SciELO - Scientific Electronic Library Online

 
vol.8Influencia del cambio climático en los requerimientos térmicos del nopal tunero (Opuntia spp.) en el Centro-Norte de MéxicoDemandas al sector salud ante las manifestaciones del cambio climático en Jalisco índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista bio ciencias

versión On-line ISSN 2007-3380

Revista bio ciencias vol.8  Tepic  2021  Epub 04-Oct-2021

https://doi.org/10.15741/revbio.08.e1035 

Original articles

Use of Aspirine® (Acetylsalicilico acid) in the yield of grain of corn crop

C. J. Tucuch-Haas1 

A. Angulo-Castro2  * 

J. I. Tucuch-Haas3 

M. A. Mejia-Delgadillo2 

C. A. López-Orona2 

1 Tecnológico Nacional de México/ITS del Sur del Estado de Yucatán, Carretera Muna-Felipe Carrillo Puerto Tramo Oxcutzcab-Akil, Km 41+400, Oxcutzcab, Yucatán, México.

2 Facultad de Agronomía de la Universidad Autónoma de Sinaloa, Km.17.5 Carretera Culiacán-Eldorado, 80000 Culiacán, Sinaloa, México.

3 Instituto Nacional de Investigación Forestal Agrícola y Pecuario. Campo Experimental Mococha, Km 25 Carretera Mérida-Motul, Yucatán, México.


Abstract

Concentrations of 100, 1, 0.01 and 0.0001 µM of acetylsalicylic acid (ASA), using tablets of effervescent Aspirin® (500 mg of ASA) and well water as control, were applied in a foliar way to the canopy of corn plants, with seven days of age, established in field under an experimental design of randomized blocks, to test the tissue sensitivity of this cultivation and grain yield, starting from the premise that it has similar effects to its precursor molecule (salicylic acid). At the time of harvesting, data were collected on length and diameter of the cob, number of grains per row, weight of the seed and cob yield, by experimental plot and hectare. The results of this study indicate that plants were more sensitive to the application of 1 µM of ASA from commercial tablets, promoting a greater vegetative development, grain yield, and nutritional content (N, P and K) in the grain and vegetable tissues.

Keywords: Acetylsalicylic acid; Zea mays; grain yield

Resumen

Concentraciones de 100, 1, 0.01 y 0.0001 µM de ácido acetilsalicílico (ASA), proveniente de pastillas de Aspirina® efervescente (500 mg de ASA) y agua de pozo como control, se aplicaron de manera foliar al dosel de plantas de maíz, con siete días de edad, establecidas en campo bajo un diseño experimental de bloques al azar, para probar la sensibilidad del tejido de este cultivo y rendimiento del grano, partiendo de la premisa, que posee efectos similares a su molécula precursora (ácido salicílico). Al momento de la cosecha se recolectaron datos de longitud y diámetro de la mazorca, número de granos por hilera, peso de la semilla y rendimiento de mazorca, por parcela experimental y hectárea. Los resultados de este estudio indican que las plantas tuvieron mayor sensibilidad a la aplicación de 1 µM de ASA de pastillas comerciales, promoviendo un mayor desarrollo vegetativo, rendimiento del grano, y contenido nutrimental (N, P y K) en el grano y tejidos vegetal.

Palabras clave: Ácido acetilsalicílico; Zea mays; rendimiento de grano

Introduction

Currently, corn is the cereal with the highest production worldwide, in which, curiously, Mexico occupies the fifth place (FAOSTAT, 2020a), despite the great importance of its consumption (76 %) (Martínez & Villezca, 2005; Jaramillo et al., 2018) and energy contribution in the Mexican diet (59 %) (Sierra et al., 2004), besides being considered one of the centers of origin and domestication (Carrillo, 2009). Corn production in Mexico since the opening of trade and especially since the North American Free Trade Agreement (NAFTA) has been insufficient to meet domestic demand (Moreno-Sáenz et al., 2016), such that the volume of imports is currently estimated at 36 % (SIAP, 2018; FAOSTAT, 2020b), despite the efforts that have been made to counteract this deficit (Cadet-Díaz & Guerrero-Escobar, 2018), so it is advisable to develop new technologies that contribute to increasing supply.

Salicylic acid (SA), is a secondary metabolite synthesized, naturally, by plants as a defense mechanism against the attack of pathogens and environmental stress (Muthulakshmi & Lingakumar, 2017; Ding & Ding, 2020). However, when supplied exogenously and in low concentrations, it potentiates several physiological and biochemical processes that affect crop yields, suggesting its potential use in agricultural production (Tucuch-Haas et al., 2017a). This is in the same way that its analogue acetylsalicylic acid (ASA), commonly known as aspirin (Shinwari et al., 2018), which, although it has not been identified as a natural plant product, has been used in some research as a substitute for SA, without any risk of phytotoxicity and with similar effects (Raskin, 1992).

Answers such as the control in the opening and closing of the stomatal that regulate the rate of perspiration (Larqué-Saavedra, 1978; 1979), have been documented before the supply of ASA. Likewise, it has been reported its participation in the protection against damages caused by pathogens (White,1979; Mills & Wood,1983) due to its capacity to produce pathogenesis-related (PR) proteins (Jung et al., 1993), induce a programmed cell death (Garcia-Heredia et al., 2008) and act as a biotic inducer in the production of secondary metabolites (Godoy-Hernández & Loyola-Vargas, 1996); the latter linked to the activation of the expression of genes that regulate biosynthetic pathways (Qin et al., 2014). It has also been suggested to intervene in reducing the impact of environmental stress (Cai et al., 2006; Shinwari et al., 2018) by relieving damage to photosynthetic pigment content, increasing proline content and stimulating the antioxidant system (Daneshmand et al., 2009; Mahmoud, 2019) that inhibits the accumulation of superoxide free radicals and reduces the activity of phenylalanine ammonia-lyase, cinnamylalcohol dehydrogenase, and guaiacol peroxidase (Soliman et al., 2018).

In the corn crop (Zea mays L.), it has been documented that the supply of SA acts as an effective regulator of several physiological processes that favor plant development (Tucuch-Haas et al., 2016), yield (Tucuch-Haas et al., 2017b) and grain quality (Tucuch-Haas et al., 2017c). It is not known if commercial ASA (Aspirin) tablets express the same response. For this reason, based on the benefits reported for ASA and given the availability, easy acquisition of aspirin tablets and the search for easy application techniques, without having negative repercussions on the environment, this research was developed.

Material and Methods

The experiment was carried out in the town of La Rosita Angostura, Sinaloa, during the agricultural cycle autumn-winter 2017- 2018, in a plot of agricultural use (clay texture, EC 1.70 dS m-1 and pH 7.6), whose maximum average relative humidity was 92.80 ± 14.99 and minimum 33.89 ± 12.44, the maximum average temperature was 37.82 ± 8.45 °C and minimum 11.22 ± 6.34 °C. Hybrid corn seed was used, commercially known as Armadillo (Asgrow®). Soil preparation consisted of double subsoiling, cross-harrowing, soil leveling and marking. Planting was carried out on December 8th, 2017 with a precision seed drill at a furrow spacing of 0.80 m and a density of eight seeds per linear meter in incoming soil. Two fertilizations were made with ammonia as a nitrogen source (200 kg ha-1 in pre-sowing and 200 kg ha-1 in the phenological stage (v6).

The treatments were concentrations of 100, 1, 0.01 and 0.0001 μM ASA and well water as control. These concentrations, as well as the control, were sprayed with a backpack fumigator (Swissmex®) directed to the aerial part up to dew point in corn plants established in the field, during one week, in 24 hours intervals, starting seven days after germination. Bayer branded effervescent soluble Aspirin® tablets containing 500 mg of ASA were used as a source of ASA. To obtain the different ASA concentrations, the molecular weight of the ASA (180,158 g M-1) as well as the concentration and weight of the tablets were taken into account. These were diluted in well water until reaching the desired concentration, and the pH was adjusted to 5.5 with 1N HCL or 1N NaOH to lower or raise the pH of the solution, respectively, and surfactant (TWEEN® 20) was added at 0.1 %.

After 180 days after sowing (end of the experiment) six plants were evaluated at random from each experimental plot. The experimental plot was made up of four eight-meter-long furrows, and the plants evaluated came from the central furrows to avoid errors in the results, due to the contamination of the different treatments. There was collected data on plant height, measured from the base of the stem to the terminal apex; stem diameter, taken at 10 cm from the ground; dry weight of total biomass; length, diameter, weight of the cob and grain yield per plant. An analytical balance (Sartorius®), flexometer and digital vernier (Truper®, Mexico) were used to make the measurements. To determine the nutrient contents of nitrogen (N), phosphorus (P) and potassium (K) in plant tissue and grain, a sample was taken from the aerial part of the plants and 100 g of grain from each treatment; these were placed in a forced circulation oven at 70 °C until they reached a constant weight and were ground for laboratory analysis.

The evaluation of the nitrogen (N), phosphorus (P) and potassium (K) content was carried out under the following methodologies: N was determined by the semi-micro Kjeldahl procedure (Etchevers, 1987). The P was determined by colorimetry of molybdophosphoric complexes reduced with ascorbic acid (AOAC, 1980). The K by flame photometry according to Rodriguez & Rodriguez (2015). For K and P extracts from dry digestion were used. For the estimation of total contents, it was considered the concentrations of each element in the plant tissue and grains, as well as the weights of dry biomass of the aerial part and the grain.

The experimental design used was a randomized block with five repetitions, each repetition was made up of six plants. The results were analyzed by an analysis of variance (ANOVA) and a Tukey mean comparison test (p ≤ 0.05) using SAS software.

Results and Discussion

For plant height variable (Figure 1a) a significant increase of 8 to 12 % was observed with respect to the control, where the maximum value was registered with 1μM, however, between treatments they were not significant, although it can be seen that there is a slight variation between treatments. The lowest values correspond to the treatments with lower (0.0001 μM) and higher concentration (100 μM), which suggests that the highest expression of sensitivity to height increase, is subject to the concentration applied. These values allow reaffirming the capacity of ASA to regulate plant growth, as it has been pointed out for Solanum bulbocastanum cultivation (Daneshmand et al., 2009), Pisum sativum (El-Shraiy & Hegazi, 2009) and Lycopersicon esculentum (Shinwari et al., 2018), in which they found the induction of significant effects on plant height.

Figure 1 Effect of different concentrations of acetylsalicylic acid sprayed on corn seedlings on plant height (a) and total dry biomass (b). Means ± standard error are shown; n = 5. Identical letters on the bars indicate absence of significant difference (Tukey, α ≤ 0.05). 

With respect to the dry biomass of the aerial part of the plant (Figure 1b), the concentration of 1μM of ASA presented a statistically significant value with respect to the control with a 21.1 % difference, not so for the rest of the treatments, which, although not significant, the values exceeded the control from 6 to 15 %, which is consistent with the work of Daneshmand et al. (2009) and Soliman et al. (2018), who reported the same trend of behavior in Solanum bulbocastanum and Phaseolus vulgaris when this same concentration was supplied.

Regarding the accumulation of macroelements, in the aerial dry biomass (Table 1) 1 μM of ASA showed the best results with increases of 48.6, 42.5 and 19 %, respectively, for N, P and K, however, for K concentrations no statistical difference was observed. In the grain (Table 1), it can be seen that, for all the elements evaluated, the values of the treatments were above the control. However, greater significant impact was observed with the concentrations 0.01 and 1 μM with increases of 42.3 and 40.7 % for N, 33.3 and 53.3 % for P and 17.5 and 32.5 % for K respectively. The demonstration of the ability of ASA to intervene in the accumulation of nutrients supports the results of Daneshmand et al. (2009) who reported a significant increase (9.2 % under normal conditions and 44.2 % under salinity stress) of K in the dry biomass of Solanum bulbocastanum with 1.0 μM AAS.

Table 1 Average content of N, P and K in the aerial dry biomass and grain, in the corn crop, treated with acetylsalicylic acid in the seedling stage. 

Treatment FN FP FK NG PG KG
----------mg plant-1---------- ----------g plant-1----------
control 900.0±49.4c 61.2±3.3b 1774.3±96.5a 2.53±0.14b 0.30±0.016c 0.40±0.021c
0.0001 μM 1282.8±109.3ab 84.1±7.1a 2082.3±177.5a 2.70±0.12b 0.38±0.016b 0.42±0.019 bc
0.01 μM 1041.0±93.3bc 80.2±7.1a 2055.6±184.3a 3.60±0.16a 0.40±0.017b 0.47±0.022 ab
1 μM 1337.5±110.9a 87.2±7.2a 2127.6±176.4a 3.56±0.14a 0.46±0.018a 0.53±0.021a
100 μM 968.2±44.5c 61.5±2.8b 1865.4±85.7a 3.26±0.15a 0.36±0.017b 0.47±0.021b

FN: foliar nitrogen; FP: foliar phosphorus; FK: foliar potassium; NG: nitrogen in grain; PG: phosphorus in grain and KG: potassium in grain. Equal letters in a column after means ± standard error indicate absence of significant difference (Tukey, α ≤ 0.05).

Figure 2 shows the yield behavior with respect to ASA concentrations, in which it is observed that all treatments exceeded the control with 35.7 % (with 0.0001 and 1.0 μM ASA) and 32.4 % (with 0.01 and 100 μM ASA). For the weight of the cob, only 0.01 μM ASA concentration was not significant regarding the control, with 19 g equivalent to 12.9 %; while for the rest of the treatments, the differences were 14.5, 16.1 and 15.3 % respectively for 0.0001, 1.0 and 100 μM. On the other hand, for the yield per hectare, only the treatment with 1 μM presented statistically significant differences with a difference of 957 kg ha-1; the rest of the treatments, although they were not significant, their values were above the control with a difference of 821.0, 73.4 and 439.9 kg ha-1, for 0.0001, 0.01, and 100 μM, respectively. This behavior allows corroborating the action of ASA, in the yield and quality of grains and fruits reported for Pisum sativum (El-Shraiy & Hegazi, 2009), Prunus cerasu (Giménez et al., 2014) and Hordeum vulgare (Kabiry & Naghisadeh, 2015).

Figure 2 Effect of the spraying of different concentrations of acetylsalicylic acid on the grain yield in the corn crop (a. Weight of 100 grains, b. Grams per ear and c. Kilograms per ha), sprayed in the seedling stage. Means ± standard error are shown; n = 5. Identical letters on the bars indicate absence of significant difference (Tukey, α ≤ 0.05). 

The data reported in this study allow pointing out the sensitivity of corn culture tissues to both ASA and SA at low concentrations, which can be corroborated with the results reported by Tucuch-Haas et al. (2017b) who indicated a similar behavior in height, diameter and dry biomass of the plants; in accumulation of N, P, K, both in the biomass and in the grain; and in cob weight, number of grains per ear and grain yield of two harvest periods, with a foliar spray of 1.0 μM, in seedling stage (Tucuch-Haas et al., 2016). This is attributed to the rapid transformation of ASA, by the plant cell, into SA (Raskin, 1992), triggering a series of physiological responses such as the regulation of the ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) enzymatic activity (Wang et al., 2010) and control of electron transport of photosystem II, which favor photosynthesis (Janda et al., 2012; Wang et al., 2010); intervention on the control of osmotic and water potentials (Khan et al., 2013), regulating transpiration and stomatal conductance (Fahad & Bano, 2012); and increasing root mass, allowing a greater area of exploration in the soil (Tucuch et al., 2015; Tucuch-Haas et al., 2016), favoring the absorption of ions such as: NO3, H2PO4, Ca, Mg, K, mostly (Fahad & Bano, 2012; Tucuch-Haas et al., 2019).

Likewise, it is observed that biochemical responses controlling the activity of oxidative enzymes such as catalase (CAT), guaiac peroxidase (POD), superoxide reductase (SOD) and proline oxidase (PO) (Wang et al., 2010; Fahad & Bano, 2012; Ghasemzade & Jaafar, 2013) intervening in oxidation-reduction processes (Mateo et al, 2006); and participating in the accumulation of sugars, proteins, abscisic (ABA) and indoleacetic (IAA) acids and proline (Shakirova et al., 2003; Fahad & Bano, 2012); it also promotes the production of secondary metabolites such as flavonoids (Pacheco et al., 2013) and total phenols (Tucuch-Haas et al., 2017a) that participate in the protection of crops against pathogens.

Conclusion

Corn plants show a positive response to the application of 1 μM of acetylsalicylic acid from tablets commercially known as Aspirin® (effervescent), when sprayed to the canopy in seedling stage, promoting a higher vegetative development (12 %), grain yield (35.7), and N, P and K content, both in the grain (40.7, 53.3 and 32.5 %, respectively) and in the rest of its tissues (48.6, 42.5 and 19.9 %, respectively).

REFERENCES

AOAC. (1980). Official methods of analysis. 13 ed. Washington: AOAC, 1018p. [ Links ]

Bokshi, A. I, Morris, S. C. & Deverall, B. J. (2003). Effects of benzothiadiazole and acetylsalicylic acid on β-1,3-glucanase activity and disease resistance in potato. Plant Pathology, 52: 22-27. https://doi.org/10.1046/j.1365-3059.2003.00792.x [ Links ]

Cadet-Díaz, S. & Guerrero-Escobar, S. (2018). Factores que determinan los rendimientos de la producción de maíz en México: evidencia del censo agropecuario 2007. Agricultura, sociedad y desarrollo, 15: 311-337. http://www.scielo.org.mx/pdf/asd/v15n3/1870-5472-asd-15-03-311-en.pdfLinks ]

Cai, C., Li, X. & Chen, K. (2006). Acetylsalicylic acid alleviates chilling injury of postharvest loquat (Eriobotrya japonica Lindl.) fruit. European Food Research and Technology, 223: 533-539. https://doi.org/10.1007/s00217-005-0233-5 [ Links ]

Carrillo, T. C. (2009). Origen del maíz naturaleza y cultura en Mesoamérica. Ciencias, 92: 4-13. https://www.redalyc.org/pdf/644/64412119003.pdfLinks ]

Daneshmand, F., Arvin, M J. A. & Kalantari, K. M. (2009). Effect of Acetylsalicylic Acid (Aspirin) on Salt and Osmotic Stress Tolerance in Solanum bulbocastanum in Vitro: Enzymatic Antioxidants. American-Eurasian J. Agric. & Environ. Sci., 6 (1): 92-99. https://idosi.org/aejaes/jaes6(1)/14.pdfLinks ]

Ding, P. & Ding, Y. (2020). Stories of Salicylic Acid: A Plant Defense Hormone. Trends in plant science, 25(6): 549-565. https://doi.org/10.1016/j.tplants.2020.01.004 [ Links ]

El-Shraiy, A. M. & Hegazi, A. M. (2009). Effect of Acetylsalicylic Acid, Indole-3- Bytric Acid and Gibberellic Acid on Plant Growth and Yield of Pea (Pisum Sativum L.). Australian Journal of Basic and Applied Sciences, 3 (4): 3514-3523. http://www.ajbasweb.com/old/ajbas/2009/3514-3523.pdfLinks ]

Etchevers, J. D. (1987). Determinación de nitrógeno en suelos. In: Aguilar, S. A.; Etchevers, J. D. & Castellanos, R. J. Z. (Eds.). Análisis químico para evaluar la fertilidad del suelo. Publicación Especial Núm. 1. Sociedad Mexicana de la Ciencia del Suelo. 45-83 pp. [ Links ]

Fahad, S. & Bano, A. (2012). Effect of salicylic acid on physiological and biochemical characterization of maize grown in saline area. Pak. J. Bot, 44 (4): 1433-1438. https://www.pakbs.org/pjbot/PDFs/44(4)/41.pdfLinks ]

Food and Agricultural Organization of United Nations - Statistical Database [FAOSTAT]. (2020a). Cultivos. Retrieved from: Retrieved from: http://www.fao.org/faostat/es/#data/QC/visualize . [Last check: March 15th 2020]. [ Links ]

Food and Agricultural Organization of United Nations - Statistical Database [FAOSTAT]. (2020b). Series temporales anuales. Retrieved from: Retrieved from: http://www.fao.org/faostat/es/#data/OA . [Last check: March 15th 2020]. [ Links ]

García-Heredia, J. M., Hervás, M., De la Rosa, M. A. & Navarro, J. A. (2008). Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. Planta, 228: 89-97. https://doi.org/10.1007/s00425-008-0721-5 [ Links ]

Ghasemzadeh, A. & Jaafar, H. Z. E. (2013). Interactive Effect of Salicylic Acid on Some Physiological Features and Antioxidant Enzymes Activity in Ginger (Zingiber officinale Roscoe). Molecules, 18(5): 5965-5979. https://doi.org/10.3390/molecules18055965 [ Links ]

Giménez, M. J., Valverde, J. M., Valero, D., Guillén, F., Martínez-Romero, D., Serrano, M. & Castillo, S. (2014). Quality and antioxidant properties on sweet cherries as affected by preharvest salicylic and acetylsalicylic acids treatments. Food Chemistry, 160(1): 226-232. https://doi.org/10.1016/j.foodchem.2014.03.107 [ Links ]

Godoy-Hernandez, G. & Loyola-Vargas, V. M. (1997). Effect of acetylsalicylic acid on secondary metabolism of Catharanthus roseus tumor suspension cultures. Plant Cell Reports, 16: 287-290. https://doi.org/10.1007/BF01088282 [ Links ]

Janda, K., Hideg, E., Szalai, G., Kovács, L. & Janda, T. (2012). Salicylic acid may indirectly influence the photosynthetic electron transport. J. Plant Physiol, 169 (10): 971-978. https://doi.org/10.1016/j.jplph.2012.02.020 [ Links ]

Jaramillo, A. J. G., Peña, O. B. V., Hernández, S. J. H., Díaz, R. R. & Espinosa, C. A. (2018). Caracterización de productores de maíz de temporal en Tierra Blanca, Veracruz. Revista Mexicana de Ciencias Agrícolas, 9(5): 911-923. https://doi.org/10.29312/remexca.v9i5.1501 [ Links ]

Jung, J. L., Fritig, B. & Hahne, C. (1993). Sunflower (Helianthus annuus L.) Pathogenesis-Related Proteins. Plant Physiol, 101: 873-880. https://doi.org/10.1104/pp.101.3.873 [ Links ]

Kabiri, R. & Naghizadeh, M. (2015). Exogenous Acetylsalicylic Acid Stimulates’ Physiological Changes to Improve Growth, Yield and Yield Components of Barley under Water Stress Condition. Journal of Plant Physiology and Breeding, 5(1): 35-45. https://breeding.tabrizu.ac.ir/article_3795_0.htmlLinks ]

Khan, M., Iqbal, N., Masood, A., Per, T. S. & Khan, N. A. (2013). Salicylic acid alleviates adverse effects of heat stress on photosynthesis through changes in proline production and ethylene formation. Plant Signaling & Behavior, 8(11) e26374. https://doi.org/10.4161/psb.26374 [ Links ]

Larque-Saavedra, A. (1978). The Antiranspirant Effect of Acetylsalcylic Acid on Phaseolus vulgaris. Physiologia Plantarum, 43 (2): 126-128. https://doi.org/10.1111/j.1399-3054.1978.tb01579.x [ Links ]

Larqué-Saavedra, A. (1979). Stomatal Closure in Response to Acetylsalicylic Acid Treatment. Zeitschrift Für Pflanzenphysiologie, 93 (4): 371-375. https://doi.org/10.1016/S0044-328X(79)80271-8 [ Links ]

Mahmoud, R. A. (2019). Enhancing Pear Tolerance to Salinity Using Salicylic Acid, Acetylsalicylic Acid and White Willow Extract. International Journal of ChemTech Research 12 (03): 188-201 http://dx.doi.org/10.20902/IJCTR.2019.120326 [ Links ]

Martínez, J. I. & Villezca, B. P. A. (2005). La alimentación en México: Un estudio a partir de la encuesta nacional de ingresos y gastos de los hogares y de las hojas de balance alimenticio de las FAO. Ciencia UANL. 8 (1): 196-208. http://eprints.uanl.mx/1659/1/art_de_la_fao.pdfLinks ]

Mateo, A., Funck, D., Mühlnbock, P., Kular, B., Mullineaux, P. M. & Karpinski, S. (2006). Controlled levels of salicylic acid are required for optimal photosynthesis and redox homeostasis. J. Exp. Bot, 57(8): 1795-1807. https://doi.org/10.1093/jxb/erj196 [ Links ]

Mills, P. R. & Wood, R. K. S. (1984). The Effects of Polyacrylic Acid, Acetylsalicylic Acid and Salicylic Acid on Resistance of Cucumber to Colletotrichum lagenarium. Journal of Phytopathology, 111 (3-4): 209-216. https://doi.org/10.1111/j.1439-0434.1984.tb00763.x [ Links ]

Moreno-Sáenz, L. I., González-Andrade, S. & Matus-Gardea, J. A. (2016). Dependencia de México a las importaciones de maíz en la era del TLCAN. Revista Mexicana de Ciencias Agrícolas, 7 (1): 115-126. http://www.scielo.org.mx/pdf/remexca/v7n1/2007-0934-remexca-7-01-00115-en.pdfLinks ]

Muthulakshmi, S. & K Lingakumar, K. (2017). Role of salicylic acid (SA) in plants - A review. International Journal of Applied Research, 3: 33-37. https://doi.org/10.1146/annurev.pp.43.060192.002255 [ Links ]

Pacheco, A. C., Da Silva, C., Da Silva, F. & Alemán, A. C. (2013). Salicylic acid-induced changes to growth, flowering and flavonoids production in marigold plants. Glob. J. of Med. Plant Res, 7(42): 3158-3163. https://doi.org/10.5897/JMPR2013.5208 [ Links ]

Qin, B., Ma, L., Wang, Y., Chen, M., Lan, X., Wu, N. and Liao, Z. (2014). Effects of acetylsalicylic acid and UV-B on gene expression and tropane alkaloid biosynthesis in hairy root cultures of Anisodus luridus. Plant Cell, Tissue and Organ Culture, 117: 483-490. https://doi.org/10.1007/s11240-014-0454-z [ Links ]

Raskin I. (1992). Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Bioi. 43: 439-463. https://doi.org/10.1146/annurev.pp.43.060192.002255 [ Links ]

Rodríguez, F. H. & Rodríguez, A. F. (2015). Métodos de análisis de suelos y plantas: criterios de interpretación. 3ª ed. México: Trillas: UANL. 288 p. [ Links ]

Shakirova, F. M., Sakhabutdinova, A. R., Bezrukova, M. V., Fatkhutdinova, R. A. & Fatkhutdinova, D. R. (2003). Changes in the hormonal status of wheat seedlings induced by salicylic acid and salinity. Plant Sci, 164 (3): 317-322. https://doi.org/10.1016/S0168-9452(02)00415-6 [ Links ]

Shinwari, A., Ahmad, I., Khan, I., Khattak, H. & Azimi, A. S. (2018). Thermo-Tolerance in Tomato: Acetyl Salicylic Acid Affects Growth and Yield of Tomato (Solanum Lycopersicum L.) Under the Agro-Climatic Condition of Islamabad, Pakistan. Adv Agr Environ Sci. 1 (3): 102-107. https://ologyjournals.com/aaeoa/aaeoa_00017.phpLinks ]

Servicio de Información Agroalimentaria y Pesquera [SIAP]. (2018). Atlas Agroalimentario 2012-2018. https://nube.siap.gob.mx/gobmx_publicaciones_siap/pag/2018/Atlas-Agroalimentario-2018Links ]

Sierra, M. M., Becerra, E. L., Palafox, A. C., Barron, S. F., Cano, O. R., Zambada, A. M., Sandoval, A. E. R. & Romero, J. M. Caracterización de híbridos de maíz (Zea mays L.) con alta calidad de proteína por su rendimiento y tolerancia a pudrición de mazorca en el sureste de México. Rev. Mex. Fitopatol, 22 (2): 268-276. https://www.redalyc.org/articulo.oa?id=61222214Links ]

Soliman, M. H., Alayaf, A. A. M., El Kelish, A. A. & Abu-Elsaoud, A. M. (2018). Acetylsalicylic acid enhance tolerance of Phaseolus vulgaris L. to chilling stress, improving photosynthesis, antioxidants and expression of cold stress responsive genes. Botanical Studies, 59: 6. https://doi.org/10.1186/s40529-018-0222-1 [ Links ]

Tucuch, H. C. J., Alcántar, G. G. & Larqué, S. A. (2015). Efecto del ácido salicílico en el crecimiento de la raíz y biomasa total de plántulas de trigo. Terra Latinoamericana, 33: 63-68. https://www.redalyc.org/articulo.oa?id=57335800005Links ]

Tucuch-Haas, C. J., Alcántar-González, G., Volke-Haller, H. V., Salinas-Moreno, Y., Trejo-Téllez, L. I. & Larqué-Saavedra, A. (2016) Efecto del ácido salicílico sobre el crecimiento de raíz de plántulas de maíz. Revista Mexicana de Ciencias Agrícolas 7 (3): 709-716. http://www.scielo.org.mx/pdf/remexca/v7n3/2007-0934-remexca-7-03-709.pdfLinks ]

Tucuch-Haas, C. J., Pérez-Balam, J. V., Díaz-Magaña, K. B., Castillo-Chuc, J. M., Dzib-Ek, M. G., Alcántar-González, G. & Larqué-Saavedra, A. (2017a). Role of Salicylic Acid in the Control of General Plant Growth, Development, and Productivity. In: Nazar, R., Iqbal, N., Khan, N. (eds) Salicylic Acid: A Multifaceted Hormone. Springer, Singapore Salicylic Acid: A Multifaceted Hormone, 1-15. https://doi.org/10.1007/978-981-10-6068-7_1 [ Links ]

Tucuch-Haas, C., Alcántar-González, G., Salinas-Moreno, Y., Trejo-Téllez, L. I., Volke-Haller, V. H. & Larqué-Saavedra, A. (2017c). Aspersión foliar de ácido salicílico incrementa la concentración de fenoles en el grano de maíz. Rev. Fitotec. Mex, 40 (2): 235-238. https://www.redalyc.org/pdf/610/61051413015.pdfLinks ]

Tucuch-Haas, C., Alcántar-González, G., Trejo-Téllez, L. I, Volke-Haller, H., Salinas-Moreno, Y. & Larqué-Saavedra, A. (2017b). Efecto del ácido salicílico en el crecimiento, estatus nutrimental y rendimiento en maíz (Zea mays). Agrociencia, 51 (7): 771-781. https://www.redalyc.org/articulo.oa?id=30253291006Links ]

Tucuch-Haas, C., Pérez-Balam, J. V., Dzib-Ek, M.G., Alcántar-González, G. & Larqué-Saavedra, A. (2019). El ácido salicílico aumenta la acumulación de macro y micronutrientes en chile habanero. Revista Mexicana de Ciencias Agrícolas. 10 (4): 839-847. https://doi.org/10.29312/remexca.v10i4.1694 [ Links ]

Wang, L., Fan, L., Loescher, W., Duan, W., Liu, G., Cheng, J. & Luo, H. S. L. (2010). Salicylic acid alleviates decreases in photosynthesis under heat stress and accelerates recovery in grapevine leaves. BMC Plant Biology, 10: 34. https://doi.org/10.1186/1471-2229-10-34 [ Links ]

White, R. F. (1979). Acetylsalicylic acid (aspirin) induces resistance to tobacco mosaic virus in tobacco. Virology, 99 (2): 410-412. https://doi.org/10.1016/0042-6822(79)90019-9 [ Links ]

Cite this paper: Tucuch-Haas, C. J.; Angulo-Castro A., Tucuch-Haas, J. I., Mejia-Delgadillo, M. A., López-Orona, C. A. (2021). Use of Aspirine® (Acetylsalicilico acid) in the yield of grain of corn crop. Revista Bio Ciencias 8, e1035. doi: https://doi.org/10.15741/revbio.08.e1035

Received: July 17, 2020; Accepted: January 29, 2021

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons