry interventions. Through the ICA and IMA curves, the age with the maximum increase in diameter, height and volume (maximum performance shift) is known (Quiñonez-Barraza et al., 2015).

The objective of this investigation was to evaluate the increase in stem volume from the analysis of growth rings of trees in stands managed with four forestry treatments.

Materials and Methods

Study area

The study area was the Las Veredas private property, at San Dimas municipality, state of Durango, Mexico (Figure 1). It is located between 24°20'40” N and 105°51'20” W, in the physiographic Sierra Madre Occidental province, 16 Mesetas and Cañadas del Sur subprovince. The area has an altitudinal range of 2 600 to 2 800 m; the climate is temperate, with rains in summer (CW) (García, 2004), which commonly occurs between July and September, with accumulated average annual precipitation of 1 034.5 mm, according to the Vencedores locality weather station, located 15 km from the study area. Temperature varies from -3 to 18 °C; its topography is mountainous with defined or undulating 0 to 50 % slopes (Silva-Flores et al., 2014). The vegetation is made-up by mixed coniferous and broadleaf forests; the dominant pine species are Pinus durangensis Martínez, Pinus cooperi Blanco, Pinus teocote Schiede ex Schltdl. and Pinus strobiformis Engelm. The characteristic oak taxa are Quercus rugosa Née and Quercus sideroxyla Bonpl, as well as Juniperus spp., Arbutus spp. and Alnus spp. trees, among others (González-Elizondo et al., 2012).

Área de studio = Study area; Sitios de muestreo = Sampling sites; M = Clear-cutting; R = Regeneration cut with parent trees; A = Thinning; S = Selective cut.

Figure 1 Location of the study area. 

Four felling areas were identified on the land, in which the treatment and the year of application were recorded. Next, the evaluated treatments are described: (i) clear-cutting, 2010, with immediate planting of Pinus durangensis and Pinus cooperi, with a 2 500 plants ha-1 (2 m × 2 m) density; (ii) regeneration cut with parent trees, 2007 and 70 % cutting intensity; (iii) selection cut, 2010, with 30 % cut intensity; and (iv) thinning, 2010 (third according to the management program), with 35 % cutting intensity.

Sampling sites

For the establishment and distribution of the sites, the methodology of the National Forest Commission (Conafor, 2013) was considered as a reference to assess the initial survival in plantations. This methodology was only used in the sub-stand of the clear-cutting treatment, since in the other ones; it was only used to have the same number of trees with similar characteristics. The destructive type of sampling was used to evaluate stem growth; thus, 16 trees or replications of Pinus durangensis were selected per treatment (one from each 100 m2 sampling site) to add a total of 64 trees.

The intensity of sampling applied in the treatments for the characterization of the sub-stands ranged from 0.74 to 3.07 %, taken as good because the purpose of the study was to compare the stem increase between treatments with a sufficient number of replications, and not the estimation of stand variables such as volume or basimetric area. The sampled trees were sectioned to obtain 5 cm- wide slices at the following heights: (i) cut at ground level, (ii) cut at a height of 1.3 m above ground level, and (iii) cut along the shaft at each meter in length. Measurements were obtained using a Truper longimeter.

The normal diameter per individual was considered as the average of two cross measurements of the slice collected at a height of 1.3 m above ground level; while, the total height was calculated from the sum of all the sampled sections (Table 1). These measurements were made using a millimeter ruler.

Table 1 Descriptive statistics of the study sites and the sampled trees. 

Forestry treatment Area (ha) Substand Sampled trees
N G
(m2)
Age
(years)
Diameter
(cm)
Height
(m)
Prom Desv Prom Desv Prom Desv Prom Desv Prom Desv
M 21.4 1881 389 7.41 2.85 8 0 6.7 0.9 3.7 0.5
R 10.2 725 420 10.58 10.01 11 1.45 7.2 1.7 4.5 1.2
A 15.2 1412 291 30.77 11.35 51 17.8 11.4 1.8 10.0 2.2
S 5.21 1343 329 42.15 19.47 43 13.01 10.3 1.9 8.9 2.0

M = Clear-cutting; R = Regeneration cut with parental trees; A = Third clearing; S = Selection; N = Number of trees per hectare; G = Basimetric area per hectare (m2), Prom = Average; Desv = Standard deviation.

Determination of diameter at different ages

Groups of rings were marked in the slices from the periphery inwards in two- years periods, this due to the young age of the sampled trees from the clear-cuting and regeneration felling treatments; for each age class, the diameter was recorded, estimated as the average of the measurement with the largest and smallest diameter, respectively. These measurements were made using a millimeter ruler.

Estimation of the real height of the tree at the cutting age

The true height of a tree at a certain age can hardly be obtained directly through the counting of slice rings at different heights, since the section of the cut does not coincide with the beginning of a year (Fabbio et al., 1994). To estimate the real or true height of a tree at a certain age, the method of Carmean (1972) modified by Newberry (1991) (Equations 1, 2 and 3) was used, which is based on the assumptions: (i) between two sections, the tree grows at a constant rate, and (ii) the cut is made, on average, in the center of the growth in height of one year (Machado et al., 2010). The equations used to calculate the true height are shown below and vary depending on the section of the tree.

Stump: Hij=j*hi+10.5+(ri-ri+1) (1)

Log: Hij=hi+hi+1-hi2*(ri-ri+1)+j-1*hi+1-hiri-ri+1 (2)

Tip: Hij=hi+hi+1-hi2*(ri-ri+1-0.5)+j-1*hi+1-hiri-ri+1-0.5 (3)

Where:

H ij = Actual or true height of the tree at the cutting height of the i section

h i y h i+1 = Heights of the lower and upper sections of the log

r i y r i+1 = Number of rings in the lower and upper sections of the log

j = Number of rings or age of the upper section of the log (j = 1,2,…, r i )

In order to facilitate the comparison between treatments of the increase in stem volume, the real heights of the sample trees were also estimated in two-year intervals, by means of a linear interpolation. Thus, the true heights estimated at the ages and cut diameters recorded in the sections of the sample trees were used as a reference; and the real height for each individual in two-year intervals was estimated by means of a linear interpolation (Equations 4 and 5).

P =hi+1-hiri+1-ri (4)

Hik=P*ei-ri+hi (5)

Where:

P = Slope value

H ik = True height of i tree section at two-year intervals

e i = Reference age of the i section of the tree (every two years)

h i and r i = Heights and ages known at the i time

Volume estimation

With the diameter estimates at different heights and height per tree at two-year intervals, the volume per individual was calculated by measuring the intermediate sections with the Smalian formula and the tip with the cone equation. The total volume was considered as the sum of all the sections, plus the volume of the tip.

ICA and IMA estimation

In order to guarantee comparability for each tree sample independent of the forestry treatment, the annual current increase (ICA) and the mean annual increase (IMA) were estimated (Equations 6 and 7), in two-year intervals (two, four, six and eight years). The ICA corresponded to the increase produced every two years, while the IMA is the average of the total increase at a certain age of a tree (Cardalliaguet et al., 2019).

ICAi =vi+1-vi2 (6)

IMAi =vi2 (7)

Where:

v i+1 and v i = Total volume of the i tree in dm3 for the upper and lower age classes, respectively

Statistical analysis

The ICA and IMA data of the sampled trees were classified by age class and by type of forestry treatment. In addition, they were statistically analyzed by means of an experimental design of a single block completely at random by sub-stand or study area. This experimental design was used, since possible confounding factors are separated through blocks (for example, differences in age or densities) that can negatively affect the values of the response variables of the treatments. The Shapiro-Wilks test (P ≥ 0.05) was used to assess whether the data on the growth of the trees corresponded to a normal distribution. However, the assumption of normality was rejected in all the forestry treatments evaluated, so the non-parametric Kruskal-Wallis test was used to determine the existence of significant differences between the comparable treatments, using the Bonferroni mean comparison test. (α = 0.05). Statistical analyzes were carried out with the statistical program R version 3.5.3 (R Core Team, 2019).

Results and Discussion

The average and the standard deviation of the ICA and IMA for the different forestry treatments at two, four, six and eight years are shown in Figure 2, where it is observed that the kills had higher ICA and IMA values for all classes of age studied; highlights its increase after four years and the highest values (1.9 dm3 year-1 and 0.9 dm3 year-1, respectively) at eight years. The regeneration cut follows in order of importance, also at eight years with records of 1.27 dm3 year-1 (ICA) and 0.46 dm3 year-1 (IMA).

Edad (años) = Age (years). a) Annual Current Increase (ICA); b) Average Annual Increase (IMA); M = Clear-cutting; R = Regeneration cut with parent trees; A = Third thinning; S = Selection.

Figure 2 Average (bar) and standard deviation (line) of the increases observed for the evaluated treatments. 

The highest ICA and IMA values corresponded to the clear-cutting and regeneration cutting treatments with parent trees, respectively. This situation is explained because they promote more light availability, an essential factor to produce optimal yields in the increase of heliophilic plants, as is the case of the assessed pine species (Stuiver et al., 2016; Ruslandi et al., 2017; Plateros -Gastélum et al., 2018).

The results of the Kruskal-Wallis test indicated that there are significant differences in the mean increase observed between forestry treatments and in most ages (p< 0.05 and p< 0.01). Table 2 shows a comparison between forestry treatments using the Bonferroni means comparison method.

Table 2 Statistical comparison of ICA and IMA between the different forestry treatments evaluated according to the Bonferroni mean comparison test. 

Comparison 2 years 4 years 6 years 8 years
ICA IMA ICA IMA ICA IMA ICA IMA
A-R 0.205 ns 0.205 ns <0.050* <0.050* <0.050* <0.050* <0.050* <0.050*
A-M <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***
R-M <0.050* <0.050* <0.050* <0.050* <0.050* <0.050* <0.050* <0.050*
A-S 1.000ns 1.000ns 1.000ns 1.000ns 1.000ns 1.000ns 1.000ns 1.000ns
R-S 0.072ns 0.072ns < 0.010** < 0.010** < 0.010** < 0.010** < 0.010** < 0.010**
M-S <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001*** <0.001***

(P < 0.05) *; (P < 0.01) **; (P < 0.001) ***; ns = Non- significant, ICA = Annual Current Increase; IMA = Average Annual Increase; M = Clear-cutting; R = Regeneration cut with parent trees; A = third thinning; S = selection.

The results show that the average increase observed in the slaughterhouse treatment is significantly higher than the average increase observed in the rest of the treatments in all the evaluated ages (p <0.05 for the case of the regeneration cut with parent trees, and p < 0.01, in selection and thinning). In regard to the average increase of the trees from the regeneration cut treatment with parent trees, except at the age of 2 years, it was significantly higher than that observed in the third thinning and selection treatments (p <0.05). These did not show significant differences in growth for any of the ages considered.

The evolution of the ICA and the IMA in relation to the age of the trees for each treatment is shown in Figure 3. The growth of the trees of the plantation established in the clear-cutting treatment, as well as with the regeneration cut with parent trees showed a linear trend, with higher values in all the evaluated ages, compared to the thinning and selection treatments (Figure 3a and 3b). From the linear trend observed in the growth data, the maximum values of ICA and IMA were presented at 8 years in all cases, the reason why new studies are required at more advanced ages for the clear- cutting and regeneration cutting with parent trees sites, in order to confirm if they continue to have greater volume increases, compared to the other two treatments.

Volumen = Volume; Edad (años) = Age (years).

ICA = Annual Current Increase; IMA = Average Annual Increase; M = Clear-cutting; R = Regeneration cut with parent trees; A = Thinning (c); S = Selection (d).

Figure 3 Evolution of the Annual Current Increase (ICA) and Annual Average Increase (IMA) by forestry treatment evaluated up to the age of eight years. 

According to the results of the study, the clear-cutting treatment recorded, in a significant way, the highest rate of tree volume increment in all age classes of the four forestry treatments studied, for an ICA estimate of 3.58 m3 ha year-1 at the age of 8 years and with a linear tendency to discharge; thus, it is a good option to optimize timber yield and reduce the time between harvests. Therefore, the clear-cutting treatment can be used successfully in forest areas of good site quality in the state of Durango and in which the regular management method is used, provided that an immediate planting is carried out and maintenance is given to it through fencing, fire cut gaps, pest prevention, etcetera; otherwise, there is a risk of losing soil and biodiversity (Monárrez-González et al., 2018; Soto-Cervantes et al., 2020).

In this context, it is recommended that the clear-cutting treatment be developed for forestry purposes, in parallel, with the application of others such as regeneration cuts, thinning and selection cuts to generate a mosaic of varied structures and thus, promote the conservation of diversity of flora and fauna (Politi and Rivera, 2019). This is due to the fact that the abuse of intensive management (clear-cutting and regeneration cuts) would generate contemporary and monospecific masses, which would impact the structural diversity of the stands (Kovács et al., 2018; Moon et al., 2018).

The treatment of regeneration cutting with parent trees was the second best option to optimize the growth of P. durangensis up to the age of eight years; since, like the clear-cutting, it had significantly higher increases than the thinning and selection treatments. Although authors such as Ramírez et al. (2015) argue that the natural repopulation of pine species should be considered as an important complement to regeneration in areas under forest management of the temperate forest of Mexico.

The results of this work show that the planted trees had greater development than those that were naturally repopulated. This can be explained as in the clear-cutting treatment the individuals are favored by a great availability of light, which is assimilated by them to the maximum of what their genetic condition and age allow; that is, they develop to the maximum of their growth ability (Cifuentes et al., 2016; Plateros-Gastélum et al., 2018; Moretti et al., 2019).

The thinning and selection treatments did not register significant differences in growth (p> 0.05); this may be due to the fact that during its execution, in both cases, very similar forestry criteria are used, which to a large extent are more related to the application of selective felling, than with thinning. In this regard, Corral-Rivas et al. (2019) cite that on many occasions, the treatments applied in the forests of the state of Durango are limited to selection cuttings and that they do not necessarily correspond to the thinning cuttings that are programmed in the authorized management plans.

Although Freitas et al. (2017) point out that the application of low-impact forestry techniques encourages the growth of tree species of high commercial value, without negatively interfering with natural regeneration, the results of this research indicate that the lower the intensity of felling, the timber increment decreases in the assessed regeneration, that is why density management is a key element to optimize forest production in the forests of Durango (Padilla-Martínez et al., 2020).

Guevara et al. (2021) evaluated the effect of clear-cuttings with immediate plantations on the tree diversity of regeneration in the state of Durango, and observed that they keep species richness, despite the fact that only Pinus durangensis and Pinus cooperi specimens were planted, the species similarity between adjacent stands was high, which came from the spontaneous emergence of other native taxa present before felling and the influence of neighboring stands. Rodríguez-Ortiz et al. (2019) studied the behavior in areas treated with clear-cutting in the state of Oaxaca and concluded that this treatment promotes the regeneration and renewal of the forest, which, in turn, favors ecosystem services. However, it should be noted that such treatment, so far in Mexico has been studied mainly in high productivity stands or sites; for this reason, the results of this and other investigations should not be generalized to all production forest areas, since in most of them the best forestry alternative, in environmental and social terms, will continue to be selective logging.

Conclusions

In the study, significant differences are registered in the ICA and IMA variables for most of the evaluated treatments and ages, with the exception of the thinning and selection cuttings, which recorded the lowest stem increase in the analyzed trees. The site treated with clear-cutting corresponds to the highest timber increase during the period of interest. The study reveals that clear-cutting with immediate planting can be used successfully in sites of good site quality in the forests of Durango, and that its use represents a good option to increase their forest production.

Acknowledgements

To Conacyt, for the financial support provided to the first author to carry out his graduate studies at the Institutional Program of Doctorate in Agricultural and Forest Sciences (PIDCAF-UJED). Our thanks to C.P. Alfonso Gerardo Fernández de Castro Toulet, legal representative of the private property where the study area is located, for allowing access to collect data.

REFERENCES

Aguirre-Calderón, O. A. 2015. Manejo Forestal en el Siglo XXI. Madera y Bosques 21: 17-28. Doi: 10.21829/myb.2015.210423. [ Links ]

Cabrera-Pérez, R. S., S. Corral-Rivas, G. Quiñonez-Barraza, J. A. Nájera-Luna, F. Cruz-Cobos and V. H. Calderón-Leal. 2019. Density management diagram for mixed-species forests in the El Salto region, Durango, Mexico. Revista Chapingo Serie Ciencias Forestales y del Ambiente 25(1): 17-29. Doi: 10.5154/r.rchscfa.2018.03.026. [ Links ]

Cardalliaguet, L., A. A. Muñoz, V. Humanes, I. Aguilera-Betti, M. Génova, C. LeQuesne, M. Rojas-Badilla y C. Veas. 2019. Crecimiento radial de Abies pinsapo en el sur de Chile: relaciones con el clima local y su comparación con poblaciones naturales en España. Bosque (Valdivia) 40(2): 141-152. Doi: 10.4067/s0717-92002019000200141. [ Links ]

Carmean, W. H. 1972. Site index curves for upland oaks in the Central States. Forest Science 18(2):109-120. Doi:10.1093/forestscience/18.2.109. [ Links ]

Castillo, L. A., B. Vargas-Larreta, J. J. Corral R., J. A. Nájera L., F. Cruz C. y F. J. Hernández. 2013. Modelo compatible altura-índice de sitio para cuatro especies de pino en Santiago Papasquiaro, Durango. Revista Mexicana de Ciencias Forestales 4(18): 89-103. Doi:10.29298/rmcf.v4i18.391. [ Links ]

Cifuentes G, L., F. Moreno H., J. D. Leon P. y C. Oñate C. 2016. Rasgos funcionales y crecimiento de cinco especies de árboles tropicales bajo diferentes condiciones de luz: implicaciones para la restauración ecológica. Colombia Forestal 1(19): 15-18. https://www.redalyc.org/articulo.oa?id=423947585004 (10 de noviembre de 2020). [ Links ]

Clutter, J. L., J. C. Fortson, L. V. Pienaar, G. H. Brister and R. L. Bailey. 1983. Timber management: A quantitative approach. John Wiley & Sons, Inc. New York, NY, USA. 139 p. [ Links ]

Comisión nacional forestal (Conafor). 2013. Metodología para realizar y presentar los informes de sobrevivencia inicial (ISI) de las plantaciones forestales comerciales (aspectos técnicos). http://www.conafor.gob.mx/apoyos/index.php/inicio/download/1422 . (10 de junio de 2018) [ Links ]

Corral-Rivas, J. J., M. S. González-Elizondo., J. E. Lujan-Soto and K. V. Gadow. 2019. Effects of density and structure on production in the communal forests of the Mexican Sierra Madre Occidental. Southern Forests: a Journal of Forest Science 81(1): 1-10. Doi: 10.2989/20702620.2018.1463152. [ Links ]

Guevara, Y. Y., F. Cruz, F. J. Hernandez, J. A. Nájera, F. Cruz y G. Quiñonez. 2021. Efecto de la corta de matarrasa en la diversidad de la regeneración arbórea en Durango, México. Revista Mexicana de Ciencias Forestales 12(63): Doi:10.29298/rmcf.v12i63.709. [ Links ]

Daniel, T. W., J. A. Helms y F. S. Baker. 1982. Principios de silvicultura. Mc Graw-Hill. México, D.F., México. 492 p. [ Links ]

Diéguez-Aranda, U., A. Rojo, F. Castedo-Dorado, J. G. Álvarez, M. Barrio-Anta, F. Crecente-Campo, J. M. González, C. Pérez-Cruzado, R. Rodríguez, C. A. López-Sánchez, M. A. Balboa-Murias, J. J. Gorgoso y F. Sánchez. 2009. Herramientas selvícolas para la gestión forestal sostenible en Galicia. Dirección Xeral de Montes, Conselleria do Medio Rural, Xunta de Galicia. Lugo, España. 273 p. [ Links ]

Fabbio, G., M. Frattegiani and M. C. Manetti. 1994. Height estimation in stem analysis using second differences. Forest Science 40(2): 329-340. Doi:10.1093/forestscience/40.2.329. [ Links ]

Fierros-Mateo, R., H. M. Santos-Posadas, M. A. Fierros-González y F. Cruz-Cobos . 2017. Crecimiento y rendimiento maderable en plantaciones de Pinus chiapensis (Martínez) Andresen. Agrociencia 51(2): 201-214. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S1405-31952017000200201 (13 de octubre de 2020). [ Links ]

Freitas, A. C., C. Silva-Neto, T. O. Martins, F. Gomes, M. Morais, G. M. de Oliveira and F. Venturoli. 2017. Growth and volume of Myracroduon urundeuva Allemão after ten years of silvicultural interventions. Australian Journal of Crop Science 11(3): 271-276. Doi: 10.21475/ajcs.17.11.03.pne360. [ Links ]

Gadow, K. and J. Puumalainen. 2000. Scenario planning for sustainable forest management. Sustainable forest management. Managing Forest Ecosystems, Springer, Dordrecht. 319-356. Doi: 10.1007/978-94-010-9819-9_9. [ Links ]

Gadow, K. , S. Sánchez O. y Ó. A. Aguirre C . 2004. Manejo forestal con bases científicas. Madera y Bosques 10(2): 3-16. https://www.redalyc.org/articulo.oa?id=61710201 (10 de junio de 2020). [ Links ]

García, E. 2004. Modificaciones al sistema de clasificación climática de Köppen. Serie Libros. Instituto de Geografía, Universidad Nacional Autónoma de México. México, D.F., México. 98 p. [ Links ]

González-Elizondo, M. D. S., M. González-Elizondo, J. A. Tena-Flores, L. Ruacho-González y I. L. López-Enríquez. 2012. Vegetación de la sierra madre occidental, México: Una síntesis. Acta Botánica Mexicana (100): 351-403. Doi: 10.21829/abm100.2012.40. [ Links ]

Hernández-Salas, J., Ó. A. Aguirre-Calderón, E. Alanís-Rodríguez, J. Jiménez-Pérez, E. J. Treviño-Garza, M. A. González-Tagle, C. Luján-Álvarez, J. M. Olivas-García y L. A. Domínguez-Pereda. 2013. Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. Revista Chapingo. Serie Ciencias Forestales y del Ambiente 19(2): 189-200. Doi: 10.5154/r.rchscfa.2012.08.052. [ Links ]

Kovács, B., F. Tinya, E. Guba, C. Németh, V. Sass, A. Bidló and P. Ódor. 2018. The short-term effects of experimental forestry treatments on site conditions in an oak-hornbeam forest. Forests 9(7): 406. Doi: 10.3390/f9070406. [ Links ]

Lira-Tuero, L. A., J. J. Corral-Rivas, J. R. Padilla-Martínez, P. M. López-Serrano, M. Pompa-García y F. Cruz-Cobos . 2019. Efecto del manejo forestal en biomasa y carbono en bosques de Durango. Revista Mexicana de Agroecosistemas 6(1): 89-97. https://www.voaxaca.tecnm.mx/revista/docs/RMAE%20vol%206_1_2019/9%20RMAE_2019-26-Biomasa.pdf (10 de octubre de 2020). [ Links ]

Machado, A. S., L. C. Rodríguez D. S. , M. A. Figura, S. J. Téo and R. G. Mendes N. 2010. Comparison of methods for estimating heights from complete stem analysis data for Pinus taeda. Ciência Florestal 20(1): 45-55. Doi: 10.5902/198050981760. [ Links ]

Manzanilla Q. G. E., J. M. Mata B., E. J. Treviño G., Ó. A. Aguirre C., E. Alanís R. y J. I. Yerena Y. 2020. Diversidad, estructura y composición florística de bosques templados del sur de Nuevo León. Revista Mexicana de Ciencias Forestales 11(61). Doi: 10.29298/rmcf.v11i61.703. [ Links ]

Monárrez-González, J. C., G. Pérez-Verdín, C. López-González, M. A. Márquez-Linares y M. D. S. González-Elizondo. 2018. Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques 24(2). Doi: 10.21829/myb.2018.2421569. [ Links ]

Moon, M. Y., S. S. Kim, D. S. Lee, H. M. Yang, C. W. Park, H. S. Kim and Y. S. Park. 2018. Effects of forest management practices on moth communities in a Japanese larch (Larix kaempferi (Lamb.) Carrière) plantation. Forests 9(9): 574. Doi:10.3390/f9090574. [ Links ]

Moretti, A. P., F. Y. Olguin, M. A. Pinazo, F. Gortari, J. Vera B. y C. Graciano. 2019. Supervivencia y crecimiento de un árbol nativo maderable bajo diferentes coberturas de dosel en el Bosque Atlántico, Misiones, Argentina. Ecología Austral 29(1): 099-111. Doi: 10.25260/ea.19.29.1.0.779. [ Links ]

Návar-Cháidez, J. D. J. y S. González-Elizondo. 2009. Diversidad, estructura y productividad de bosques templados de Durango, México. Polibotánica 27: 71-87. http://www.scielo.org.mx/pdf/polib/n27/n27a5.pdf (10 de agosto de 2020). [ Links ]

Návar-Cháidez, J. D. J. 2010. Los bosques templados del estado de Nuevo León: el manejo sustentable para bienes y servicios ambientales. Madera y Bosques 16(1): 51-69. http://www.scielo.org.mx/pdf/mb/v16n1/v16n1a4.pdf (10 de junio de 2020). [ Links ]

Newberry, J. D. 1991. A note on Carmean's estimate of height from stem analysis data. Forest Science 37(1): 368-369. Doi: 10.1093/forestscience/37.1.368. [ Links ]

Padilla-Martínez, J. R., J. J. Corral-Rivas, J. Briseño-Reyes, C. Paul, P. M. López-Serrano and K. Gadow. 2020. Patterns of Density and Production in the Community Forests of the Sierra Madre Occidental, Mexico. Forests 11 (3): 307. Doi: 10.3390/f11030307. [ Links ]

Plateros-Gastélum, P. A., V. J. Reyes-Hernández, A. Velázquez-Martínez, P. Hernández-de la Rosa y G. V. Campos-Ángeles. 2018. Disponibilidad de luz bajo dosel en rodales de Abies religiosa. Madera y Bosques 24(3): 15. Doi: 10.21829/myb.2018.2431711. [ Links ]

Politi, N. y L. Rivera. 2019. Limitantes y avances para alcanzar el manejo forestal sustentable en las Yungas Australes. Ecología Austral 29(1): 138-145. Doi: 10.25260/EA.19.29.1.0.753. [ Links ]

Quiñonez-Barraza, G., H. M. De los Santos-Posadas, F. Cruz-Cobos , A. Velázquez-Martínez , G. Ángeles-Pérez y G. Ramírez-Valverde. 2015. Índice de sitio con polimorfismo complejo para masas forestales de Durango, México. Agrociencia 49(4): 439-454 Agrociencia 49(4): 439-454 http://www.scielo.org.mx/pdf/agro/v49n4/v49n4a7.pdf (10 de septiembre de 2020). [ Links ]

Ramírez S., R., G. Ángeles P., R. Clark T., V. M. Cetina A., O. Plascencia E., y P. Hernández D. l. R. 2015. Efectos del manejo forestal en la repoblación de Pinus spp. en la Sierra Norte de Oaxaca, México. Revista Mexicana de Ciencias Forestales 6(32): 49-62. Doi: 10.29298/rmcf.v6i32.98. http://www.scielo.org.mx/pdf/remcf/v6n32/2007-1132-remcf-6-32-00049.pdf (10 de junio de 2020). [ Links ]

R Core Team. 2019. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing. Disponible en Disponible en https://www.R-project.org/ (10 de junio de 2019). [ Links ]

Rodríguez-Ortiz, G., J. Á. García-Aguilar, J. C. Leyva-López, C. Ruiz-Díaz, J. R. Enríquez-del Valle, y W. Santiago-García. 2019. Biomasa estructural y por compartimentos en regeneración de Pinus patula en áreas con matarrasa. Madera y Bosques 25(1). Doi:10.21829/myb.2019.2511713. [ Links ]

Ruslandi, W. P. Cropper Jr. and F. E. Putz. 2017. Effects of silvicultural intensification on timber yields, carbon dynamics, and tree species composition in a dipterocarp forest in Kalimantan, Indonesia: An individual-tree-based model simulation. Forest Ecology and Management 390:104-118. Doi: 10.1016/j.foreco.2017.01.019. [ Links ]

Santiago-García, W., H. M. De los Santos-Posadas , G. Ángeles-Pérez , J. R. Valdez-Lazalde, J. J. Corral-Rivas , G. Rodríguez-Ortiz y E. Santiago-García. 2015. Modelos de crecimiento y rendimiento de totalidad del rodal para Pinus patula. Madera y Bosques 21(3): 95-110. Doi: 10.21829/myb.2015.213459. [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (Semarnat). 2017. Anuario Estadístico de la Producción Forestal. Alcaldía Miguel Hidalgo, CDMX, México, México. 284 p. http://dsiappsdev.semarnat.gob.mx/datos/portal/publicaciones/2020/2017.pdf (29 de marzo de 2021). [ Links ]

Secretaría de Medio Ambiente y Recursos Naturales (SRNyMA). 2011. Anuario Estadístico de la Producción Forestal. México, D.F., México. pp. 11-24. https://www.gob.mx/semarnat/documentos/anuarios-estadisticos-forestales (20 de julio de 2021). [ Links ]

Silva-Flores, R., G. Pérez-Verdín and C. Wehenkel. 2014. Patterns of Tree Species Diversity in Relation to Climatic Factors on the Sierra Madre Occidental, Mexico. PLoS ONE 9(8):e105034. Doi: 10.1371/journal.pone.0105034. [ Links ]

Solís M., R., O. A. Aguirre C., E. J. Treviño G., J. Jiménez P., E. Jurado Y. y J. Corral-Rivas. 2006. Efecto de dos tratamientos silvícolas en la estructura de ecosistemas forestales en Durango, México. Madera y Bosques 12(2): 49-64. Doi: 10.21829/myb.2006.1221242. [ Links ]

Soto-Cervantes, J. A., A. Carrillo-Parra, R. Rodríguez-Laguna, J. J. Corral-Rivas , M. Pompa-García and P. A. Dominguez-Calleros. 2020. Survival, growth and carbon content in a forest plantation established after a clear-cutting in Durango, Mexico. PeerJ 8: e9506. Doi: 10.7717/peerj.9506. [ Links ]

Stuiver, B. M., D. A. Wardle, M. J. Gundale and M. C. Nilsson. 2016. Seedling responses to changes in canopy and soil properties during stand development following clear-cutting. Forest Ecology and Management 378: 31-43. Doi. 10.1016/j.foreco.2016.07.009. [ Links ]

Received: February 21, 2021; Accepted: August 11, 2021

Conflict of interests

The authors declare no conflict of interest.

Contribution by author

Jesús Alejandro Soto Cervantes: data collection in the field, data analysis and writing of the manuscript; Jaime Roberto Padilla Martínez, Emily García Montiel and José Javier Corral-Rivas: study design, coordination of data analysis, writing and review of the manuscript; Pedro Antonio Domínguez Calleros, Artemio Carrillo Parra, Rodrigo Rodríguez Laguna and Marín Pompa-García: advisory on data analysis and review of the manuscript.

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons