SciELO - Scientific Electronic Library Online

 
vol.28 número1Fertilización de dos grupos genéticos de Pinus patula Schiede ex Schltdl. & Cham. en un ensayo de progenies de cuatro años índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.28 no.1 Chapingo ene./abr. 2022  Epub 02-Feb-2024

https://doi.org/10.5154/r.rchscfa.2020.12.076 

Scientific articles

Does the severity of a forest fire modify the composition, diversity and structure of temperate forests in Jalisco?

Daniel A. Cadena-Zamudio1 

José G. Flores-Garnica2  * 

Mónica E. Lomelí-Zavala2 

Ana G. Flores-Rodríguez3 

1 Instituto de Ecología A. C. Red de Biología Evolutiva. Carretera antigua a Coatepec 351. C. P. 91073. El Haya, Xalapa, Veracruz, México.

2 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Centro Altos de Jalisco. Av. Biodiversidad 2470. C. P. 44660. Tepatitlán de Morelos, Jalisco, México.

3 Universidad de Guadalajara, Centro Universitario de Ciencias Biológicas y Agropecuarias. Camino Ramón Padilla Sánchez núm. 2100. C. P. 45200. Nextipac, Zapopan, Jalisco.


Abstract

Introduction:

Forest fires are natural disturbances that influence structure, dynamics, performance, composition and diversity of species.

Objective:

To compare composition, structure and diversity of temperate forest vegetation affected by different levels of severity of a forest fire in Jalisco.

Materials and methods:

Composition, horizontal structure, importance value index (IVI), diameter class, diversity indexes of Shannon, Simpson, Margalef richness and Bray-Curtis similarity were evaluated in three regions (Bosque La Primavera and Sierra de Tapalpa and Sierra de Quila) of temperate forest with three levels of severity (no fire, moderate and extreme).

Results:

Twelve species from six families were recorded. Pinaceae and Fagaceae were the most dominant. Dominance ranged from 0.2 to 50 m2∙ha-1 in moderate and extreme severity sites. Pinus devoniana recorded the highest IVI (71 %) in Sierra de Tapalpa. The highest number of trees was recorded in diameter class ≤30 cm. Diversity and richness indices showed significant differences (P < 0.05) for Sierra de Tapalpa and Sierra de Quila and among fire levels; the highest indices were recorded in sites of moderate severity. Tree composition similarity between regions was low (<33 %).

Conclusions:

Moderate severity of forest fire favored composition, structure and diversity of vegetation in temperate forests of Jalisco, indicating that the level of severity influences resilience of forest ecosystem communities.

Keywords: fire; Pinus devoniana; Quercus; diversity indices; vegetation structure

Resumen

Introducción:

Los incendios forestales son perturbaciones naturales que influyen en la estructura, dinámica, funcionamiento, composición y diversidad de especies.

Objetivo:

Comparar la composición, estructura y diversidad de la vegetación de bosques templados afectados por diferentes niveles de severidad de un incendio forestal en Jalisco.

Materiales y métodos:

La composición, estructura horizontal, índice de valor de importancia (IVI), clases diamétricas, índices de diversidad de Shannon, Simpson, riqueza Margalef y similitud de Bray-Curtis se evaluaron en tres regiones (bosque La Primavera y sierras de Tapalpa y Quila) de bosque templado con tres niveles de severidad (sin incendio, moderada y extrema).

Resultados:

Se registraron 12 especies de seis familias, siendo Pinaceae y Fagaceae las de mayor representatividad. La dominancia osciló entre 0.2 a 50 m2∙ha-1 en sitios de severidad moderada y extrema. Pinus devoniana registró el mayor IVI (71 %) en sierra de Tapalpa. La mayor cantidad de individuos se registró en las clases diamétricas ≤30 cm. Los índices de diversidad y riqueza mostraron diferencias significativas (P < 0.05) en las sierras de Tapalpa y Quila y entre los niveles del incendio; los índices más altos se registraron en sitios de severidad moderada. La similitud de la composición arbórea entre regiones fue baja (<33 %).

Conclusiones:

La severidad moderada del incendio forestal favoreció la composición, estructura y diversidad de la vegetación de los bosques templados de Jalisco, lo que sugiere que el nivel de severidad influye en la capacidad de resiliencia de las comunidades de los ecosistemas forestales.

Palabras clave: fuego; Pinus devoniana; Quercus; índices de diversidad; estructura de vegetación

Highlights:

  • Sites with fire levels in La Primavera forest and Sierra de Quila and Sierra de Tapalpa were evaluated.

  • Moderate severity of the fire generated greater diversity and richness of forest species.

  • Pinus devoniana recorded the highest IVI (71 %) in Sierra de Tapalpa.

  • The greatest number of individuals was recorded in diameter class ≤30 cm.

  • The post-fire temperate forest shows lower dominance, but greater interspecific competition.

Introduction

Temperate forests are one of the most important ecosystems in the world and represent 15 % of the land surface (Del-Val & Sáenz, 2017). In Mexico, these forests are mainly located in the Sierra Madre Occidental and cover 17.4 % (34 million hectares) of the surface (Monárrez-González, Pérez-Verdín, López-González, Márquez-Linares, & González, 2018). These ecosystems are considered megadiverse for harboring 50 % (50) and 33 % (200) of the species of Pinus L. and Quercus L., respectively (Challenger & Dirzo, 2009). In Mexico, despite the great importance of temperate forests, factors such as fires have reduced the area and, consequently, their populations (Comisión Nacional Forestal [CONAFOR], 2020).

Forest fires are natural disturbances that occur in many ecosystems (He, Lamont, & Pausas, 2019). Fire is a key factor in temperate forests that restarts the cycle of ecological succession (Sugihara, Van-Wagtendonk, Fites-Kaufman, Shaffer, & Thode, 2006). However, such relationship is determined by the level of severity and frequency (Neris et al., 2016); for example, low severity fires generate no significant changes in the forest, while moderate severities modify nutrient availability as well as soil physicochemical properties that promote species abundance, influencing structure and composition (Pourreza, Hosseini, Sinegani, Matinizadeh, & Alavai, 2014). In a similar way, moderate severity increases species diversity, because it increases niche complementarity by reducing niche competition (Heydari, Moradizadeh, Omidipour, Mezbani, & Pothier, 2020). On the other hand, in extreme severities there is high mortality of individuals with negative effects on the tree, shrub and herbaceous stratum (Lloret, 2004). This variation in severity has complicated the identification of a single pattern of response in the population dynamics (composition, structure and diversity) of species in temperate forests (Quintero-Gradilla, Jardel-Peláez, Cuevas-Guzmán, García-Oliva, & Martínez-Yrizar, 2019).

One way to understand the relationship between forest fires, both with the elements that integrate temperate forests and their functioning, is based on specific metrics and indicators (Alanís-Rodríguez, Mora, & Marroquín de la Fuente, 2020). Diversity indices (richness and abundance) allow understanding interrelationships of species within a forest, as well as the succession processes caused by fires; in addition, they provide scientific validity for the establishment of conservation criteria (Rivas, Calderón, & Pérez, 2008). Also, the structure (vertical and horizontal) of forests is an indicator that includes density and size distribution of trees, as well as frequency, abundance and dominance, and provides relevant information for management and functioning of the ecosystem (Louman, 2001).

In this regard, knowing the responses of temperate forests according to fire severity, through criteria and metrics that evaluate the maintenance of diversity and conservation of floristic composition, will allow generating knowledge that contributes to their conservation and management (Rodríguez-Trejo & Fulé, 2003; Wehenkel, Corral-Rivas, & Gadow, 2014). Therefore, the objective of this research was to analyze and compare composition, structure, and diversity of temperate forest vegetation affected by different levels of fire severity in the northeastern state of Jalisco, Mexico. It is hypothesized that moderate fire severity will favor composition, structure and diversity of temperate forest vegetation.

Materials and Methods

Study area

The study included the forest regions Bosque La Primavera, Sierra de Quila and Sierra de Tapalpa of Jalisco, Mexico (Table 1), characterized as temperate forests with sub-humid climate and summer rainfall (Comisión Nacional del Agua [CONAGUA], 2020). The regions differ in slope, elevation and exposure, but have similar type of soil (euric regosol) and coniferous vegetation, with high fire occurrence (Huerta & Ibarra, 2014).

Table 1 Physiographic and climatic description of the three study forest regions in Jalisco, Mexico. 

Regions Latitude (N) Longitude (O) Elevation (m) MAT (°C) AAP (m) Exposure Vegetation
Bosque La Primavera 20° 36’ 30.4’’ 103° 35’ 57.8’’ 1 744-2 274 20.6 1 000 Northeast Oak-pine
Sierra de Tapalpa 19° 36’ 49’’ 103° 54’ 00’’ 2 157-2 899 dic-18 882 Northeast Pine-oak
Sierra de Quila 20° 18’ 08.5’’ 104° 01’ 35.7’’ 1 348-2 539 16.7 883.1 Southeast Oak

MAT = Mean annual temperature, AAP = average annual precipitation.

Previous studies in these regions indicate that the frequency of forest fires has increased in recent years, mainly in Bosque La Primavera and Sierra de Tapalpa with 165 fires∙year-1 and, to a lesser extent, in Sierra de Quila with 10 fires∙year-1 (Flores-Garnica, Flores-Rodríguez, Lomelí-Zavala, Ruíz-Guzmán, & García-Bernal, 2019). A heterogeneous mosaic of patches with levels of wildfire severity has been generated due to the high frequency of fires, and topographic, climatic, and vegetation variation. Sites with low severity show very little burn damage; those with moderate severity have burned trees in the tree stratum and small fractions of crowns or understory; and in sites with extreme severity, the tree, shrub and herbaceous stratum are completely burned (Lloret, 2004). Based on these severity levels, sites with extreme fire and moderate fire were selected in the three study regions, and intact sites that had not been damaged by fire in recent decades were used as control.

Experimental design

The study was based on a factorial experimental design composed of two factors: (a) regions (Bosque La Primavera and Sierra de Quila and Sierra de Tapalpa) and (b) severity levels (no fire, moderate fire and extreme fire); the combination of these gave a total of nine treatments. Within each of the severities per region, three sites were randomly selected, which were considered as replicates, resulting in 27 sampling sites. The sampling unit was circular (400 m2), where all individuals larger than 7.5 cm diameter at breast height (at 1.3 m above ground level) were evaluated. The following data were recorded: taxonomic identity (genus, species and common name), and basal area and total height using a diameter tape (Forestry Suppliers Inc. 283d) and a laser hypsometer (Forestry Pro Nikon 8381), respectively.

Data recording and analysis

Each region was characterized by its composition, horizontal structure, diameter class, diversity and similarity of tree species. Composition was obtained by collecting botanical material from the field of all tree species in sampling sites. Identification was done by taxonomic keys, while the validity of scientific names was corroborated on The Plant List (2013) platform. The horizontal structure of the species was described by abundance, defined as the number of trees; dominance according to the basal area; and frequency was determined by presence at sampling sites (Alanís-Rodríguez et al., 2020). The data obtained were used to calculate the importance value index (IVI), which acquires percentage values.

Abundance was calculated according to the number of trees using the following formulas:

Ai= NiS

ARi=Aii=1n Aix100

where,

A i  = absolute abundance (individuals∙ha-1)

AR i = relative abundance of species i in relation to total abundance (%)

N i  = number of individuals of species i

S = sampling area (ha).

Relative dominance was calculated according to the basal area with the following formulas:

Di= AbiS

DRi=Dii=1n Dix 100

where,

D i = absolute dominance (m2∙ha-1)

DR i = relative dominance of species i in relation to dominance (%)

Ab i = basal area of species i (m2)

S = area (ha).

Relative frequency was obtained with the following formulas:

Fi= fiNS

FRi=Fii=1n Fix100

where,

F i = absolute frequency

FR i = relative frequency of species i in relation to the sum of frequencies (%)

f i = number of sites where species i is present

NS = total number of sampling sites.

The importance value index (IVI) was estimated as:

IVI= ni=1 ARi, DRi, FRi3

where,

AR i = relative abundance of species i in relation to total abundance

DR i = relative dominance of species i in relation to total dominance

FR i = relative frequency of species i in relation to total frequency.

Histograms of diametric distributions were created according to the number of trees recorded for the three study regions; equations and R2 were calculated for each graph. The analyses were performed using the statistical program PAST version 3.2 (Hammer, Harper, & Ryan, 2001).

Diversity and richness indices were determined using the Shannon's index (H'), which estimates habitat heterogeneity by number of species present and relative abundance; Margalef's species richness (Dmg), which evaluates the biodiversity of a community based on numerical distribution of individuals, combining the number of species and number of individuals; and Simpson's diversity (D), which determines whether the community is composed of very abundant species (Magurran, 2004). These indices were calculated using the following equations:

H´=i=1SPi*ln(Pi)

DMg=(S-1)ln(N)

D=Pi2

where,

S = number of species present

Pi = number of individuals of species i

N = total number of individuals

P i = proportion of species i in the community (ni/N)

ni = number of individuals of species i

To determine statistically significant differences among treatments, a two-factor analysis of variance (ANOVA) was performed between fire severity levels and study regions. Data were checked for compliance with normality assumptions using the Shapiro-Wilk test. Significant differences were corroborated with the Tukey tests (α = 0.05) using GraphPad Prism (2019) version 8.2.1.

The similarity in the composition of the three regions was determined based on the abundance of tree species using a Bray-Curtis (1957) dendrogram, which reflects the percentage of similarity or dissimilarity of the regions. The analyses were performed using PAST version 3.2 (Hammer et al., 2001).

Results and Discussion

Composition

A total of 573 trees belonging to 12 species distributed in six families were recorded, which are shown in Table 2. According to Table 3, the Pinaceae and Fagaceae families were the most represented (86.2 %) of the tree composition in the three regions, while the remaining 13.7 % corresponded to the species Arctostaphylos pungens Kunth, Bursera penicillata (Sessé & Moc. ex DC.) Engl., Crataegus mexicana Moc. & Sessé ex DC. and Fraxinus uhdei (Wenz.) Lingelsh. The tree composition of the three study regions corresponds to temperate forests typical of mountainous areas of Mexico (De León, García, Andrade, & Ruíz, 2013; Graciano-Ávila et al., 2020). The highest number of individuals in the fire regions/levels belong to the genera Pinus and Quercus in the sites with moderate and extreme fire (54 to 89 individuals). This coincides with Juárez-Martínez and Rodríguez-Trejo (2003), who mention that burned areas show greater natural regeneration than non-fired areas, because fire causes the death of trees and, consequently, facilitate the opening of the canopy and favors the establishment of pioneer species. Authors such as Graciano-Ávila et al. (2017) point out that the abundance of Pinus and Quercus is due to their wide distribution in mountain ranges, but also to their high diversity, as they are genera, which host most of the species of their respective families (Pinus 50 and Quercus 161). Although the abundance of these genera is mainly due to climatic affinity, it may also be due to irregular forest management, which leads to conglomeration of small groups of species at the local level, due to the extraction of other species of greater economic value (López-Hernández et al., 2017).

Table 2 Tree species recorded in Bosque La Primavera and Sierra de Quila and Sierra de Tapalpa in the northeast of Jalisco. 

Species Common name Family
Arctostaphylos pungens Kunth Pointleaf manzanita Ericaceae
Bursera penicillata (Sessé & Moc. ex DC.) Engl. Mexican lavender Burseraceae
Crataegus mexicana Moc. & Sessé ex DC. Mexican hawthor Rosaceae
Fraxinus uhdei (Wenz.) Lingelsh. Tropical ash Oleaceae
Pinus douglasiana Martínez Doublas pine Pinaceae
Pinus lumholtzii B. L. Rob. & Fernald Sad pine Pinaceae
Pinus devoniana Lindl. Michoacan pine Pinaceae
Pinus oocarpa Scheide Egg-cone pine Pinaceae
Quercus castanea Née Oak Fagaceae
Quercus magnoliifolia Née Mexican oak Fagaceae
Quercus obtusata Bonpl. Oak Fagaceae
Quercus resinosa Liebm. Oak Fagaceae

Table 3 Number of individuals of tree species recorded per region and severity of forest fire (NF = no fire, MF = moderate fire, EF = extreme fire) in temperate forests of Jalisco. 

Species Bosque La Primavera Sierra de Quila Sierra de Tapalpa Total (%)
NF MF EF NF MF EF NF MF EF
Arctostaphylos pungens - - - 2 - - - - 2 0.35
Bursera penicillata - - - 4 - 3 - - 8 15 2.62
Crataegus mexicana - - - - - 3 16 14 19 52 9.8
Fraxinus uhdei - - - - - 1 9 - - 10 1.75
Pinus douglasiana 21 36 10 12 23 1 - - - 103 17.9
Pinus lumholtzii - - - 9 - 11 - - - 20 3.49
Pinus devoniana - - - 12 4 8 26 46 59 155 27.5
Pinus oocarpa - - 16 - - - - - - 17 2.97
Quercus castanea - - - - - - 10 14 2 26 4.54
Quercus magnoliifolia 39 17 17 - - - 5 2 1 81 14.1
Quercus obtusata - 11 2 7 12 20 - - - 51 8.9
Quercus resinosa - - 9 8 24 - - - - 41 7.16
Total 60 64 54 52 65 47 66 76 89 573 100

Horizontal structure

Tables 4, 5 and 6 include the structural parameters of species in the three study forest regions. The Pinaceae family had the highest abundance of individuals regardless of fire severity levels. This agrees with that reported by Hernández-Salas et al. (2018), who found higher abundance of species of the genus Pinus in temperate forests of Chihuahua. In Bosque La Primavera, only the Fagaceae and Pinaceae families were present; specially Q. magnoliifolia (39 individuals, 65 %) and P. douglasiana (39 individuals, 54.93 %) were the most abundant. In Sierra de Quila, Q. obtusata was the most abundant with 42.5 %, while in Sierra de Tapalpa, P. devoniana was the most abundant (66.2 %).

In moderate severity sites, the most dominant species were P. douglasiana (49.3 to 53.9 %) and P. devoniana (88.4 %), while Q. magnoliifolia (51.1 %) and P. devoniana (88.2 %) were dominant in extreme severity sites (Tables 4, 5 and 6). The dominance values ranged from 0.2 to 50 m2∙ha-1 in sites of moderate and extreme severity; this is the result of recurrent forest fires that have led to changes in growth, but also in slope and orientation, as well as in the topoforms (valleys and hills) where they develop (Martínez-Antúnez et al., 2013).

Authors such as Guzmán (2009) mention that an IVI greater than 50 % represents the ecological dominance of a taxon. In this study, IVI values in La Primavera and Quila were less than 50 %, which would indicate greater species competition for resources and less dominance of post-fire taxa; however, Sierra de Tapalpa had the highest IVI values for the Pinaceae family, with P. devoniana (60 to 70 %) being dominant in sites with and no fire. Despite the high IVI of this species, the value was lower than that reported (80 %) by Alanís-Rodríguez et al. (2011) in sites affected by fire involving pine species.

Table 4 Structural parameters of species (Quercus and Pinus) exposed to different fire severity in Bosque La Primavera, Jalisco, Mexico. 

Species No. trees Ra (%) Rf (%) Rd (%) IVI (%)
No fire
Q. magnoliifolia 39 65 52.14 66.75 61.3
P. douglasiana 21 35 47.86 33.25 38.7
Total 60 100 100 100 100
Moderate
P. douglasiana 21 29.58 43.79 53.9 42.42
Q. magnoliifolia 39 54.93 47.71 23.47 42.04
Q. obtusata 11 15.49 8.5 22.63 15.54
Total 71 100 100 100 100
Extreme
Q. magnoliifolia 17 31.48 41.01 51.09 41.19
P. douglasiana 10 18.52 37.64 13.67 23.27
P. oocarpa 16 29.63 8.99 27.2 21.94
Q. resinosa 9 16.67 5.06 4.2 8.64
Q. obtusata 2 3.7 7.3 3.85 4.95
Total 54 100 100 100 100

Ra = relative abundance; Rf = relative frequency (%); Rd = relative dominance (%); IVI: importance value index.

Table 5 Structural parameters of species exposed to different fire severity in temperate forests of the Sierra de Quila, Jalisco, Mexico. 

Species No. trees Ra (%) Rf (%) Rd (%) IVI (%)
No fire
Pinus devoniana 12 22.22 15.09 47.23 28.18
Pinus douglasiana 12 22.22 22.64 27.68 24.18
Quercus obtusata 8 14.81 25.16 10.24 16.74
Pinus lumholtzii 9 16.67 12.58 13.43 14.23
Quercus resinosa 9 16.67 20.13 0.68 12.49
Total 54 100 100 100 100
Moderate
Pinus douglasiana 23 35.94 26.87 49.33 37.38
Quercus obtusata 12 18.75 29.85 25.38 24.66
Quercus resinosa 23 35.94 23.88 11.87 23.9
Pinus devoniana 4 6.25 17.91 12.42 12.19
Bursera penicillata 4 7.41 4.4 0.73 4.18
Arctostaphylos pungens 2 3.13 1.49 1 1.87
Total 64 100 100 100 100
Extreme
Quercus obtusata 20 42.55 26.67 30.68 33.3
Pinus devoniana 8 17.02 16 44.81 25.94
Pinus lumholtzii 11 23.4 13.33 16.95 17.9
Pinus douglasiana 1 2.13 24 5.54 10.56
Fraxinus uhdei 1 2.13 13.33 0.83 5.43
Bursera penicillata 3 6.38 4.67 0.58 3.88
Crataegus mexicana 3 6.38 2 0.61 3
Total 47 100 100 100 100

Ra = relative abundance; Rf = relative frequency (%); Rd = relative dominance (%); IVI: importance value index.

Table 6 Structural parameters of species exposed to different fire severity in the Sierra de Tapalpa, Jalisco, Mexico. 

Species No. trees Ra (%) Rf (%) Rd (%) IVI (%)
No fire
Pinus devoniana 26 39.39 58.74 92.12 63.42
Crataegus mexicana 16 24.24 21.97 3.31 16.51
Quercus castanea 10 15.15 11.66 2 9.61
Fraxinus uhdei 9 13.64 4.04 0.42 6.03
Quercus magnoliifolia 5 7.58 3.59 2.15 4.44
Total 66 100 100 100 100
Moderate
Pinus devoniana 46 60.53 61.21 88.48 70.07
Crataegus mexicana 14 18.42 22.9 3.45 14.92
Quercus obtusata 14 18.42 12.15 8.05 12.87
Quercus magnoliifolia 2 2.63 3.74 0.02 2.13
Total 76 100 100 100 100
Extreme
Pinus devoniana 59 66.29 59.01 88.22 71.17
Crataegus mexicana 19 21.35 22.07 3.88 15.77
Bursera penicillata 8 8.99 3.6 6.2 6.26
Quercus castanea 2 2.25 11.71 1.09 5.02
Quercus magnoliifolia 1 1.12 3.6 0.61 1.78
Total 89 100 100 100 100

Ra = relative abundance; Rf = relative frequency (%); Rd = relative dominance (%); IVI: importance value index.

Diameter class

Figure 1 shows that diameter class distribution had an inverted J trend, i.e., more individuals in smaller diameter class. The Bosque La Primavera recorded a greater number of individuals in 20 cm (n = 59) and 30 cm (n = 56) diameter class in moderate fire severities. In the case of Sierra de Quila, the areas with moderate and extreme severity had a greater number of individuals (n = 21 and 22), only in the 20 cm diameter class. In contrast, in the Sierra de Tapalpa, the 10 cm diameter class had the highest number of individuals (n = 40) in the extreme fire severity level. In general, the dominance of individuals in regrowth or juveniles with diameters of 10 to 30 cm was greater in sites with moderate and extreme severity, which agrees with Rodríguez, Mata, Moya, and Guzmán (2003) and Quintero-Gradilla et al. (2019) for temperate forests affected by fire in the Sierra de Monterrey and Sierra de Manantlán, Jalisco. The results indicate that the post-fire forests are growing with active regeneration, since more than 50 % of the individuals were grouped in three diameter classes, which would guarantee the survival of the ecosystem by having a reserve of young trees (Manzanilla-Quijada et al., 2020).

Figure 1 Diameter class of tree species recorded in the study regions (Bosque La Primavera [A], Sierra de Quila [B] and Sierra de Tapalpa [C]) with three levels of forest fire severity (no fire, moderate and extreme). Bars indicate the mean ± standard error of three replicates (sites). Dotted lines show the trend of an inverted J; that is, more individuals in smaller diameter class. 

Diversity and richness indices

The specific richness in this study was 12 species, a lower result than that reported by Mora-Donjuán et al. (2013), who recorded 20 species in post-fire forests. Unlike the above-mentioned study, the present study evaluated contrasting fire severities, so species mortality increases according to a higher severity (Neris et al., 2016).

ANOVA indicated that the model was significant; however, the Tukey's test results showed that seven of the nine possible interactions were not statistically different (F = 165.4, P > 0.05). Severity level and region are analyzed separately in Figure 2. Diversity and richness indices were significantly different among severity levels (F = 106.6, P ≤ 0.001) (Figure 2A). Shannon diversity was higher (F = 106.6, P ≤ 0.001) for the site with moderate level (H' = 1.83 ± 1.73). Diversity was higher than that reported by Alanís et al. (2008) and García-García, Alanís-Rodríguez, Aguirre-Calderón, Treviño-Garza, and Graciano-Ávila (2020) with values of H'= 1.6 and H'= 0.64 to 1.6, respectively, in post-fire sites. Margalef's richness index was also significantly different (F = 2.08, P ≤ 0.001) with a D Mg = 2.01 ± 1.88 for moderate sites; however, it is lower than the D Mg = 3.16 value reported by Graciano-Ávila, Alanís-Rodríguez, Aguirre-Calderón, Rubio-Camacho, and González-Tagle (2018). Regarding the Simpson's index, the D value = 2.02 ± 1.88 for the site with moderate severity (F = 2.08, P ≤ 0.001) was higher than that reported by Quintero-Gradilla et al. (2019) in their study on post-fire stand chronosequence of 8, 28, and 60 years with values of D = 0.09.

When analyzing fire levels of evaluated regions, differences were found in diversity and richness indices in Sierra de Quila (F = 33.26, P ≤ 0.001; Figure 2C) and in Sierra de Tapalpa (F = 9.97, P ≤ 0.02; Figure 2D), but not in Bosque La Primavera (P ≥ 0.05) (Figure 2B). The increase in diversity and richness in sites with moderate fires is related to the intermediate disturbance hypothesis, where there are favorable conditions for species and their biotic interactions (competition), which promotes greater diversity, due to the generation of ecological niches that avoid the competitive exclusion of species (Huston, 2014). In addition, physicochemical properties of the soil, understory vegetation and canopy cover are not substantially modified for moderate fire severities, which favors the survival and development of species (Cadena-Zamudio, Flores-Garnica, Flores-Rodríguez, & Lomelí-Zavala, 2020).

Finally, diversity indices between study regions (Figure 2E) were similar (P ≥ 0.05). Shannon's diversity indices H' =1.82 ± 1.72 and Margalef richness D Mg = 1.57 ± 1.45 in Sierra de Quila were higher than those reported by Buendía et al. (2019) of H' = 0.83 to 1.78 and Hernández-Salas et al. (2013) with D Mg = 0.90 to 1.04 for temperate forest in Mexico.

Figure 2 Diversity and richness indices per forest fire severity (A); fire severity levels in Bosque La Primavera (B), Sierra de Quila (C), Sierra de Tapalpa (D); and in the study regions (E). In each index, different letters denote means (± standard error) significantly different according to the Tukey's test (P < 0.05) among severity level or among regions. 

Similarity coefficient

The grouping analysis (Bray-Curtis similarity coefficient) showed the formation of an isolated entity and a well-defined group (Figure 3). The first corresponded to Sierra de Tapalpa with 17 %; on the other hand, the group formed by Bosque La Primavera and Sierra de Quila had 33 % similarity, sharing the species Q. obtusata, Q. resinosa and P. douglasiana, which corresponds to an oak-pine plant community. The results of this study agree with Domínguez-Gómez et al. (2018), who found similarity greater than 30 % in their evaluation sites. The similarity of Bosque La Primavera and Sierra de Quila are influenced by the number of individuals of taxa with higher composition, mainly in sites with moderate and extreme fire (Table 3), but also by physiographic characteristics such as altitudinal affinity (1 500 to 2 000 m) (Santiago-Pérez, Ayón, Rosas-Espinoza, Rodríguez, & Toledo, 2014). The low similarity of the Tapalpa region may be due to the characteristics of the area such as altitude, presence of hills and slopes (Table 1).

Figure 3 Bray-Curtis similarity coefficient of three forest regions in Jalisco, Mexico. 

Conclusions

Moderate severity of forest fire favored composition, structure and diversity of vegetation in temperate forests of Jalisco. The study regions are heterogeneous in structure, with active regeneration and high species diversity and richness in moderate severity compared to non-fire sites. This indicates that level of severity is a determining factor in the resilience capacity of forest ecosystem communities, mainly when it is moderate. Therefore, the evaluation of characteristics such as structure, composition and diversity of temperate forests according to forest fire severity will allow understanding changes in forest dynamics to make better conservation decisions in these ecosystems.

Acknowledgments

This research was funded by project 1-1.6- 14573934545-F-M.2.1 of Dr. José German Flores Garnica. The authors thank the Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP) for giving us all the facilities to carry out this study. We also thank the people of the Flora and Fauna Protection Area (APFF) of La Primavera, APFF of Sierra de Quila and APFF of Sierra de Tapalpa.

References

Alanís-Rodríguez, E., Jiménez-Pérez, J., Valdecantos-Dema, A., Pando-Moreno, M., Aguirre-Calderón, O., & Treviño-Garza, E. J. (2011). Caracterización de regeneración leñosa post-incendio de un ecosistema templado del Parque Ecológico Chipinque, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 17(1), 31‒39. doi: 10.5154/r.rchscfa.2010.05.032 [ Links ]

Alanís-Rodríguez, E., Jiménez-Pérez, J., Espinoza-Vizcarra, D., Jurado-Ybarra, E., Aguirre-Calderón, O. A., & González-Tagle, M. A. (2008). Evaluación del estrato arbóreo en un área restaurada post-incendio en el Parque Ecológico Chipinque, México. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 14(2), 113‒118. Retrieved from https://revistas.chapingo.mx/forestales/?section=articles&subsec=issues&numero=38&articulo=498Links ]

Alanís-Rodríguez, E., Mora, O. A., & Marroquín de la Fuente, J. (2020). Muestreo ecológico de la vegetación (1.a ed.). Nuevo León, México: Tendencias. [ Links ]

Bray, J. R., & Curtis, J. T. (1957). An ordination of the upland forest communities of southern Wisconsin. Ecological Monographs, 27(4), 325‒349. doi: 10.2307/1942268 [ Links ]

Buendía-Rodríguez, E., Treviño-Garza, E. J., Alanís-Rodríguez, E., Aguirre-Calderón, O. A., González-Tagle, M. A., & Pompa-García, M. (2019). Estructura de un ecosistema forestal y su relación con el contenido de carbono en el noreste de México.Revista Mexicana de Ciencias Forestales , 10(54), 4‒25. doi: 10.29298/rmcf.v10i54.149 [ Links ]

Cadena-Zamudio, D. A., Flores-Garnica, J. G., Flores-Rodríguez, A. G., Lomelí-Zavala, M. E. (2020). Efecto de incendios en la vegetación de sotobosque y propiedades químicas de suelo de bosques templados. Agroproductividad, 13(4), 65‒72. doi: 10.32854/agrop.vi.1684 [ Links ]

Challenger, A., & Dirzo, R. (2009). Factores de cambio y estado de la biodiversidad. In CONABIO (Ed.), Capital natural de México. Estado de conservación y tendencias de cambio (vol. II, pp. 37-73). México: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. [ Links ]

Comisión Nacional del Agua (CONAGUA). (2020). Normales climatológicas por estado. Retrieved November 25, 2020 from https://smn.conagua.gob.mx/es/informacion-climatologica-por-estado?estado=jalLinks ]

Comisión Nacional Forestal (CONAFOR). (2020). Reporte semanal de incendios. Retrieved July 20, 2020, from https://www.gob.mx/conafor/es/documentos/reporte-semanal-de-incendiosLinks ]

De León, M. G. D., García, A. A., Andrade, S. H., & Ruíz, A. M. (2013). Distribución de la vegetación a través de un transecto sobre la Sierra Madre Occidental de Durango, México. Revista Latinoamericana de Recursos Naturales, 9(1), 30‒40. Retrieved from http://revista.itson.edu.mx/index.php/rlrn/article/view/209Links ]

Del-Val, E., & Sáenz-Romero, C. (2017). Insectos descortezadores (Coleoptera: Curculionidae) y cambio climático: problemática actual y perspectivas en los bosques templados.TIP Revista Especializada en Ciencias Químico-Biológicas,20(2), 53‒60. doi: 10.1016/j.recqb.2017.04.006 [ Links ]

Domínguez-Gómez, T. G., Hernández-González, B. N., González-Rodríguez, H., Cantú- Silva, I., Alanís-Rodríguez, E., & Alvarado, M. D. S. (2018). Estructura y composición de la vegetación en cuatro sitios de la Sierra Madre Occidental.Revista Mexicana de Ciencias Forestales, 9(50), 9‒34. doi: 10.29298/rmcf.v9i50.227 [ Links ]

Flores-Garnica, J. G., Flores-Rodríguez, A. G., Lomelí-Zavala, M. E., Ruíz-Guzmán, E., & García-Bernal, J. A. (2019). Caracterización de la regeneración en áreas impactadas por incendios forestales del estado de Jalisco. Tepatitlán, Jalisco, México: Campo Experimental Centro-Altos de Jalisco (CIRPAC). [ Links ]

García-García, S. A., Alanís-Rodríguez, E., Aguirre-Calderón, O. A., Treviño-Garza, E. J., & Graciano-Ávila, G. (2020). Regeneración y estructura vertical de un bosque de Pseudotsuga menziesii (Mirb.) Franco en Chihuahua, México.Revista Mexicana de Ciencias Forestales,11(58), 92‒111. doi: 10.29298/rmcf.v11i58.665 [ Links ]

Graciano-Ávila, G., Alanís-Rodríguez, E., Aguirre-Calderón, Ó. A., González-Tagle, M. A., Treviño-Garza, E. J., & Mora-Olivo, A. (2017). Caracterización estructural del arbolado en un ejido forestal del noroeste de México. Madera y Bosques, 23(3), 137‒146. doi: 10.21829/myb.2017.2331480 [ Links ]

Graciano-Ávila, G., Alanís-Rodríguez, E., Aguirre-Calderón, O. A., González-Tagle, M. A., Treviño-Garza, E. J., Mora-Olivo, A., …Corral-Rivas, J. J. (2020). Cambios estructurales de la vegetación arbórea en un bosque templado de Durango, México. Acta Botánica Mexicana, 127, e1522. doi: 10.21829/abm127.2020.1522 [ Links ]

Graciano-Ávila, G., Alanís-Rodríguez, E., Aguirre-Calderón, Ó. A., Rubio-Camacho, E. A., & González-Tagle, M. A. (2018). Estructura y diversidad postincendio en un área del matorral espinoso tamaulipeco. Polibotánica, 45, 89‒100. doi: 10.18387/polibotanica.45.7 [ Links ]

GraphPad Prism (2019). Prism versión 8.2.1 para Windows. La Jolla California, USA: Author. [ Links ]

Guzmán, L. M. A. (2009). Distribución, sistemática, y algunos aspectos ecológicos del mezquite Prosopis spp. (L.) en el estado de Nuevo León, México. Tesis doctoral, Facultad de Ciencias Biológicas, Universidad Autónoma de Nuevo León, San Nicolás de los Garza, Nuevo León, México. [ Links ]

Hammer, Ø., Harper, D. A., & Ryan, P. D. (2001). PAST: Paleontological statistics software package for education and data analysis.Palaeontologia Electronica, 4(1), 9. Retrieved from https://palaeo-electronica.org/2001_1/past/past.pdfLinks ]

He, T., Lamont, B. B., & Pausas, J. G. (2019). Fire as a key driver of Earth's biodiversity.Biological Reviews,94(6), 1983‒2010. doi: 10.1111/brv.12544 [ Links ]

Hernández-Salas, J., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E. J., González-Tagle, M. A.,... Domínguez-Pereda, A. (2013). Efecto del manejo forestal en la diversidad y composición arbórea de un bosque templado del noroeste de México. Revista Chapingo Serie Ciencias Forestales y del Ambiente,19(2), 189‒200. doi: 10.5154/r.rchscfa.2012.08.052 [ Links ]

Hernández-Salas, J., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., Treviño-Garza, E. J., González-Tagle, M. A.,... Domínguez-Pereda, L. A. (2018). Dinámica del crecimiento de un bosque templado bajo manejo en el noroeste de México.Madera y Bosques,24(2). doi: 10.21829/myb.2018.2421767 [ Links ]

Heydari, M., Moradizadeh, H., Omidipour, R., Mezbani, A., & Pothier, D. (2020). Spatio‐temporal changes in the understory heterogeneity, diversity, and composition after fires of different severities in a semiarid oak (Quercus brantii Lindl.) forest.Land Degradation & Development,31(8), 1039‒1049. doi: 10.1002/ldr.3518 [ Links ]

Huerta, M. F. M., & Ibarra, J. L. M. (2014). Incendios en el bosque La Primavera (Jalisco, México): Un acercamiento a sus posibles causas y consecuencias. Ciencia UAT, 9(1), 23‒32. Retrieved from http://www.scielo.org.mx/pdf/cuat/v9n1/2007-7858-cuat-9-01-00023.pdfLinks ]

Huston, M. A. (2014). Disturbance, productivity, and species diversity: empiricism vs. logic in ecological theory. Ecology, 95(9), 2382‒2396. doi: 10.1890/13-1397.1 [ Links ]

Juárez-Martínez, A., & Rodríguez-Trejo, D. A. (2003). Efecto de los incendios forestales en la regeneración de Pinus oocarpa var. ochoterenae. Revista Chapingo Serie Ciencias Forestales y del Ambiente, 9(2), 125‒130. Retrieved from https://www.redalyc.org/articulo.oa?id=62913142003Links ]

Lloret, F. (2004). Régimen de incendios y regeneración. Ecología del bosque mediterráneo en un mundo cambiante. In F. Valladares (Ed.), Ecología del bosque mediterráneo en un mundo cambiante (pp. 101-126). Madrid, España: Ministerio de Medio Ambiente, EGRAF, S. A. [ Links ]

López-Hernández, J. A., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., Monarrez-Gonzalez, J. C., González-Tagle, M. A., …Jiménez-Pérez, J. (2017). Composición y diversidad de especies forestales en bosques templados de Puebla, México.Madera y Bosques, 23(1), 39‒51. doi: 10.21829/myb.2017.2311518 [ Links ]

Louman, B. (2001). Silvicultura de bosques latifoliados húmedos con énfasis en América Central (vol. 46). Costa Rica: CATIE. [ Links ]

Magurran, A. E. (2004). Measuring biological diversity. The commonness and rarity of species. Oxford, UK: Blackwell Science Ltd. [ Links ]

Manzanilla-Quijada, G. E., Mata-Balderas, J. M., Treviño-Garza, E. J., Aguirre-Calderón, Ó. A., Alanís-Rodríguez, E., & Yerena-Yamallel, J. I. (2020). Diversidad, estructura y composición florística de bosques templados del sur de Nuevo León.Revista Mexicana de Ciencias Forestales,11 (61), 94‒123. doi: 10.29298/rmcf.v11i61.703 [ Links ]

Martínez-Antúnez, P., Wehenkel, C., Hernández-Díaz, J. C., González-Elizondo, M., Corral-Rivas, J. J., & Pinedo-Álvarez, A. (2013). Effect of climate and physiography on the density of trees and shrubs species in Northwest Mexico. Polish Journal of Ecology, 61(2), 283‒295. Retrieved from https://www.researchgate.net/publication/249963406_Effect_of_climate_and_physiography_on_the_density_of_tree_and_shrub_species_in_Northwest_MexicoLinks ]

Monárrez-González, J. C., Pérez-Verdín, G., López-González, C., Márquez-Linares, M. A., & González, E. M. D. S. (2018). Efecto del manejo forestal sobre algunos servicios ecosistémicos en los bosques templados de México. Madera y Bosques, 24(2). doi: 10.21829/myb.2018.2421569 [ Links ]

Mora-Donjuán, C. A., Alanís-Rodríguez, E., Jiménez-Pérez, J., González-Tagle, M. A., Yerena-Yamallel, J. I., & Cuellar-Rodríguez, L. G. (2013). Estructura, composición florística y diversidad del matorral espinoso tamaulipeco, México. Ecología Aplicada, 12(1), 29‒34. Retrieved from http://www.scielo.org.pe/scielo.php?script=sci_arttext&pid=S1726-22162013000100004Links ]

Neris, J., Santamarta, J. C., Doerr, S. H., Prieto, F., Agulló-Pérez, J., & García-Villegas, P. (2016). Post-fire soil hydrology, water erosion and restoration strategies in Andosols: a review of evidence from the Canary Islands (Spain). iForest-Biogeosciences and Forestry, 9(4), 583. doi: 10.3832/ifor1605-008 [ Links ]

Pourreza, M., Hosseini, S. M., Sinegani, A. A. S., Matinizadeh, M., & Alavai, S. J. (2014). Herbaceous species diversity in relation to fire severity in Zagros oak forests, Iran. Journal of Forestry Research, 25(1), 113‒120. doi: 10.1007/s11676-014-0436-3 [ Links ]

Quintero-Gradilla, S. D., Jardel-Peláez, E. J, Cuevas-Guzmán, R., García-Oliva, F., & Martínez-Yrizar, A. (2019). Cambio postincendio en la estructura y composición del estrato arbóreo y carga de combustibles en un bosque de Pinus douglasiana de México. Madera y Bosques, 25(3), e2531888. doi: 10.21829/myb.2019.2531888 [ Links ]

Rivas, J. C., Calderón, O. A., & Pérez, J. J. (2008). Un análisis del efecto del aprovechamiento forestal sobre la diversidad estructural en el bosque mesófilo de montaña «El Cielo», Tamaulipas, México. Forest Systems, 14(2), 217‒228. doi: 10.5424/SRF/2005142-00885 [ Links ]

Rodríguez, E. V. S., Mata, L. L., Moya, E. G., & Guzmán, R. C. (2003). Estructura, composición florística y diversidad de especies leñosas de un bosque mesófilo de montaña en la Sierra de Manantlán, Jalisco. Boletín de la Sociedad Botánica de México, 73, 17‒34. Retrieved from https://www.redalyc.org/articulo.oa?id=57707302Links ]

Rodríguez-Trejo, D. A., & Fulé, P. Z. (2003). Fire ecology of Mexican pines and a fire management proposal. International Journal of Wildland Fire, 12(1), 23‒37. doi: 10.1071/WF02040 [ Links ]

Santiago-Pérez, A. L., Ayón, E. A., Rosas-Espinoza, V. C., Rodríguez, Z. F. A., & Toledo, G. S. L. (2014). Estructura del bosque templado de galería en la sierra de Quila, Jalisco. Revista Mexicana de Ciencias Forestales, 5(24), 144‒159. http://www.scielo.org.mx/pdf/remcf/v5n24/v5n24a12.pdfLinks ]

Solís-Moreno, R., Aguirre-Calderón, Ó. A., Treviño-Garza, E. J., Jiménez-Pérez, J., Jurado-Ybarra, E., & Corral-Rivas, J. (2006). Efecto de dos tratamientos silvícolas en la estructura de ecosistemas forestales en Durango, México. Madera y Bosques, 12(2), 49‒64. doi: 10.21829/myb.2006.1221242 [ Links ]

Sugihara, N. G., Van-Wagtendonk, J. W., Fites-Kaufman, J., Shaffer, K. E., & Thode, A. E. (2006). Fire in California's ecosystems. USA: University of California Press. [ Links ]

The Plant List. (2013). The Plant List version 1.1. Retrieved September 1, 2020, from http://www.theplantlist.org/Links ]

Wehenkel, C., Corral-Rivas, J. J., & Gadow, K. V. (2014). Quantifying differences between ecosystems with particular reference to selection forests in Durango/Mexico. Forest Ecology and Management, 316, 117‒124. doi: 10.1016/j.foreco.2013.05.056 [ Links ]

Received: December 16, 2020; Accepted: September 29, 2021

*Corresponding author: flores.german@inifap.gob.mx; tel.: +52 331 169 4533.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License