SciELO - Scientific Electronic Library Online

 
vol.8 número2Exploración del subproducto de la nixtamalización, nejayote: un panoramaComposta elaborada con residuos verdes como mejorador de un suelo urbano índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Ingeniería agrícola y biosistemas

versión On-line ISSN 2007-4026versión impresa ISSN 2007-3925

Ing. agric. biosist. vol.8 no.2 Chapingo jul./dic. 2016  Epub 01-Sep-2020

https://doi.org/10.5154/r.inagbi.2016.10.005 

Technical note

Determination of quinoa (Chenopodium quinoa Willd.) hardness by an experimental milling method

Francisco de Jesús Hernández-Hernández1 

María Ofelia Buendía-González1  * 

Agustín de Jesús López-Herrera2 

1Universidad Autónoma Chapingo, Departamento de Ingeniería Agroindustrial Carretera México-Texcoco km 38.5, Chapingo, Estado de México, C. P. 56230, MÉXICO.

2 Universidad Autónoma Chapingo, Departamento de Fitotecnia. Carretera México-Texcoco km 38.5, Chapingo, Estado de México, C. P. 56230, MÉXICO.


Abstract

The hardness of grains can help determine the optimal harvest time and their postharvest handling. This study was conducted with the objective of developing an experimental methodology to indirectly determine the hardness of quinoa (Chenopodium quinoa Willd.) seed. Five quinoa samples (Blanca Canadá, BT, RT, Ontifor and NT) were evaluated in terms of moisture (%), hectoliter weight (kg·hL-1) and hardness (breaking resistance). In order to determine the last-mentioned variable, 200 g of seed were sieved in No. 10, 14 and 18 meshes with a retention tray underneath; this was done in order to homogenize the size. Quinoa retained on each sieve was weighed. From mesh 14, which was the one with the highest retention (80 %), 30 g were ground for 2 s and sieved in No. 14, 18, 20, 24 and 30 meshes, with a retention tray underneath. The fractions obtained were weighed and the retention percentages of each sieve were obtained. To classify the hardness of the grain, a hedonic scale was developed. RT, BT and Ontifor were categorized as slightly hard, and Blanca Canadá and NT as slightly soft. The Ontifor sample showed the highest moisture and hectoliter weight, while NT had the lowest moisture percentage and the softest grain. The methodology used to determine hardness is easy to use both in the field and industry and may be useful in other small grains.

Keywords pseudocereal; seiving; yield; hectoliter weight; hedonic scale

Resumen

La dureza de los granos puede ayudar a determinar el momento óptimo de cosecha y su manejo poscosecha. El presente estudio se realizó con el objetivo de desarrollar una metodología experimental para determinar indirectamente la dureza de la semilla de quinua (Chenopodium quinoa Willd.). Se evaluaron cinco muestras de quinua (Blanca Canadá, BT, RT, Ontifor y NT), a las cuales se les determinó humedad (%), peso hectolítrico (kg·hL-1) y dureza (resistencia a la fracturación). Para determinar la tercera variable se tamizaron 200 g de semilla en mallas núm. 10, 14, 18 y charola de retención; esto con la finalidad de homogenizar el tamaño. Se pesó la quinua retenida en cada tamiz. De la malla 14, que fue la que presentó retención mayor (80 %), se molieron 30 g durante 2 s y se cribaron en mallas núm. 14, 18, 20, 24, 30 y charola de retención. Las fracciones obtenidas se pesaron y se obtuvieron los porcentajes de retención de cada tamiz. Para clasificar la dureza del grano se desarrolló una escala hedónica. RT, BT y Ontifor se catalogaron como ligeramente duras, y Blanca Canadá y NT como ligeramente suave. La muestra Ontifor fue la que presentó mayor humedad y peso hectolítrico; mientras que NT mostró el menor porcentaje de humedad y el grano más suave. La metodología aplicada para determinar la dureza es fácil de usar tanto en campo como industria y puede ser de utilidad en otros granos pequeños.

Palabras clave pseudocereal; cribado; rendimiento; peso hectolítrico; escala hedónica

Introduction

The quinoa (Chenopodium quinoa Willd.) Is native to Andean countries and was domesticated about 3,000 to 5,000 years ago (Mujica, Izquierdo, & Marathee, 2001). It is considered as a pseudocereal or pseudo grain, since its morphology and chemical composition is similar to cereals (Bazile, Bertero, & Nieto, 2014). The importance of this grain lies in its quality as food, the use of the complete plant and its adaptation to agroecological conditions (Mujica & Jacobsen, 2006). It is an important source of protein, amino acids, minerals and vitamins; in addition, it contains polyphenols, phytosterols and flavonoids with possible nutraceutical benefits (Abugoch-James, 2009; Bergesse et al., 2015).

In 1996, quinoa was classified by the Food and Agriculture Organization (FAO) as one of mankind’s most promising crops, not only because of its great beneficial properties and multiple uses, but also by considering it as an alternative to solve the serious problems of human nutrition (FAO, 2011).

The degree of relationship between protein, starch and other components deposited in perisperm cells (Figure 1) varies among quinoa varieties (Apaza, Cáceres, Estrada, & Pinedo, 2013). These relationships define how hard or soft the perisperm is between one seed and another. Differences in grain hardness are of great importance as they significantly influence the determination of physiological maturity at harvest time (Bazile et al., 2014), the physical properties of the seed, its milling and industrialization (Bergesse et al., 2015; Salinas-Moreno & Aguilar-Modesto, 2010). In this regard, Taverna, Leonel, and Mischan (2012) reported that there is a close relationship between the hardness and the quality of the flour in quinoa.

Figure 1 Median longitudinal section of quinoa seeds showing the specific parts of the grain: pericarp (PE), seed cover (SC), hypocotylradical axis (H), cotyledons (C), endosperm (EN), radicle (R), funicle (F), shoot apex (SA) and perisperm (P) (Source: Prego, Maldonado, & Otegui, 1998).  

Grain hardness refers to the resistance of grain to a mechanical force, or to the energy required to reduce the structures of the grain into flour or semolinas (Ballón & Coca-Cadena, 1989). There are several methods to determine grain hardness, and depending on the characteristics of the grain some are more suitable than others.

Some researchers have used scales based on milling time (Ballón & Coca-Cadena, 1989); others, using a texturometer, measured the force required to break the material (Bergesse et al., 2015; Taverna et al., 2012). López, Guzmán, Santos, Prieto, and Román (2005) indicate that the texturometer measures only the hardness of the grain surface, while other procedures can measure it in a more comprehensive way.

Salinas, Martínez, and Gómez (1992) analyzed seven methods to obtain hardness in maize grains, namely endosperm texture, pearling index, flotation index, density, infrared reflectance, hectoliter weight and milling time, and they determined that the most appropriate was the flotation index. The hectoliter weight of a sample is an indirect way of determining its hardness. Salinas-Moreno and Aguilar-Modesto (2010) reported in maize that the greater the grain hardness the greater the hectoliter weight and the lower the flotation index. Peña (2003) determined that wheat grain hardness is related to the amount of insoluble protein, this being of great influence in wheat processing.

There is little research on the physical characteristics of quinoa seed; therefore, the aim of this study is to develop an experimental methodology to indirectly determine the hardness of quinoa (Chenopodium quinoa Willd.) seed. In addition, moisture and hectoliter weight were evaluated, since these characteristics are directly related to hardness.

Materials and methods

The research was conducted in the Department of Agroindustrial Engineering’s Cereals Workshop at Autonomous Chapingo University. The samples analyzed were: Blanca Canadá, Blanca de Tlachichuca (BT), Roja de Tlachichuca (RT), Negra de Tlachichuca (NT) and Ontifor, all grown in Mexico, the first in Tula, Hidalgo and the rest in Chapingo and Puebla. The variables evaluated were moisture (%), hectoliter weight (kg·hL-1) and hardness (%). The tests were performed in triplicate, except for the moisture one that was made in duplicate.

Moisture

Moisture was determined using a Sartorius™ model MA37 electronic moisture analyzer, with 7 g of quinoa seed placed on each dish. Once the initial weight condition was met, the measurement was started. The approximate analysis time varied from 20 to 25 min. The result was expressed as a percentage.

Hectoliter weight

A Seedburo Equipment Co. scale was used for hectoliter weight. The sample was dropped into the upper cone (285 mL) of the apparatus. Subsequently, the sample was scraped with a wooden ruler with rounded edges to level off the container in three zigzag movements. The container with the sample was weighed and the result was expressed in kg·hL-1.

Hardness

In order to have seed of homogeneous size, several tests were carried out to select the appropriate sieves for the application of the methodology to be proposed.

The initial test to standardize seed size was performed with 200 g of quinoa and No. 10 (2 mm opening), 14 (1.41 mm opening) and 18 (1 mm opening) mesh sieves, and a retention tray. The sieving was conducted mechanically with a Montinox® sieving machine, performing circular movements (homogeneous) for 3 min. Subsequently, on an Adventurer™ Pro model AV2101 analytical balance, the quinoa retained on each sieve was weighed. From the mesh with the highest retention percentage, 30 g were weighed and processed in a Mr. Coffee® coffee bean grinder for 2 s. The ground sample was sieved in No. 14, 18, 20, 24 and 30 meshes, with a tray underneath, for 3 min using the same Montinox® sieving machine. Finally, the retention percentage of each sieve was obtained.

To determine grain hardness, a hedonic scale was generated (Table 1) with as many categories as possible.

Table 1 Hardness classification based on the retention percentage in No. 14 mesh. 

Retention percentage Classification
91-100 Extremely hard
81-90 Very hard
71-80 Moderately hard
61-70 Hard
51-60 Slightly hard
41-50 Slightly soft
31-40 Soft
21-30 Moderately soft
11-20 Very soft
0-10 Extremely soft

Source: Author-made

Statistical analysis

Analysis of variance was conducted using a completely randomized design, Tukey’s range test (P ≤ 0.05) was performed using the Statistical Analysis System package (SAS, 1994) and the Pearson correlation coefficient was obtained with the factors hectoliter weight and sieve retention percentage.

Results and discussion

From the initial seed selection, 80 % retention was obtained in 14 mesh (from 1.41 to 2mm), this being the grain size used to perform the analyses.

Moisture

The average moisture obtained was 8.88 ± 0.27 %. Table 2 shows that Ontifor had the highest moisture content (9.15 %), while NT showed the lowest (8.72 %). Considering that the maximum moisture content should be 12 % (Instituto Ecuatoriano de Normalización [INEN], 1988), the results show that the varieties used comply with the standard.

Low moisture content gives seeds longer shelf life and helps prevent insect attack (Bazile et al., 2014).

Table 2 Moisture percentage of quinoa. 

Variety Measurement 1 Measurement 2 Average
Blanca Canadá 8.48 9.35 8.915
BT 8.76 8.79 8.775
RT 8.76 8.95 8.855
Ontifor 9.23 9.08 9.155
NT 8.76 8.69 8.725

Hectoliter weight

The mean value of this variable was 66.17 ± 4.07 kg·hL-1. Table 3 shows that Ontifor had the highest hectoliter weight (70.63 kg·hL-1), coinciding with that reported in moisture. For its part, the BT sample had the lowest value (62.60 kg·hL-1). According to Ecuadorian technical standard INEN 1 673 (INEN, 1988), the minimum hectoliter weight should be 62 kg·hL-1 to be considered as a first quality grain. The analyzed samples meet this requirement.

Table 3 Hectoliter weight of five quinoa varieties (kg·hL-1). 

Variety HW1 1 HW 2 HW 3 Average
Blanca Canadá 66.25 66.63 66.91 66.60
BT 62.21 62.67 62.91 62.60
RT 65.75 65.82 65.51 65.70
Ontifor 70.67 70.63 70.6 70.63
NT 65.19 65.37 65.37 65.31

1HW = hectoliter weight.

The great variability in the results could be due to the extensive genetic diversity conserved by producers.

The varieties with the highest hectoliter weight were the same ones that had the highest moisture, coinciding with the results reported by Coşkuner and Karababa (2007) and Vilche, Gely, and Santalla (2003) who found a linear relationship between moisture and hectoliter weight.

Hardness

The retention percentage in each sieve showed significant statistical differences (P ≤ 0.05). No. 14 mesh presented 55.24 % retention (Table 4), thus being the most important to evaluate hardness.

Table 4 Retention percentage averages in meshes. 

Sieve Number Retention (%)
14 50.24 az
18 11.57 c
30 8.70 d
20 3.34 e
24 1.75 f
Retention tray 22.17 b

zMeans with the same letter do not differ statistically (Tukey, P ≤ 0.05).

Table 5 shows the retention percentage of each sample per mesh. The sieve with the greatest amount of sample was the 14, conserving, on average, more than 50 %; therefore, the determination of hardness was focused on this sieve.

Table 5 Sample retention percentage in each mesh. 

Mesh number Blanca Canadá BT RT Ontifor NT
14 47.67 54.89 55.22 51.11 42.33
18 12.56 7.22 12.61 12.58 15.89
20 9.89 7.22 13.61 11.75 10.11
24 1.67 2.00 13.00 7.33 1.56
30 3.89 4.22 17.11 10.50 3.00
Tray 22.89 23.22 23.22 23.06 24.00
Total 98.56 98.78 98.78 98.67 96.89

With the selected sieve (No. 14), a hedonic scale relating retention percentage (non-fractured seed) to grain hardness was created. Table 1 shows the category assigned to each retention percentage range.

According to the results, Blanca Canadá (47.67 %) and NT (42.33 %) are slightly soft grain, while BT (54.89 %), RT (55.22 %) and Ontifor (51.11 %) are slightly hard (Table 5). The BT, RT and Ontifor samples do not present significant statistical differences (P ≤ 0.05), being those of greater hardness, that is, a higher retention percentage in 14 mesh (Table 6).

Table 6 Results of retention percentage means in No. 14 mesh.  

Samples Retention (%) Classification
RT 55.22 az Slightly hard
BT 54.88 a Slightly hard
Ontifor 51.11 ab Slightly hard
Blanca Canadá 47.67 bc Slightly soft
NT 42.33 c Slightly soft

zMeans with the same letter do not differ statistically (Tukey, P ≤ 0.05).

It was expected that the variety with the greatest hectoliter weight and moisture percentage would also present the greatest hardness; however, although Ontifor was classified as “slightly hard” it was not the hardest. On the other hand, the NT variety was the softest, coinciding with the moisture result but not with that of the hectoliter weight.

To determine the hardness of quinoa grain, Ballón and Coca-Cadena (1989) created five categories (soft, semi-soft, semi-hard, hard and very hard) based on the time required to mill the grain. Their results show that most of the varieties used were soft, followed by hard and semi-soft. The variation in the results is due to the different varieties used.

The correlation between hectoliter weight and sieve retention percentage was 0.638. This analysis allowed deducing the proportion at which an increase in the hectoliter weight of the grain will increase the retention percentage in the sieve, thereby resulting in a harder grain.

Conclusions

The methodology used is an efficient way to indirectly quantify the hardness parameter. In the case of quinoa, the recommended sieve size is No. 14, since it was the one that presented the greatest particle retention. This procedure may also be viable in other small grains (such as amaranth, quiwicha and chia, among others), although further testing is recommended to standardize and obtain better results. The fact that the hardness of the samples was different was to be expected, since, as in other grains, each variety has its own characteristics and can therefore be used for different purposes. The correlation between hectoliter weight and the mesh retention percentage (grain hardness) is not very high (r2 = 0.6384), which may influence the moisture of the grain.

References / Referencias

Abugoch-James, L. (2009). Quinoa (Chenopodium quinoa Willd.): Composition, chemistry, nutritional, and functional properties. In: Abugoch-James, L. (Ed.), Advances in food and nutrition research (pp. 1-31). Amsterdam, The Netherlands: Academic Press. doi: 10.1016/S1043- 4526(09)58001-1 [ Links ]

Apaza, V., Cáceres, G., Estrada, R., & Pinedo, R. (2013). Catálogo de variedades comerciales de quinua en Perú. Lima, Perú: Food and Agriculture Organization. Retrieved from http://www.fao.org/3/a-as890s.pdfLinks ]

Ballón, E., & Coca-Cadena, A. (1989). Extracción de harinas de variedades de quinua (Chenopodium quinoa Willd). Revista del Instituto Colombiano Agropecuario, 24(2), 98-104. Retrieved from http://quinua.pe/wp-content/uploads/2014/01/s2dFA82BFE5C3F60D166F66D00E131EA054_1.pdfLinks ]

Bazile, D., Bertero, D., & Nieto, C. (2014). Estado del arte de la quinua en el mundo en 2013. Santiago de Chile y Montpellier, Francia: Food and Agriculture Organization. Retrieved from http://www.fao.org/3/a-i4042s.pdfLinks ]

Bergesse, A. E., Boiocchi, P. N., Calandri, E. L., Cervilla, N. S., Gianna, V., Guzmán, C. A., Miranda, P. P., Montoya, P. A., & Mufari, J. R. (2015). Aprovechamiento integral del grano de quinoa. Aspectos tecnológicos, fisicoquímicos, nutricionales y sensoriales. Córdoba, Argentina: Edgardo Luis Calandri. Retrieved from https://rdu.unc.edu.ar/bitstream/handle/11086/1846/Aprovechamiento%20%20integral%20del%20%20grano%20de%20quinoa. pdf?sequence=7&isAllowed=yLinks ]

Coşkuner, Y., & Karababa, E. (2007). Some physical properties of flaxseed (Linum usitatissimum L.). Journal of Food Engineering, 78, 1067-1073. doi: 10.1016/j. jfoodeng.2005.12.017 [ Links ]

Food and Agriculture Organization (FAO) (2011). La quinua: Cultivo milenario para contribuir a la seguridad alimentaria mundial. Bolivia: Author. Retrieved from http://www.fao.org/fileadmin/templates/aiq2013/res/es/cultivo_ quinua_es.pdfLinks ]

Instituto Ecuatoriano de Normalización (INEN). (1988). Norma técnica Ecuatoriana INEN 1 673. Ecuador: Author. Retrieved from https://law.resource.org/pub/ec/ibr/ec.nte.1673.1988.pdfLinks ]

López, P., Guzmán, F. A., Santos, E. M., Prieto, F., & Román, A. D. (2005). Evaluación de la calidad física de diferentes variedades de cebada (Hordeum sativum Jess) cultivadas en los estados de Hidalgo y Tlaxcala, México. Revista Chilena de Nutrición, 32(3). doi: 10.4067/S0717-75182005000300010 [ Links ]

Mujica, A., Izquierdo, J., & Marathee, J. P. (2001). Origen y descripción de la quinua. In: Mujica, A., Jacobsen, S. E., Izquierdo, J., & Marathee, J. P. (Eds.), Quinua (Chenopodium quinoa Willd.): ancestral cultivo andino, alimento del presente y ruturo (pp. 9-29). Santiago de Chile: Food and Agriculture Organization. Retrieved from http://es.slideshare.net/dioslokis/29879087-libroquinuaancestralcultivodelosandesrmirandaLinks ]

Mujica, A., & Jacobsen, S. E. (2006). La quinua (Chenopodium quinoa Willd.) y sus parientes silvestres. In: Moraes, M., Øllgaard, B., Kvist, L. P., Borchsenius, F., & Balslev, H. (Eds.), Botánica Económica de los Andes Centrales (pp. 449-457). La paz, Perú: Universidad Mayor de San Andrés. Retrieved from http://quinua.pe/wp-content/uploads/2013/03/La-quinua-y-sus-parientes.pdfLinks ]

Peña, R. J. (2003). Influencia de la textura del endospermo y la composición de las proteínas del gluten en la calidad panadera del trigo. In: Jobet-Fornazzari, C. (Ed.), Avances y perspectivas en calidad industrial de trigo (pp. 23- 40). Temuco, Chile: Centro Regional de Investigación Carillanca. Retrieved from http://www2.inia.cl/medios/biblioteca/serieactas/NR29062.pdfLinks ]

Prego, I., Maldonado, S., & Otegui, M. (1998). Seed struture and localization of reserves in Chenopodium quinoa. Annals of Botany, 82(4), 481-488. doi: 10.1006/anbo.1998.0704 [ Links ]

Salinas-Moreno, Y., & Aguilar-Modesto, L. (2010). Efecto de la dureza del grano de maíz (Zea mays L.) sobre el rendimiento y calidad de la tortilla. Ingeniería Agrícola y Biosistemas, 2(1), 5-11. doi: dx.doi.org/10.5154/r. inagbi.2010.08.009 [ Links ]

Salinas, Y., Martínez, F., & Gómez, J. (1992). Comparación de métodos para medir la dureza del maíz (Zea mays L.). Archivos latinoamericanos de nutrición, 42(1), 59-63. [ Links ]

Statistical Analysis System (SAS Institute). (1994). SAS User’s Guide, version 9.0. Cary, N.C., USA: Author. [ Links ]

Taverna, L. G., Leonel, M., & Mischan, M. M. (2012). Changes in physical properties of extruded sour cassava starch and quinoa flour blend snacks. Ciência e Tecnologia de Alimentos, 32(4), 826-834. doi: 10.1590/S0101- 20612012005000113 [ Links ]

Vilche, C., Gely, M., & Santalla, E. (2003). Physical properties of quinoa seeds. Biosystems Engineering, 86(1), 59-65. doi: 10.1016/S1537-5110(03)00114-4 [ Links ]

Received: October 27, 2016; Accepted: December 20, 2016

*Corresponding author: ofeliabg@hotmail.com, tel.: (+52) 01595 11 03 243

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License