SciELO - Scientific Electronic Library Online

 
vol.30 número1Efecto de podas en plantaciones jóvenes de Pinus patula Schiede ex Schltdl. & Cham. en el ejido Llano Grande, Chignahuapan, PueblaAnálisis del paisaje y la vegetación en una zona de parques eólicos del noreste de México índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista Chapingo serie ciencias forestales y del ambiente

versión On-line ISSN 2007-4018versión impresa ISSN 2007-3828

Rev. Chapingo ser. cienc. for. ambient vol.30 no.1 Chapingo ene./abr. 2024  Epub 03-Dic-2024

https://doi.org/10.5154/r.rchscfa.2023.02.010 

Scientific articles

Spatial and temporal modeling of air pollution in Mexico City Metropolitan Area

Carmina Cruz-Huerta1 
http://orcid.org/0000-0002-8809-4763

Tomás Martínez-Trinidad1  * 
http://orcid.org/0000-0002-3053-472X

Arian Correa-Díaz2 
http://orcid.org/0000-0002-9383-595X

Armando Gómez-Guerrero1 
http://orcid.org/0000-0002-7261-1279

J. Jesús Vargas-Hernández1 
http://orcid.org/0000-0001-7422-4953

José Villanueva-Díaz3 
http://orcid.org/0000-0001-8211-1203

Laura E. Beramendi-Orosco4 
http://orcid.org/0000-0002-6790-1378

1Colegio de Postgraduados, Postgrado en Ciencias Forestales, Campus Montecillo. km 36.5 Carretera México-Texcoco, col. Montecillo. C. P. 56230. Texcoco, Estado de México, México.

2Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en Conservación y Mejoramiento de Ecosistemas Forestales (CENID-COMEF). Av. del Progreso núm. 5, col. Barrio de Santa Catarina. C. P. 04010. Coyoacán, Ciudad de México, México.

3Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Centro Nacional de Investigación Disciplinaria en relación Agua, Suelo, Planta, Atmósfera (CENID-RASPA). km 6.5 margen derecha Canal de Sacramento. C. P. 35140. Gómez Palacio, Durango, México.

4Universidad Nacional Autónoma de México, Instituto de Geología. Circuito Interior s/n, Ciudad Universitaria. C. P. 04510. Coyoacán, Ciudad de México, México.


Abstract

Introduction:

Large cities have air pollution problems due to the emission of polluting gases and particulate matter (PM).

Objectives:

To know the intra- and inter-annual variation of pollutants (NOX, CO, O3, PM10 and PM2.5) in Mexico City Metropolitan Area and to model their spatial distribution.

Materials and methods:

Data from 44 stations of the Automatic Air Monitoring Network (RAMA) were analyzed to extract information for the pollutants NOX, O3 and CO in the period 1986-2021, and PM2.5 and PM10 in the periods 2000-2021 and 2003-2021, respectively. Monthly averages per station were calculated and the temporal trend of each pollutant was evaluated using the 'Theil-Sen' operator. The spatial distribution of pollutants was also modeled and the statistical performance of four interpolation methods was compared: Neural Networks, Support Vector Machine, Random Forest and Kriging Universal.

Results and discussion:

NOX and CO concentrations were high from November to January, while O3 from April to May. The lowest concentrations of PM10 and PM2.5 took place from July to October and the highest in May. All pollutants decreased in concentration during the period analyzed, with the most noticeable changes in NOX (-1.28 ppb·yr-1), while CO had the smallest change (-0.12 ppm·yr-1). The maximum values for NOX, O3 and CO occurred in 1993 and for PM in 2003. The best model was Support Vector Machine, regardless of the pollutant analyzed.

Conclusion:

Spatio-temporal dynamics varied among air pollutants. The analysis with spatial interpolation methods is viable and favors solution strategies to pollution problems.

Keywords: carbon monoxide; nitrogen oxides; ozone; particulate matter; Machine Learning.

Resumen

Introducción:

Las grandes ciudades presentan problemas de contaminación atmosférica por la emisión de gases contaminantes y material particulado (PM).

Objetivos:

Conocer la variación intra e interanual de los contaminantes (NOX, CO, O3, PM10 y PM2.5) en la Zona Metropolitana de la Ciudad de México y modelar su distribución espacial.

Materiales y métodos:

Se analizaron los datos de 44 estaciones de la Red Automática de Monitoreo Atmosférico (RAMA) para extraer información de los contaminantes NOX, O3 y CO en el periodo 1986-2021, y PM2.5 y PM10 en los periodos 2000-2021 y 2003-2021, respectivamente. Se calcularon promedios mensuales por estación y se evaluó la tendencia temporal de cada contaminante mediante el operador ‘Theil-Sen’. También se modeló la distribución espacial de los contaminantes y se comparó el desempeño estadístico de cuatro métodos de interpolación: Redes neuronales, Support Vector Machine, Random Forest y Kriging Universal.

Resultados y discusión:

Las concentraciones de NOX y CO fueron altas en noviembre-enero, mientras que las de O3 en abril-mayo. Las concentraciones más bajas de PM10 y PM2.5 ocurrieron en julio-octubre y las máximas en mayo. Todos los contaminantes disminuyeron su concentración durante el periodo analizado, con cambios más notorios en NOX (-1.28 ppb·año-1), mientras que CO fue el de menor cambio (-0.12 ppm·año-1). Los valores máximos de NOX, O3 y CO se presentaron en 1993 y de PM en 2003. El mejor modelo fue Support Vector Machine, independientemente del contaminante analizado.

Conclusión:

La dinámica espaciotemporal varió entre los contaminantes atmosféricos. El análisis con métodos de interpolación espacial es factible y favorece estrategias de solución a los problemas de contaminación.

Palabras clave: monóxido de carbono; óxidos de nitrógeno; ozono; partículas sólidas; Machine Learning

Highlights:

  • NOX, O3, CO, PM10 and PM2.5 were analyzed in Mexico City Metropolitan Area (MCMA)

  • Spatio-temporal dynamics varied among pollutants in MCMA.

  • Pollutant concentrations decreased in the periods studied.

  • NOX had the largest decrease (-1.28 ppb∙yr-1), and CO had the smallest change (-0.12 ppm∙yr-1).

  • Support Vector Machine had the best fit for pollutant interpolation.

Introduction

Air pollutants are one of the main problems in large cities, because of high population density, increased urbanization, transportation and industrialization (Guzmán-Morales et al., 2011). The Mexico City Metropolitan Area (MCMA) is one of the most populated regions in the world; according to the latest population and housing census, the area has 20.1 million inhabitants and an average monthly movement of more than 46 million cars (National Institute of Statistics and Geography [INEGI], 2020, 2022). This emphasizes the importance of the study and measurement of air pollutants in the urban area, especially in a spatial context (Camarillo et al., 2014).

The MCMA has unfavorable conditions for air ventilation, due to the mountains surrounding the basin of the Valley of Mexico, a situation that complicates the dispersion of pollutants (Barrera Huertas et al., 2019). The MCMA covers an area of 4 726.4 km2 and is formed by the municipalities of Mexico City and 16 municipalities of Estado de México. As the largest urban center in the country, the study of air pollution is essential, especially to understand the spatial-temporal dynamics and its risks to human health (Guzmán-Morales et al., 2011; López et al., 2021; Navarro, 2019).

Prolonged exposure to air pollutants is harmful to the population; for example, in Mexico City, 70 to 80 % of particulate matter (PM) medium or smaller than 10 µm (PM10) are made up of 13 % of toxic metals (Chow et al., 2002). On the other hand, PM2.5 increment affects the respiratory system of the population causing chronic lung diseases, lung cancer and respiratory infections, highlighting the importance of measuring pollutants in urban areas (Xing et al., 2016).

The effect of pollutants is not only limited to human health but also on forest ecosystems (Romieu et al., 1996). High concentrations of heavy metals from air pollution, together with PM, inhibit seed germination and affect seedling growth and development in forests. In addition, air pollution influences biochemical and physiological processes which damage cell membranes, reduce transpiration, impede the synthesis of proteins and protein acids, and inhibit plant photosynthesis (Aliyar et al., 2020; Muhammad et al., 2021).

The Automatic Atmospheric Monitoring Network (AAMN) of MCMA has 44 stations that, from 1986 to date, provide hourly information on pollutants. Unfortunately, the distribution of the stations is not homogeneous, which is an obstacle to know the exact degree of pollution in the entire region. Therefore, AAMN information has limitations to generate strategies to solve pollution problems, particularly those related to its spatial distribution. It is therefore necessary to use tools such as geostatistics, since they help to make spatial predictions, especially in those areas where there is a lack of information (Correa et al., 2023).

Traditional geostatistical techniques such as Kriging are widely used, because they allow estimating a variable in unsampled locations based on the information provided by the sample, from the adjustment of the spatial model or empirical semivariogram (Espinoza & Molina, 2014). Recently, the use of 'Machine Learning' methods have become more popular because they allow decision making or predictions based on automated learning using computational systems and algorithms capable of learning and improving from the results (Yuan et al., 2020). The combination of these tools allows studies on the spatial distribution of data without a homogeneous distribution. Therefore, the objectives of this research were: i) to know the intra- and inter-annual variation of NOX, CO, O3, PM2.5 and PM10 pollutants recorded in the AAMN database for the MCMA, and ii) to compare four spatial interpolation methods, including Machine Learning techniques (Neural Networks, Support Vector Machine and Random Forest) and traditional spatial interpolation (Kriging), in order to generate maps of the spatial distribution of pollutants.

Materials and methods

Study area

The MCMA is part of an endorheic basin (Figure 1) and is located in the central part of the Transverse Neovolcanic Axis, between 19° 03’ - 19° 54’ LN and 98° 38’ - 99° 31’ LW with an average elevation of 2 240 m. The climates are temperate humid and sub-humid with summer rains and dry weather (Villalobos, 2006).

Figure 1. Study area and stations belonging to the Automatic Atmospheric Monitoring Network (AAMN) in Mexico City Metropolitan Area (MCMA).  

The population living in the MCMA is 20.1 million, which represents 17 % of the national population, although slightly less than half live within Mexico City (INEGI, 2020). The dominant economic activities correspond to the service sector, commerce, and industrial activities (Espejel, 2019).

Pollutant database compilation and cleansing

Pollutant database, at station level, was downloaded from the Automatic Atmospheric Monitoring Network (AAMN) (https://datos.cdmx.gob.mx/dataset/red-automatica-de-monitoreo-atmosferico) for the period 1986-2021 for NOX, O3 and CO gases; 2000-2021 for PM10 and 2003-2021 for PM2.5. The AAMN database contains information on pollutant concentrations recorded at the hourly level at each monitoring station.

A total of 44 stations distributed in the MCMA were used; however, each pollutant had a different number of stations, since the sensors of some of them were not active on certain dates. Thus, 30, 35 and 31 stations were used for NOX, O3 and CO respectively, while 24 were used for PM2.5 and PM10.

The pollutant database provides information by date, time, and station. Therefore, to create a multi-annual database integrating all the stations, they were merged into a single file per pollutant using the R software. Subsequently, the data were transformed at day, month, and year levels for the corresponding analysis. The database was cleaned by removing null or erroneous data (<1 % of the total) that could affect the statistical parameters. Finally, the multi-year databases were exported in ‘shape’ format for further geostatistical analysis.

Descriptive statistical analysis

A descriptive statistical analysis (mean, median, minimum, and maximum) of pollutants NOX, CO, O3, PM2.5 and PM10 was performed; in addition, the correlation between them was evaluated using Spearman's coefficient, since the data were not adjusted to a normal distribution. The statistical analysis was performed in R version 4.0.5 (R Development Core Team, 2021).

Intra- and inter-annual variation of pollutants

Monthly average values per station and per zone were calculated to evaluate the temporal dynamics of pollutants over the course of the year. The temporal trend at the annual level was determined with the 'Theil-Sen' operator, a robust non-parametric method for obtaining temporal trends in short time series. The method fits a simple linear regression between all pairs of data and calculates the median of the slopes of all the lines (Akritas et al., 1995).

Spatial modeling methods and spatial interpolation

Spatial modeling is classified according to the following statistical techniques: a) spatial interpolation, b) spatial regression and c) Machine Learning (Chen et al., 2019; Perez et al., 2021). This study compared the predictive performance of four methods: 1) spatial interpolation (Universal Kriging) and 2) Machine Learning using supervised algorithms (Neural Network, Supported Vector Machine and Random Forest) (Castro et al., 2017; Pedrero et al., 2021). These methods were used to model the monthly and annual spatial distribution of each pollutant in the MCMA. The modeling and spatial interpolation analysis was carried out with the R software version 4.0.5 (R Development Core Team, 2021).

Interpolation with the Universal Kriging method was carried out with the ‘autoKrige’ function, which adjusts variograms in a grouped way from different models (spherical, exponential, and Gaussian), to finally perform the prediction with the optimal model in the areas with missing data (Estarlich et al., 2013).

For the Neural Network analysis, we used the statistical package 'R neuralnet', considering five layers of neurons arbitrarily chosen to train the model. For Supported Vector Machine, the 'ksvm' function of the 'kernlab' package was used, considering a polynomial Kernel algorithm with a penalty parameter of 25, which avoids overfitting the data (García & Lozano, 2007). Finally, Random Forest interpolation was carried out with the 'ranger' library in R, considering 1 000 trees and a single node (Espinosa-Zuñiga, 2020).

Unlike traditional interpolation methods (Universal Kriging), where the spatial location of the variables of interest (e.g., coordinates) is used, Maching Learning modeling and interpolation uses distance matrices between pairs of points, because coordinates are correlated with each other. Finally, with the average of all data, monthly and historical pollutant distribution maps were created.

Model validation and statistical performance

Model performance was evaluated using the coefficient of determination (R2), mean absolute error (MAE) and root mean square error (RMSE):

R2=i=1n(yi-y^l)2i=1n(yi-y-l)2

MAE=1ni=1ny^l-yi 

RMSE=1ni=1ny^l-yi 

where,

y^l = th value obtained from the prediction

y i = th observed value

y-l = mean value of y i

n = number of predicted or observed values with i = 1, 2,…, n

These metrics help identifying the best model fitting the data; low RMSE values indicate a better fit, R2 indicates the goodness of fit of the model and MAE is a linear score and means that individual differences are weighted equally in the average (Beguin et al., 2017; Pérez et al., 2021).

Results and Discussion

Pollution historical statistics in the MCMA

The average of NOX was 20.8 ± 0.17 ppb with a historical maximum of 111 ppb (Hangares station, inactive) and a minimum of 0.1 ppb at Milpa Alta station (Table 1). Some authors indicate NOX decrease in the MCMA (Sandoval & Jaimes, 2002; Navarro, 2019), although the Secretariat of the Environment (SEDEMA) reports NOX increment in 2018. These authors emphasize that mobile sources contribute more than 85 % of pollutant emissions in the MCMA.

Table 1 Descriptive statistics of pollutants reported by the Automatic Atmospheric Monitoring Network (AAMN) in Mexico City Metropolitan Area. 

Pollutant NOX (ppb) CO (ppm) O3 (ppb) PM10 (µg∙m-3) PM2.5 (µg∙m-3)
Average 22.0 ± 0.17 1.86 ± 0.01 33.3 ± 0.12 47.7 ± 0.28 23.6 ± 0.14
Median 20.8 ± 0.17 1.35 ± 0.01 30.8 ± 0.12 44.4 ± 0.28 22.8 ± 0.14
Minimum 0.10(MPA) 0.10(MPA) 5.75(UIZ) 11.40(INN) 7.69(INN)
Maximum 111.0(HAN*) 13.0(TLA) 96.9(CES*) 145.0(XAL) 68.2(SAG)
Period 1986-2021 1986-2021 1986-2021 2000-2021 2003-2021
n 7 042 8 755 8 613 4 224 2 682

NOX: nitrogen oxides, CO: carbon monoxide, O3: ozone, PM10 and PM2.5: medium particulate matter or smaller than 10 and 2.5 µm, respectively. MPA: Milpa Alta, HAN: Hangares, TLA: Tlalnepantla, UIZ: UAM Iztapalapa, CES: Cerro de la Estrella, INN: Investigaciones Nucleares, XAL: Xalostoc, SAG: San Agustín, *Inactive stations.

The average CO was 1.86 ± 0.01 ppm, a value below the reference limit (9.0 ppm) of NOM-021-SSA1-202 (Secretaría de Salud, 2021). The maximum value was 13.0 ppm for Tlalpan station, and the minimum was 0.1 ppm for Milpa Alta station. SEDEMA mentions that CO was the pollutant with the highest total absolute emission in 2018 (646 434 Mg), representing 75.3 % of total air pollutant emissions, mainly product of incomplete combustion of gasoline, natural gas, oil, and other organic materials, according to that reported by Miller (2011).

O3 is a secondary gas formed by chemical and photochemical reactions between anthropogenic and natural primary emissions of precursors nitrogen oxides (NOX) and volatile organic compounds (VOC) or hydrocarbons (Calderón et al., 2000). O3 had a historical mean of 33.3 ± 0.12 ppb, with a maximum concentration of 96.9 ppb for the Cerro de la Estrella (CES) station, exceeding the limits established of 90.0 ppb by NOM-020-SSA1-2021 (Secretaría de Salud, 2021).

For PM10, an average of 47.7 ± 0.28 µg∙m-3 was obtained with a maximum of 145 µg∙m-3 for Xalostoc station, to the north of the MCMA. For this station, the main sources of suspended particulate matter are soil erosion, industries, and unpaved roads, which increase PM10 concentrations (Cervantes et al., 2005). The historical minimum of PM10 was 11.4 µg∙m-3 for Investigaciones Nucleares (INN) station, to the south of the MCMA. Meanwhile, PM2.5 particles have a historical mean of 23.6 ± 0.14 µg∙m-3 with a maximum for San Agustín (SAG) of 68.2 µg∙m-3 and a minimum of 7.69 µg∙m-3 for INN. Chow et al. (2002) mention that PM2.5 and PM10 particles are composed of nitrates, sulfates, ammonium, organic carbon, elemental carbon, and geological material, which in large quantities are harmful to the ecosystem.

Intra- and inter-annual variation of pollutants for MCMA

The highest NOX concentrations were recorded in December and January (>60 ppb) and decreased during June-August (<50 ppb) (Figure 2a). Some stations were also observed to exceed 100 ppb of NOX. These high concentrations are explained by the prevailing meteorological conditions and thermal inversions in winter, since low radiation and temperature, for example, are associated with high NOX concentrations (Sandoval & Jaimes, 2002).

CO had no significant variations over the year (Figure 2b), because concentrations of this compound depend on emissions from automobiles and industries, which remain constant over the course of the year (Madrigal et al., 2004). O3 (Figure 2c) the highest concentrations in April and May (>40 ppb), which coincides with the high level of solar radiation emitted in that period with different lengths of ultraviolet (UV) radiation (Wedyan et al., 2020). These, in turn, dissociate oxygen by photochemical reaction and, when available, react with other surrounding molecules (NOX, VOC and CO) allowing the formation of ozone. Possibly, cloudiness and lower radiation in December and January decrease UV radiation and, therefore, reduce O3 concentrations.

PM2.5 and PM10 depend on the emission of particulate matter from transportation, industry, residence, commerce, and services (Popovicheva et al., 2020). The period with the lowest concentration of these particles was during the rainy season (June-August, Figure 2d-e). This information is consistent with other studies indicating that PM concentrations decrease in the rainy season, which plays a role of wet removal of particles, but increase in dry periods due to accumulation of dust in foliage (Vinasco & Nastar, 2013; Zhou et al., 2020).

Figure 2 Monthly distribution of nitrogen oxides (NOX), ozone (O3), carbon monoxide (CO), particulate matter 10 (PM10) and 2.5 (PM2.5) in Mexico City Metropolitan Area. The dotted line indicates the permissible limit for pollutants according to NOM-023-SSA1-2021, NOM-020-SSA1-2021, NOM-021-SSA1-2021 and NOM-025-SSA1-2021. 

Interannual variation of pollutants in the MCMA

Pollutant behavior at the interannual level was variable; for example, the maximum peak of NOX was recorded in 1993 (Figure 3), as well as O3 and CO. This coincides with studies that indicate that 1993 was the coldest year with the least precipitation in the MCMA (Pérez et al., 2010). These emissions exceeded the permissible pollution limits and the standards established for the central zone (Mercado et al., 1995). In that year, the highest pollution was caused by emissions from pharmaceutical companies, plastic articles and basic iron and steel industries, which emitted 64 % of atmospheric emissions in the Valley of Mexico. These companies use fossil fuels and increase CO, O3, NOX and VOC (Mercado et al., 1995). Since 1995, concentrations have decreased, particularly during the last decade, even though vehicle flow and number of vehicles have increased. This decrease can be attributed to improvements in automobile manufacturing, in addition to the implementation of the program to improve air quality in the Valley of Mexico (Sheinbaum, 2016).

The concentration of PM10 in the MCMA for the period 2000-2012 exceeded the limits of 50 µg∙m-3 indicated by NOM-025-SSA1-2021 (Secretaría de Salud, 2021). This increase is mainly attributed to emissions derived from transportation, industrial activity, and dust reincorporation from vehicle circulation (Villalobos, 2006). The lowest PM10 concentration was recorded in 2019 and 2020, which is probably related to the drastic closure of activities due to the COVID-19 pandemic. For example, in 2020, vehicular traffic was reduced in the MCMA, which restricted public mobility and reduced productive and industrial activities (Ale et al., 2020).

Figure 3 Interannual behavior of nitrogen oxides (NOX), ozone (O3), carbon monoxide (CO), particulate matter 10 µm (PM10) and 2.5 µm (PM2.5) in Mexico City Metropolitan Area. The light gray area represents the standard error among the stations included in the analysis. 

PM2.5 exceeded the limit value established by NOM-025-SSA1-2021 and the World Health Organization (OMS, 2005: 25 µg∙m-3) in almost all the period analyzed; although in 2020, concentrations decreased, probably also because of the reduction of activities due to the social confinement derived from the COVID-19 pandemic. On the other hand, the temporal trends of NOX, CO, O3, PM10 and PM2.5 are negative and indicate a decrease of pollutants in MCMA (Figure 3). The pollutant with the highest decrement was NOX (-1.28 ppb∙yr-1) and the lowest was CO (-0.12 ppm∙yr-1), while PM2.5 and O3 had similar slopes -0.47 µg∙m-3∙yr-1 and -0.45 ppb∙yr-1, respectively.

On the other hand, Spearman's coefficient indicates a high correlation between NOX, CO, PM10 and PM2.5; however, O3 was not significantly associated with PM10 and PM2.5 (Table 2). The highest correlation values were between NOX, CO and O3, which could be attributed to the photochemical reaction involved in the formation of O3; that is, oxygen, once available, reacts with other NOX and CO compounds (Jenkin & Clemitshaw, 2000).

Table 2 Spearman correlation coefficient (***P < 0.001) among pollutants analyzed in Mexico City Metropolitan Area: nitrogen oxides (NOx), ozone (O3), carbon monoxide (CO), particulate matter 10 (PM10) and particulate matter 2.5 (PM2.5).  

Pollutant NOX O3 CO PM10 PM2.5
NOX 1 0.95*** 0.93*** 0.85*** 0.88***
O3 1 0.77*** 0.05 -0.14
CO 1 0.79*** 0.86***
PM10 1 0.86***
PM2.5 1

Interpolation of pollutants in MCMA

No notable difference was found in the performance of the models Kriging Universal, Supported Vector Machine, Random Forest, and Neural Network at the monthly level; however, the Supported Vector Machine method was slightly superior with R2 values = 0.98; while the models with the lowest fit were Kriging Universal and Neural Network with R2 < 0.85.

Based on the historical average of each pollutant, the Supported Vector Machine model had the best goodness of fit with R2 greater than 0.95, except for CO, with R2 = 0.76 (Table 3). For MAE and RMSE, the models with the best fit were Neural Network and Supported Vector Machine. The Neural Network model had MAE and RMSE lower than 3.0, although R2 was lower than 0.8 for NOX, O3 and CO. Supported Vector Machine had MAE and RMSE lower than 3.0 for all pollutants except for NOX (MAE and RMSE between 4 and 6). On the other hand, the results indicated underestimation in the predicted values using Neural Network, Random Forest, and Universal Kriging, mainly for high values for the pollutants CO and O3 (Figure 4). Therefore, the Supported Vector Machine model had the best characteristics for modeling and interpolating the pollutants analyzed at the monthly level, as well as the historical average.

Table 3 Model validation statistics for the interpolation of historical averages by pollutant (NOX: nitrogen oxides, CO: carbon monoxide, O3: ozone, PM: particulate matter) in Mexico City Metropolitan Area. 

Method Statistics Pollutant
NOX O3 CO PM10 PM2.5
(ppb) (ppb) (ppm) (µg∙m-3) (µg∙m-3)
Neural Network MAE 1.52 0.49 0.07 1.05 0.35
R2 0.79 0.64 0.37 0.98 0.94
RMSE 1.58 2.76 0.07 1.08 0.36
Kriging Universal MAE 5.99 2.39 0.48 3.25 1.39
R2 0.71 0.64 0.37 0.78 0.72
RMSE 7.85 2.76 0.6 4.97 1.83
Random Forest MAE 5.43 2.57 0.42 0.86 0.55
R2 0.86 0.81 0.69 0.8 0.83
RMSE 6.72 2.85 0.54 1.18 0.86
Support Vector Machine MAE 4.3 1.65 0.28 3.27 1.05
R2 0.98 0.98 0.76 0.99 0.98
RMSE 5.59 1.96 0.34 4.74 1.44

MAE: mean absolute error, RMSE: root mean square error.

Figure 4 Observed vs. predicted values of data set by pollutants (NOX: nitrogen oxides, CO: carbon monoxide, O3: ozone, PM: particulate matter) using Kriging Universal (KU), Neural Network (NN), Random Forest (RF) and Support Vector Machine (SVM) in Mexico City Metropolitan Area. The dotted line indicates a 1:1 ratio. 

Geostatistical modeling may have limitations in the selection of parameters, specially supervised Machine Learning methods. For example, Random Forest predictions can be expected to be beyond the range of observed values, if any data group presents confusion (Espinosa-Zuñiga, 2020). In the case of Neural Network, the main disadvantage is that neither its final equation nor the weights used in the model are known, making it a black box (Sheu, 2020). Kriging Universal requires an optimal variogram for the dataset to avoid extrapolations, and it is sensitive to a low number of points or a high variation between them (Shekaramiz et al., 2019). Finally, with Supported Vector Machine, Kernel and C parameters should be chosen appropriately, as they affect the complexity of the model (Cunha et al., 2022; Liu & Xu, 2014). Despite these limitations, Supported Vector Machine had the best fit for all pollutants and was therefore used to represent their spatial distribution.

Spatial dynamics of pollutants in MCMA

According to the spatial analysis, different patterns of pollutant distribution were found (Figure 5). For example, NOX showed a circular pattern, where the area with the highest concentration was located in the central zone of Mexico City with two stations with high values (La Merced and Xalostoc > 60 ppb). O3 had the highest concentrations at the Pedregal and Milpa Alta stations, located in the southern part of the study area. O3 concentration decreased towards the central and northern part of MCMA, indicating a high gradient in the southwestern quadrant. These results are consistent with the study by García (2009), who indicates that the highest pollutant areas are located downwind, away from emission sources, so high O3 concentration is located in mountainous areas south of Mexico City (Figure 5).

Figure 5 Spatial prediction of the average historical concentration of pollutants with the Machine Learning-Support Vector Machine method: nitrogen oxides (NOX, 1986-2021), ozone (O3, 1986-2021), carbon monoxide (CO, 1986-2021), particulate matter 10 µm (PM10, 2000-2021) and 2.5 µm (PM2.5, 2003-2021) in Mexico City Metropolitan Area. The black circles represent monitoring stations belonging to the Automatic Atmospheric Monitoring Network (AAMN). 

The highest concentration of CO was found in the northwest central quadrant, probably due to a higher use of vehicles, which are the main source of emissions. However, some authors have reported a relationship between high CO concentrations and areas where the population has higher incomes in the Mexico Valley Metropolitan Area (MCMA), especially for CO and carbon dioxide emissions (CO2 eq) (Pérez et al., 2018).

PM10 and PM2.5 concentrations were higher in the center and decreased towards the west. The station with the highest concentration is Xalostoc with values above 70 µg∙m-3 of PM10 and 30 µg∙m-3 of PM2.5. This may be associated with the findings made by Cervantes et al. (2005), who affirm that the station is located in an area with evidence of soil erosion, presence of industries and unpaved roads.

Conclusions

The spatio-temporal dynamics varied among the pollutants analyzed. The highest NOX and CO concentrations were recorded from November to January, while O3 concentration decreased in that period and increased from April to May. The lowest particulate matter concentrations occurred from July to October and the highest in May. Regardless of the pollutant, concentrations decreased in recent years; NOX changes were most noticeable, and the lowest decrease was for CO. Key years such as 1993 or 2020 showed maximum peaks and troughs, mainly linked to the increase/closure of human activities. Although there were no notable differences among the interpolation methods, mainly among those belonging to the Machine Learning methods, the Support Vector Machine method had the best monthly and historical fit for all pollutants.

Acknowledgments

The authors would like to thank the Consejo Nacional de Humanidades, Ciencias y Tecnologías for the scholarship granted to the first author for graduate studies; as well as the Línea de Generación y Aplicación del Conocimiento (LGAC) "Mejoramiento estructural y funcional de los ecosistemas forestales" for partial funding.

REFERENCES

Akritas, M. G. Murphy, S. A. Lavalley, M. P. (1995). The theil-sen estimator with doubly censored data and applications to astronomy. Journal of the American Statistical Association, 90(429), 170‒177. 10.1080/01621459.1995.10476499 [ Links ]

Ale, T. M. L. Moreno, S. K. Luque, Z. B. (2020). Perspectiva del COVID-19 sobre la contaminación del aire. Revista de la Sociedad Científica del Paraguay, 25(2), 155‒182. 10.32480/rscp.2020.25.2.155 [ Links ]

Aliyar, Z. B. Shafiei, A. B. Seyedi, N. Rezapour, S. Moghanjugi, S. M. (2020). Effect of traffic-induced air pollution on seed germination of Arizona Cypress (Cupressus arizonica Green) and Black Pine (Pinus nigra Arnold). Urban Forestry & Urban Greening, 55, 126841. 10.1016/j.ufug.2020.126841 [ Links ]

Barrera Huertas, H. A. Torres Jardón, R. Ruíz Suárez, L. G. Santos García Yee, J. Torres Jaramillo, A. Martínez Bolívar, A. P. García Reynoso, J. A. (2019). Análisis del transporte de ozono en la cuenca atmosférica de Puebla-Tlaxcala en el centro de México. Revista Internacional de Contaminación Ambiental, 35(4), 869‒888. 10.20937/rica.2019.35.04.08 [ Links ]

Beguin, J. Fuglstad, G.-A. Mansuy, N. Paré, D. (2017). Predicting soil properties in the Canadian boreal forest with limited data: Comparison of spatial and non-spatial statistical approaches. Geoderma, 306, 195‒205. 10.1016/j.geoderma.2017.06.016 [ Links ]

Calderón, G. D. Hernández, I. J. L. Castilla, S. L. Hernández, G. E. Barragán, M. G. Rodríguez, P. R. A. Villegas, O. G. (2000). El ozono como molécula reactiva. Concepto actual. Perinatología y Reproducción Humana, 14(2), 115‒123. https://www.medigraphic.com/pdfs/inper/ip-2000/ip002f.pdfLinks ]

Camarillo, R. P. López, A. S. Rosales, L. J. C. Pérez, V. I. (2014). Análisis de datos de calidad del aire de la Zona Metropolitana del Valle de México mediante técnicas de agrupamiento. Research in Computing Science, 72, 137‒150. 10.13053/rcs-72-1-11 [ Links ]

Castro, M. García, D. Jiménez, A. (2017). Comparación de técnicas de interpolación espacial de propiedades del suelo en el piedemonte llanero colombiano. Tecnura, 21(53), 78‒95. 10.14483/22487638.11658 [ Links ]

Cervantes, M. G. T. Bracho, L. R. Bremauntz, A. F. (2005). Las partículas suspendidas en tres grandes ciudades mexicanas. Gaceta Ecológica, 74, 15‒28. https://www.redalyc.org/articulo.oa?id=53907402Links ]

Chen, L. Ren, C. Li, L. Wang, Y. Zhang, B. Wang, Z. Li, L. (2019). A comparative assessment of geostatistical, machine learning, and hybrid approaches for mapping topsoil organic carbon content. ISPRS International Journal of Geo-Information, 8, 174. 10.3390/ijgi8040174 [ Links ]

Chow, J. Watson, J. Edgerton, S. Vega, E. (2002). Chemical composition of PM2.5 and PM10 in Mexico City during winter 1997. The Science of the Total Environment, 287(3), 177‒201. 10.1016/S0048-9697(01)00982-2 [ Links ]

Correa, I. J. de J. Romero, P. J. M. Pérez, R. P. Vázquez, A. A. (2023). Application of geostatistical models for aridity scenarios in northern Mexico. Atmósfera, 37, 233‒244. 10.20937/ATM.53103 [ Links ]

Cunha, V. Magoni, D. Inácio, P. Freire, M. (2022). Impact of self C parameter on SVM-based classification of encrypted multimedia peer-to-peer traffic. In L. Barolli, F. Hussain, & T. Enokido (Eds.), Advanced information networking and applications (pp. 180‒193). Springer. 10.1007/978-3-030-99584-3_16 [ Links ]

Espejel, M. J. (2019). La Zona Metropolitana del Valle de México: arreglos formales y fragmentación. Economía, Sociedad y Territorio, 19(60), 241‒271. https://www.redalyc.org/articulo.oa?id=11162787009Links ]

Espinosa-Zuñiga, J. J. (2020). Aplicación de algoritmos Random Forest y XGBoost en una base de solicitudes de tarjetas de crédito. Ingeniería, Investigación y Tecnología, 21(3). 10.22201/fi.25940732e.2020.21.3.022 [ Links ]

Espinoza, E. P. Molina, C. E. (2014). Contaminación del aire exterior Cuenca-Ecuador, 2009-2013. Posibles efectos en la salud. Revista de la Facultad de Ciencias Médicas de la Universidad de Cuenca, 32(2), 6‒17. https://publicaciones.ucuenca.edu.ec/ojs/index.php/medicina/article/view/883/781Links ]

Estarlich, M. Iñiguez, C. Esplugues, A. Mantilla, E. Zurriaga, Ò. Nolasco, A. Ballester, F. (2013). Variación espacial de la exposición a contaminación atmosférica en la ciudad de Valencia y su relación con un índice de privación. Gaceta Sanitaria, 27(2), 143‒148. 10.1016/j.gaceta.2012.05.010 [ Links ]

García, R. J. A. (2009). Influencia de la meteorología en la calidad de aire en la Zona Metropolitana del Valle de México. TIP Revista Especializada en Ciencias Químico-Biológicas, 12(2), 83‒86. 10.22201/fesz.23958723e.2009.2.27 [ Links ]

García, E. Lozano, F. (2007). Boosting support vector machines. https://elkingarcia.github.io/Papers/MLDM07.pdfLinks ]

Guzmán-Morales, J. Morton-Bermea, O. Hernández-Álvarez, E. Rodríguez-Salazar, M. T. García-Arreola, M. Tapia-Cruz, V. (2011). Assessment of atmospheric metal pollution in the urban area of Mexico City, using Ficus benjamina as biomonitor. Bulletin of Environmental Contamination and Toxicology, 86, 495‒500. 10.1007/s00128-011-0252-9 [ Links ]

Instituto Nacional de Estadística y Geografía (INEGI) (2020). Censo de Población y Viviendahttps://www.inegi.org.mx/programas/ccpv/2020/Links ]

Instituto Nacional de Estadística y Geografía (INEGI) (2022). Vehículos de motor registrados en circulaciónhttps://www.inegi.org.mx/programas/vehiculosmotor/Links ]

Jenkin, M. Clemitshaw, K. (2000). Ozone and other secondary photochemical pollutants: Chemical processes governing their formation in the planetary boundary layer. Atmospheric Environment, 34, 2499‒2527. 10.1016/S1352-2310(99)00478-1 [ Links ]

Liu, Z. Xu, H. (2014). Kernel parameter selection for support vector machine classification. Journal of Algorithms & Computational Technology, 8(2), 163‒177. 10.1260/1748-3018.8.2.163 [ Links ]

López, F. A. Heres, D. Marquez, P. F. (2021). Air pollution exposure and COVID-19: A look at mortality in Mexico City using individual-level data. Science of the Total Environment, 756, 143929. 10.1016/j.scitotenv.2020.143929 [ Links ]

Madrigal, U. D. Hernández, R. J. C. Morales, M. C. (2004). Comportamiento del monóxido de carbono y el clima en la ciudad de Toluca, de 1995 a 2001. Ciencia Ergo-Sum, Revista Científica Multidisciplinaria de Prospectiva, 11(3), 263‒274. https://www.redalyc.org/articulo.oa?id=10411306Links ]

Mercado, A. Domínguez, L. Fernández, O. (1995). Contaminación industrial en la zona metropolitana de la Ciudad de México. Comercio Exterior, 45(10), 766‒774. http://revistas.bancomext.gob.mx/rce/magazines/325/6/RCE6.pdfLinks ]

Miller, B. G. (2011). Clean coal engineering technology. Butterworth-Heinemann. 85‒132. 10.1016/B978-1-85617-710-8.00004-2 [ Links ]

Muhammad, I. Shalmani, A. Ali, M. Yang, Q.-H. Ahmad, H. Li, F. B. (2021). Mechanisms regulating the dynamics of photosynthesis under abiotic stresses. Frontiers in Plant Science, 11. 10.3389/fpls.2020.615942 [ Links ]

Navarro, A. A. (2019). Control de la contaminación atmosférica en la Zona Metropolitana del Valle de México. Estudios Demográficos y Urbanos, 34, 631‒663. 10.24201/edu.v34i3.1806 [ Links ]

Secretaría de Salud (2021). Norma Oficial Mexicana NOM-021-SSA1-2021. Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al monóxido de carbono (CO) en el aire ambiente, como medida de protección a la salud de la población. Diario Oficial de la Federación (DOF). https://www.dof.gob.mx/nota_detalle.php?codigo=5634084&fecha=29/10/2021#gsc.tab=0Links ]

Secretaría de Salud (2021). Norma Oficial Mexicana NOM-021-SSA1-2021. Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al ozono (O3), como medida de protección a la salud de la población. Diario Oficial de la Federación (DOF). https://www.dof.gob.mx/nota_detalle.php?codigo=5633956&fecha=28/10/2021#gsc.tab=0Links ]

Secretaría de Salud (2021). Norma Oficial Mexicana NOM-023-SSA1-2021. Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto al dióxido de nitrógeno (NO2), como medida de protección a la salud de la población. Diario Oficial de la Federación (DOF). https://dof.gob.mx/nota_detalle.php?codigo=5633854&fecha=27/10/2021#gsc.tab=0Links ]

Secretaría de Salud (2021). Norma Oficial Mexicana NOM-025-SSA1-2021 Salud ambiental. Criterio para evaluar la calidad del aire ambiente, con respecto a las partículas suspendidas PM10 y PM2.5 como medida de protección a la salud de la población. https://dof.gob.mx/nota_detalle.php?codigo=5633855&fecha=27/10/2021#gsc.tab=0Links ]

Organización Mundial de la Salud (OMS) (2005). Guías de calidad del aire de la OMS relativas al material particulado, el ozono, el dióxido de nitrógeno y el dióxido de azufre. https://apps.who.int/iris/bitstream/handle/10665/69478/WHO_SDE_PHE_OEH_06.02_spa.pdf;jsessionid=2AC85F7FC5F727C4C6C10E06AE3CF64B?sequence=1Links ]

Pedrero, V. Reynaldos, G. K. Ureta, A. J. Cortez, P. E. (2021). Generalidades del Machine Learning y su aplicación en la gestión sanitaria en servicios de urgencia. Revista Médica de Chile, 149(2), 248‒254. 10.4067/s0034-98872021000200248 [ Links ]

Pérez, J. I. J. Némiga, X. A. Gaytán, J. F. M. Cedillo, J. G. G. Plata, M. Á. B. Loik, M. E. Sanabria, J. M. C. (2010). Variaciones climáticas en la Zona Metropolitana de la Ciudad de Toluca, Estado de México: 1960-2007. Ciencia Ergo-Sum, Revista Científica Multidisciplinaria de Prospectiva, 17(2), 143‒153. https://www.redalyc.org/articulo.oa?id=10413200004Links ]

Pérez, C. V. Schmelkes, E. López, C. O. Carrera, F. García, T. l. A. P. Teruel, G. (2018). Ingreso y calidad del aire en ciudades: ¿Existe una curva de Kuznets para las emisiones del transporte en la Zona Metropolitana del Valle de México?. El Trimestre Económico, 85(340), 745‒764. 10.20430/ete.v85i340.717 [ Links ]

Pérez, V. Z. R. Ángeles, P. G. Chávez, V. B. Valdez, L. J. R. Ramírez, G. M. E. (2021). Enfoque espacial para modelación de carbono en el mantillo de bosques bajo manejo forestal maderable. Madera y Bosques, 27(1). 10.21829/myb.2021.2712122 [ Links ]

Popovicheva, O. Ivanov, A. Vojtisek, M. (2020). Functional factors of biomass burning contribution to spring aerosol composition in a megacity: Combined FTIR-PCA Analyses. Atmosphere, 11(4), 19. 10.3390/atmos11040319 [ Links ]

R Development Core Team (2021). R: A Language and Environment for Statistical Computing. The R Foundation for Statistical Computing. https://www.R-project.orgLinks ]

Romieu, I. Meneses, F. Ruiz, S. Sienra, J. J. Huerta, J. White, M. C. Etzel, R. A. (1996). Effects of air pollution on the respiratory health of asthmatic children living in Mexico City. American Journal of Respiratory and Critical Care Medicine, 154, 300‒307. 10.1164/ajrccm.154.2.8756798 [ Links ]

Sandoval, J. Jaimes, J. L. (2002). Formación de ozono en la Ciudad de México durante una porción de primavera e invierno en cámaras de esmog exteriores. Revista de la Sociedad Química de México, 46(2), 180‒184. https://www.redalyc.org/articulo.oa?id=47546217Links ]

Secretaría del Medio Ambiente (SEDEMA) (2018). Inventarios de emisiones de la ZMVM. https://www.sedema.cdmx.gob.mx/storage/app/media/DGCA/InventarioDeEmisionesZMVM2018.pdfLinks ]

Sheinbaum, P. C. (2016). Contaminación atmosférica en la Zona Metropolitana del Valle de México. Revista Ciencia, 67, 70‒77. https://www.revistaciencia.amc.edu.mx/images/revista/67_3/PDF/Contaminacion.pdfLinks ]

Shekaramiz, M. Moon, T. K. Gunther, J. (2019). A note on Kriging and Gaussian processes. 10.13140/RG.2.2.36631.83367 [ Links ]

Sheu, Y.-h. (2020). Illuminating the Black Box: Interpreting deep neural network models for psychiatric research. Frontiers in Psychiatry, 11. 10.3389/fpsyt.2020.551299 [ Links ]

Villalobos (2006). Inventario de emisiones de la ZMVM, 2006. http://centro.paot.org.mx/documentos/sma/ie06_criterio_pw23oct08_(1).pdfLinks ]

Vinasco, S. Pablo, J. Nastar C. Nastar del Rio, T. C. (2013). Variación espacial y temporal de concentraciones de PM10 en el área urbana de Santiago de Cali, Colombia. Ingeniería de Recursos Naturales y del Ambiente (12), 129‒141. https://www.redalyc.org/pdf/2311/231130851011.pdfLinks ]

Wedyan, G. N. Osama T. Al. Zainab M. A. (2020). The Influence of solar radiation on ozone column weight over Baghdad City. IOP Conference Series: Materials Science and Engineering, 928, 072089. 10.1088/1757-899X/928/7/072089 [ Links ]

Xing, Y.-F. Xu, Y.-H. Shi, M.-H. Lian, Y.-X. (2016). The impact of PM2.5 on the human respiratory system. Journal of Thoracic Disease, 8(1), E69‒E74. 10.3978/j.issn.2072-1439.2016.01.19 [ Links ]

Yuan, Q. Shen, H. Li, T. Li, Z. Li, S. Jiang, Y. Xu, H. Tan, W. Yang, Q. Wang, J. (2020). Deep learning in environmental remote sensing: Achievements and challenges. Remote Sensing Environment, 241, 111716. 10.1016/j.rse.2020.111716 [ Links ]

Zhou, Y. Yue, Y. Bai, Y. Zhang, L. (2020). Effects of rainfall on PM2.5 and PM10 in the middle reaches of the Yangtze River. Advances in Meteorology, 2398146. 10.1155/2020/2398146 [ Links ]

Received: February 04, 2023; Accepted: November 17, 2023

*Corresponding author: tomtz@colpos.mx; tel.: +52 595 952 0200 ext. 1479.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License