SciELO - Scientific Electronic Library Online

 
vol.96 número1Vascular Plants and Vegetation of the Sayula sub-basin, Jalisco, Mexico índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.96 no.1 México ene./mar. 2018

https://doi.org/10.17129/botsci.1532 

Taxonomy and floristics

Temporary freshwater wetlands floristics in central Mexico highlands

Tatiana Lobato-de Magalhães1 

Mahinda Martínez1  * 

1 Facultad de Ciencias Naturales, Universidad Autónoma de Querétaro, Santiago de Queretáro, Queretáro, México.


Abstract:

Background:

Mexico has a high diversity of aquatic and subaquatic plants that occur between 1,000 and 2,500 m of elevation, although a larger proportion of aquatic plants is concentrated at lower altitudes. Temporary wetlands harbor close to 73 % of the aquatic species in Mexico. These systems are under a strong anthropogenic pressure and suffer constant degradation.

Questions:

i) How many species grow in highland temporary wetlands? ii) Are they floristically similar? iii) Is there a latitudinal pattern of species richness?

Studied groups:

Charophyta, Pteridophyta, Angiosperms.

Study site and years of study:

Central Mexico (39 wetlands) from 2015 to 2016.

Methods:

We collected in 39 temporary wetlands for two years. We made a presence/absence list of species per locality, and calculated floristic similarities and correlations between wetlands. We include data characterizing life form, plant use, and conservation status.

Results:

We found 126 species belonging to 80 genera and 38 families. The richest families were Cyperaceae, Asteraceae, and Poaceae. As to genera, Eleocharis, Cyperus, and Juncus had more species. Species with the widest distributions were Persicaria mexicana, Marsilea mollis, Luziola fluitans, Heteranthera peduncularis, and Nymphoides fallax. We found five different life forms – all herbaceous, including 27 threatened species, 24 species with economic use, 48 endemic species, and 19 cosmopolitan species. In addition, we found 20 species recorded for the first time in some states included in our study, and two species of Eleocharis that might represent undescribed species. The richest wetland harbors 40 species, the poorest has only five. Wetlands were comparable to each other in species composition, and species richness increases towards the south.

Conclusions:

Temporary wetlands harbor a high floristic diversity and are similar to each other. Lower latitudes host higher numbers of species.

Key words: Aquatic plants; floristic similarity; new species records

Resumen:

Antecedentes:

En altitudes entre 1,000 y 2,500 m ocurre una gran diversidad de plantas acuáticas en México, a pesar de que la mayor diversidad está concentrada en bajas altitudes. Los humedales temporales albergan el 73 % de las especies acuáticas mexicanas. Este ecosistema singular sufre presión de degradación y es de gran interés para la conservación.

Preguntas:

i) ¿Cuántas especies se encuentran en los humedales temporales de altitud? ii) ¿La flora de los humedales temporales es similar? iii) ¿Existe un gradiente latitudinal de riqueza de especies?

Grupos en estudio:

Charophyta, Pteridophyta y Angiospermas.

Sitio de estudio y año del estudio:

Centro de México (39 humedales) en 2015 y 2016.

Métodos:

Colectamos en 39 sitios durante dos años. Los datos que se incluyeron fueron: forma de vida, hábito, distribución, uso y riesgo de extinción. Posteriormente, se elaboró un listado de presencia/ausencia de especies por sitio y se calculó la similitud florística por medio del índice de Jaccard y la correlación entre los humedales por medio de Friendly.

Resultados:

Se encontraron 126 especies, 80 géneros y 38 familias. Las familias más ricas fueron Cyperaceae, Asteraceae, y Poaceae. Los géneros más ricos fueron Eleocharis, Cyperus y Juncus. Las especies con mayor distribución fueron Persicaria mexicana, Marsilea mollis, Luziola fluitans, Heteranthera peduncularis y Nymphoides fallax. Se observaron cinco formas de vida, todas de hábito herbáceo, 27 especies están amenazadas, 24 tienen uso económico, 48 son endémicas a MegaMéxico, y son 19 cosmopolitas. Encontramos 20 nuevos registros para algunos estados mexicanos y dos son probablemente nuevas especies de Eleocharis. El humedal más rico presentó 40 especies, el más pobre cinco. Los humedales presentaron similitud entre sí y mayor riqueza a bajas latitudes.

Conclusiones:

Los humedales temporales son ecosistemas biodiversos que presentan similitud entre sí. En latitudes más bajas se observa mayor número de especies.

Palabras clave: Nuevos registros de especies; plantas acuáticas; similitud florística

Wetlands are among the most threatened ecosystems of the world (Zedler & Kercher 2005, Cui et al. 2012). Estimates over the last decades put wetland loss as high as 60 % worldwide (Davidson 2013), and 62 % for Mexico (Landgrave & Moreno-Casasola 2012). Mexico is a megadiverse country (Declaración de Cancún 2002) and a biodiversity conservation hotspot (Myers et al. 2000) that harbors 21,841 flowering plant species (Villaseñor & Ortiz 2014). According to the National Wetland Inventory (Dumac 2017), almost 6 % (128,000 km) of the Mexican territory is occupied by wetlands. There are 139 Ramsar sites in Mexico, which makes it the neotropical country with the highest increase in internationally protected wetlands in recent decades (Mauerhofer et al. 2015). Mexico has 1,283 aquatic and subaquatic angiosperms, of which 157 are endemic to the country (Villaseñor & Ortiz 2014). As to strictly aquatic plants, there are 240 species (Mora-Olivo et al. 2013). According to Lot et al. (1993) Mexico has 747 of vascular aquatic plants. Aquatic plants may belong to the groups Charophyta, Briophyta, Pteridophyra, Gymnosperms and Angiosperms (Lot 2012), and are a major component of aquatic ecosystems (Dar et al. 2014).

Temporary wetlands span over approximately 0.81 million km2 of the Earth’s surface (Pekel et al. 2016). They undergo severe changes in water saturation levels, and at times can dry completely (Martínez & García 2001). Temporary wetlands are dynamic and can change in shape and size (Frohn et al. 2009). They function as a connection among different ecosystems, either terrestrial or aquatic (Aavik et al. 2013, Ishiyama et al. 2014, Uden et al. 2014), provide ecosystem services (Marton et al. 2015), and substantially contribute in maintaining biodiversity (Balian et al. 2008). Temporary wetlands harbor almost 73 % of the aquatic plants and 31 % of the strictly aquatic plants in Mexico (Mora-Olivo et al. 2013). In particular, temporary wetlands in central Mexico are highly diverse ecosystems (Rico-Romero 2015). The largest number of aquatic plants is concentrated at lower altitudes (Rzedowski 1978), but at least 147 of the Mexican strictly aquatic plants populate wetlands located above 1,000 m a.s.l. (Mora-Olivo et al. 2013). Scientific studies of temporary wetlands are scarce, which contributes to habitat loss. In such a context, floristic inventories of temporary wetlands contribute to the knowledge and conservation of a rapidly disappearing ecosystem (Calhoun et al. 2016). The objectives of our paper are to determine the floristic composition and analyze the level of similarity among temporary highland wetlands in central Mexico.

Materials and methods

The 39 studied temporary wetlands range in elevation from 1,900 to 2,700 m a.s.l. in the states of Aguascalientes (localities 1-12), Guanajuato (13-18), Jalisco (19-22), Michoacán (23), Querétaro (24-32), San Luis Potosí (33, 34), and Zacatecas (35-39, Figure 1, Appendix 1, Figure 2). Wetlands were located using bibliographical references, by field trips, and through the support of local researchers. The areas lie between the latitudes of 20º and 24º North, and longitudes 100º and 103º West (Appendix 1), in the Mexican Transvolcanic Belt and the Mexican Plateau. Weather is semiarid temperate, and temperate subhumid, with the following Koeppen classifications: ‘BS1kw’, ‘C(wo)’, and ‘C(w1)’. Mean annual temperature ranges from 12 ºC to 18 ºC. Mean annual precipitation is 600 to 800 mm with the highest precipitations in June or July. Natural vegetation surrounding the wetlands is composed of oak forests and grasslands with agricultural activities present (INEGI 2017, CONABIO 2017). Water parameters were as follows (averages): pH 5.98, dissolved oxygen 4.87 mg/L, conductivity 126 µSTm, resistivity 0.027 mΩ, total dissolved solids 62 ppm, and salinity 0.06 PSU (Appendix 1).

Figure 1 Map of studied temporary wetlands located in the highlands of Aguascalientes, Guanajuato, Jalisco, Michoacán, San Luis Potosí, Querétaro and Zacatecas States, central Mexico. 

Figure 2 A) Site 15 in Guanajuato, October 2015. B) Site 15 starting to became dry in Guanajuato, December 2016. C) Site 7 in Aguascalientes, October 2016. D) Site 34 in San Luis Potosí, October 2016. E) Site 35 in Zacatecas, October 2015. F) Site 32 in Querétaro, October 2016. G) Site 29 surrounded by houses in Querétaro, October 2016. H) Site 26 it was covered with soil and asphalt during 2016 in Querétaro 

Plant specimens were collected in the 39 wetlands from August 2015 to November 2016. Collection and herborization followed Lot (1986). Vouchers were deposited at Autonomous University of Queretaro Herbarium “Jerzy Rzedowski”, QMEX with duplicates to be distributed in Mexico (CIIDIR, IBUG, MEXU, SLPM, and XAL) and Brazil (LUSC), acronyms according to Thiers (continuously updated). Family classification for ferns followed Smith et al. (2006), and Angiosperm Phylogeny Group IV (APG 2016) for angiosperms. Nomenclature followed the International Plant Name Index (IPNI 2017). We used the concept of Lot et al. (1986, 1993) to define life form (rooted emergent, rooted submersed, rooted floating, free floating, free submersed), and affinity as aquatic plant, which includes three categories (strictly aquatic, subaquatic, and tolerant). Strictly aquatic plants definition followed Mora-Olivo et al. (2013), subaquatic are according to Lot et al. (2013) for monocots and Lot et al. (2015).

We elaborated a presence/absence list per site, and calculated the floristic distance (Jaccard 1908, Krebs 1999) and the floristic correlation among wetlands (Friendly 2002). Graphs and maps were elaborated with ArcGIS® version 9.3 and R version 3.31 (R Development Core Team 2017), through corrplot, vegan packages (Wei y Simko 2017)

We included geographical and altitudinal distribution (Mora-Olivo et al. 2013, Lot et al. 2013, Lot et al. 2015, GBIF 2017, Tropicos 2017), conservation status: either national or international (SEMARNAT 2010, IUCN 2017), use: biofilters, medicinal (Medline 2017), and finally, weeds were defined as such if they are included in Villaseñor & Espinosa-García (1998). Records for the Mexican states were considered as new if the species was not included in Mickel & Smith (2004) for ferns, Lot et al. (2013) for monocotyledons, Flora del Bajío (Rzedowski & Rzedowski 2017) for several families, and Martínez et al. 2017 for Solanaceae.

Results

We found 126 species of 80 genera and 39 families (Appendix 2). Three were Charophyta, four Pteridophyta, and 119 Angiosperms. The richest family was Cyperaceae (27 species), followed by Asteraceae (17), Poaceae (16), Plantaginaceae (5), Fabaceae (5), and Juncaceae (4, Figure 3-A). The genera with the highest number of species were Eleocharis (16 species, Figure 4-A), Cyperus (8), and Juncus (4). The rest of the genera had three species or less. Persicaria mexicana had the widest distribution (32 localities, Figure 3-B, Figure 4-B), followed by Marsilea mollis (28 localities), Luziola fluitans (26 localities, Figure 4-C), Heteranthera peduncularis (25 localities, Figure 4-D), Nymphoides fallax (25 localities, Figure 4-E), Eleocharis macrostachya (24 localities), and Paspalum distichum (23 localities). Thirty-six species (28 %) were found in only one locality. Life forms were emergent (93 species), submersed (14 species), rooted floating (13 species), free floating (five species) and free submersed (one species). We found 49 strictly aquatic, 21 subaquatic, 38 tolerant, and 18 with no previous record as aquatic plant. All plants were herbaceous.

Figure 3 A) Specie richest families; B) More frequent species; C) Number of species per locality; D) Dendrogram cluster by Jaccard; E) Floristic correlation between localities; F) Specie distribution in higher and lower latitudes from 21º N. 

Figure 4 A) Eleocharis densa site 27, richest genus. B) Persicaria mexicana site 13, most frequent specie. C) Luziola fluitans site 16, recurrent specie. D) Heteranthera peduncularis site 8, recurrent specie. E) Nymphoides fallax site 38, recurrent specie. F) Potamogeton nodosus site 2, endangered. G) Nymphaea gracilis site 21, endangered. H) Azolla microphylla site 25, multiple economic use. 

The richest wetland had 40 species (site 26 in Querétaro, Figure 3-C), followed by 37 (sites 16 in Guanajuato and 29 in Querétaro). However, one of the wetlands had only five species (site 36 in Zacatecas). The surveyed wetlands had a level of similarity among themselves (Figure 3-D). Wetlands with the highest correlations among them were those from Querétaro (sites 24, 25, 26, 27, 29, 30, 31, and 32, Figure 3-E), followed by those of Aguascalientes (sites 1, 2, 3, 4, 5, 6, 7, 8 and 9, Figure 3-E). Aguascalientes localities also showed a high correlation with Jalisco’s Highlands (sites 19, 20, 21, and 22, Figure 3-E) and southern Zacatecas (site 36 and 37, Figure 3-E). In addition, Querétaro localities showed a correlation with Guanajuato (Figure 3-E). We observed the existence of a latitudinal gradient and found 47 species growing only at the lowest latitude wetlands (Figure 3-F). We only sampled 15 of the 39 wetlands at latitudes lower than 21°, but we found 103 of the 126 species (82 %) on these wetlands, 47 of which were exclusive. Wetlands higher than 21° latitude presented 79 species (63 %), and only 23 were exclusive. Forty-eight species are endemic to the MegaMéxico region: Callitriche heterophylla, Eleocharis densa, E. ignota, E. reznicekii, E. tenarum, E. yecorensis, Eragrostis plumbea, Eriocaulon bilobatum, Galium proliferum, Glandularia teucriifolia, Helenium mexicanum, Heteranthera peduncularis, Heterosperma pinnatum, Isoetes mexicana, Jaegeria glabra, J. purpurascens, Karinia mexicana, Lobelia fenestralis, L. irasuensis var.fucata, Luziola fluitans, Marsilea mollis, Nierembergia angustifolia, Nymphaea gracilis, Nymphoides fallax, Plantago linearis, Polygala alba, P. subalata, Potamogeton diversifolius, Rorippa mexicana, Sagittaria demersa, Schkuhria schkuhrioides, Sisyrinchium convolutum, Sporobolus atrovirens, Stevia eupatoria, Tagetes lucida, T. pringlei, Trifolium wormskioldii, Tripogandra purpurascens, Utricularia perversa, and Verbena carolina. Nineteen species are cosmopolitan. Two species are introduced to Mexico: Egeria densa, and Glyceria fluitans.

We found 19 species that can occur in low and high elevations: Diplachne fusca, Echinochloa crus-galli, Egeria densa, E. minima, E. montana, E. parishii, E. schaffneri, E. yecorensis, Heteranthera limosa, H. peduncularis, Juncus arcticus, Lemna minuta, Ludwigia octovalvis, L. peploides, Najas guadalupensis, Paspalum distichum, Potamogeton nodosus, and Schoenoplectus californicus, and Triglochin scilloides; 24 species occur only above > 1,000 m a.s.l.: Callitriche heterophylla, Echinochloa crus-pavonis, E. oplismenoides, Eleocharis aciculares, E. densa, E. ignota, E. macrostachya, Eriocaulon bilobatum, Glyceria fluitans, Isoetes Mexicana, Jaegeria glabra, Juncus dichotomus, J. ebracteatus, J. microcephalus, Karinia mexicana, Lemna gibba, L. obscura, Limosella aquatica. Luziola fluitans, Nymphoides fallax, Potamogeton diversifolius, Sagittaria demersa, Sisyrinchium convolutum, and Tripogandra purpurascens. We did not find information on altitudinal distribution for the rest of the species collected in this study.

Twenty seven species were listed as threatened, 25 of which are on the international list (IUCN 2017) in the “least concern” category: Azolla microphylla, Callitriche heterophylla, Cyperus esculentus, Diplachne fusca, Distichlis spicata, Echinochloa crus-galli, Elatine brachysperma, Eleocharis aciculares, E. atropurpurea, E. densa, E. macrostachya, Glyceria fluitans, Hippuris vulgaris, Lemna gibba, L. minuta, Limosella aquatica, Ludwigia octovalvis, Najas guadalupensis, Paspalum distichum, Poa annua, Polygonum punctatum, Potamogeton nodosus (Figure 4-F), Setaria parviflora, Trifolium amabile, and Triglochin scilloides. Two species, Nymphaea gracilis (Figure 4-G), and Trifolium wormskioldii, are listed by SEMARNAT (2010) as threatened.

As to the actual or potential uses of the species, 21 have economic importance, 12 as medicinal, and eight as biofilter/ biofuel, and one with both purposes (Azolla microphylla, Appendix 2, Figure 4-H). Medicinal: Azolla spp. have antibacterial activity (Abraham et al. 2015), also Cosmos bipinnatus has the same medicinal property (Olajuyigbe & Ashafa 2014, Sohn et al. 2013). The oil of Baccharis salicifolia is a natural repellent (García et al. 2005). Bidens aurea acts like omeprazole (De la Lastra et al. 1994). Ludwigia octovalvis is used against cancer (Chang et al. 2004). Polygonum punctatum has antibiotic, anti-inflammatory and anti-hyperalgesic properties (Alves et al. 2001). Rumex crispus has sun protection properties (Demirezer & Uzun 2016). Schkuhria schkuhrioides is antimicrobial (Delgado et al. 1998). Stevia eupatoria has anti-mutagenic and anti-oxidant properties (Cariño-Cortés et al. 2007). Symphyotrichum subulatum has anti-inflammatory properties (Lee et al. 2012). Tagetes lucida has medicinal properties as anti-depressive (Bonilla-Jaime et al. 2015) and T. micrantha has diverse medicinal properties (Linares & Bye 1987). Biofilter/ biofuel: Azolla filiculoides and A. microphylla are attractive species for the production of renewable biofuels (Miranda et al. 2016). Egeria densa can remove heavy metals from the environment (Tsuji et al. 2017), as can Eleocharis aciculares, E. macrostachya, and, E. montana (Ha et al. 2011, Olmos-Márquez et al. 2012). Lemna gibba, L. obscura, L. minuta are indicated for phytoremediation of contaminated water (Gallardo-Williams et al. 2002, Gür et al. 2016, Di-Baccio et al. 2017).

Forty four species were recorded as Mexican weeds: Allium glandulosum, Baccharis salicifolia, Bahia absinthifolia, Bidens aurea, Cosmos bipinnatus, Cuphea wrightii, Cyperus esculentus, C. flavescens, C. virens, Dalea foliolosa, Echinochloa crus-galli, E. crus-pavonis, Egeria densa, Eleocharis aciculares, E. montana, Glandularia teucriifolia, Glyceria fluitans, Helenium mexicanum, Heteranthera limosa, Lemna gibba, L. minuta, L. obscura, Ludwigia octovalvis, L. peploides, Najas guadalupensis, Nothoscordum bivalve, Paspalum distichum, Plantago linearis, Poa annua, Polygonum punctatum, Potamogeton diversifolius, P. nodosus, Pycreus niger, Rorippa mexicana, Rumex crispus, Schkuhria schkuhrioides, Setaria parviflora, Sisyrinchium convolutum, Sporobolus indicus, Tagetes lucida, Tagetes micranta, Trifolium amabile, Tripogandra purpurascens, and Verbena carolina.

Two species probably yet undescribed of the genus Eleocharis were found at site 7, Aguascalientes, and site 35, Zacatecas (S. González pers. comm.). New records of 20 species were found for the following Mexican states: Aguascalientes: Eleocharis parishii, E. reznicekii, Eriocaulon bilobatum, Isoetes mexicana, Lemna oscura, Potamogeton nodosus, and Schoenoplectus californicus. Guanajuato: Eleocharis tenarum, E. yecorensis, Echinocloa oplismenosides, Eriocaulon bilobatum, Juncus ebracteatus, and Lemna minuta. Michoacán: Jaegeria purpurascens. Querétaro: Azolla microphylla, Eleocharis ignota, and Lemna oscura. San Luis Potosí: Lemna oscura. Zacatecas: Elatine brachysperma, Eriocaulon bilobatum, Heteranthera limosa, Isoetes mexicana, Juncus arcticus, Marsilea mollis, and Nierenbergia angustifolia.

Discussion

In several wetland studies, Asteraceae, Cyperaceae and Poaceae arise as the most important families and emergent species stand out as the most abundant life form in wetlands. (Pott & Pott 2000, Rolon et al. 2010, Magalhães et al. 2016). Cyperaceae and Poaceae are among the richest aquatic monocotyledons plant families in Mexico (Lot et al. 2013). Aquatic Cyperaceae have morphological adaptations that enables them to survive drought spells (Rocha & Martins 2011). As to distributions, aquatics plants frequently are cosmopolitan, but a few only prosper in specific environments and are endemic (Rzedowski 1978). Cyperaceae and Poaceae also have a high endemism among Mexican aquatic plants (Lot et al. 2013). Allium glandulosum, Azolla filliculoides, Eleocharis ignota, Hippuris vulgaris, Jaegeria glabra and Sagittaria demersa are some of the 47 species registered only below 21° N. S. demersa is endemic to MegaMexico and is considered rare, or even threatened (Lot et al. 2002). The Cyperaceae Eleocharis parashii, E. atropurpurea, E. coloradoensis, E. minima, E. reznicekii and Schonoplectus californicus are among the 47 species registered above 21° N latitude. Some of the 56 species are present at both north and south of latitude 21° N were Callitriche deflexa, C. heterophylla, Eleocharis aciculares, E. densa, E. dombeyana, E. macrostachya, E. montana, E. schafenerri, E. tenarum, E. yecorensis, Eriocaulon bilobatum, Heteranthera limosa, H. peduncularis, Najas guadalupensis, Nymphoides fallax, Triglochin scilloides, and Utricularia perversa. Species with restricted distribution to Mexico or Central America are Eleocharis reznicekii, Eriocaulon bilobatum, Sisyrinchium convolutum (Lot et al. 2013), Utricularia perversa, and Nymphoides fallax (GBIF 2017, Tropicos 2017). Altitudinal distribution presented species which strictly occur at higher elevations, and others that are able to develop at both low and high elevations. Rzedowski (1978) and Mora-Olivo et al. (2013) suggest that there is a pattern of lower species diversity at higher elevation wetlands. However, there are two possible explanations for such a perception: 1) highland wetlands are under-detected and under-collected because many have a temporary water regime, and 2) at higher elevations terrain slopes hinder large water areas and many of the wetlands occupy small areas.

Differences in floristic composition found among sampled wetlands can also be explained by the surrounding vegetation cover and land use, as well as by physical and chemical water characteristics (Declerck et al. 2006, Lacoul & Fredman 2006, Ot’ahel’ová et al. 2007, Dar et al. 2014, Lu et al. 2014). Geographically isolated temporary wetlands can contribute to the landscape functions (Cohen et al. 2016). Localities 1 (Aguascalientes), 29 (Querétaro), 35 and 39 (Zacatecas) had higher conductivity, dissolved solids and salinity than the rest. Localities 1 and 29 are very close to a town, especially site 29 (Figure 2-G) which is delimited by houses. However, site 29 is among the richest localities, with 37 species. Wetlands 35 and 39 had higher salinity, and had a lower number of species (15 and 10, respectively). Both localities also had pH values above eight. Besides water contamination and nutrient deposition in the water, temporary wetlands are vulnerable to landscape conversion, drainage and obliteration. Site 26 (Querétaro) presented the highest number of species in 2015, however in 2016, it was covered with soil and asphalt, and was completely surrounded by houses (Figure 2-H). We found some aquatic species in 2016, as Triglochin scilloides and Jaegeria purpurascens, even when the site was already dry. Vegetation restoration of a 100 m belt surrounding a temporary wetland can significantly improve water quality (Bird & Day 2014). Submersed species as Najas guadalupensis and Chara spp. are important in maintaining ecological processes in wetlands exposed to high level of nutrients (Dierberg et al. 2002). Aquatic plants are also economically important as biofilters to remove excess of nutrients (Kostel 2016), as well as to control eutrophication (Fisher & Acreman 2004). Lemna spp. acts as a filter and inhibits submersed plants growth by blocking the light (Arroyave 2004, Rai 2008, Cuasquer et al. 2016).

A large proportion of the plants listed as weeds (Villaseñor & Espiosa-Garcia 1998), are also aquatic, either strict or subaquatic (Lot et al. 2013, Mora-Olivo et al. 2013, Lot et al. 2015), for example: Baccharis salicifolia, Cyperus esculentus, C. flavescens, C. virens, Echinochloa crus-galli, E. crus-pavonis, Eleocharis aciculares, E. montana, Heteranthera limosa, Ludwigia octovalvis, L. peploides, Najas guadalupensis, Paspalum distichum, Plantago linearis, Poa annua, Polygonum punctatum, Potamogeton diversifolius, P. nodosus, Pycreus niger, Rorippa mexicana, Rumex crispus, Schkuhria schkuhrioides, Sisyrinchium convolutum, Sporobolus indicus, and Tripogandra purpurascens. We could not consider them so, since they are in their typical habitat, the temporary wetlands. The concept of weed depends of the moment, place, and conditions where the plant is developing (Lorenzi 1991). In addition, 15 of the 44 species cited as weed are also cited as economically important, such as potentially medicinal (nine species): Baccharis salicifolia, Bidens aurea, Cosmos bipinnatus, Ludwigia octovalvis, Polygonum punctatum, Rumex crispus, Schkuhria schkuhrioides, Tagetes lucida, and Tagetes micrantha, or as biofilters (six species): Egeria densa, Eleocharis aciculares, E. montana, Lemna gibba, L. minuta, and L. obscura. On the other hand, we did not find previous record as aquatic plant for 17 species of Asteraceae (Acmella repens, Aster moranensis, Bahia absinthifolia, Bidens aurea, Cosmos bipinnatus, Gnaphalium luteo-album, Heterosperma pinnatum, Tagetes lucida, and T. micrantha), Fabaceae (Dalea foliolosa, Macroptilium sp., Mimosa aculeaticarpa, Trifolium amabile, and T. wormskioldii), Rubiaceae (Galium cf. proliferum), and Verbenaceae (Glandularia teucriifolia, Verbena carolina). We could consider the above species as weeds for the temporary wetlands where recorded.

In spite of recent compilation studies for Mexican aquatic plants (such as Lot et al. 2013, Lot et al. 2015), several states (especially Aguascalientes and Zacatecas) need a higher collecting effort. We found seven new records and probably one undescribed species for each state.

Given that temporary wetlands present a high anthropic degradation, but still have a high biodiversity (Pollock et al. 1998, Balian et al. 2008, Murray-Hudson et al. 2012), with economically species (Pott & Pott 2000, Magalhães et al. 2016), they should be a conservation priority. Hence, studies of landscape influence on species occurrence are a new challenge to create strategies for conservation of temporary freshwater wetlands. Knowledge and awareness of the distribution, biodiversity, and economic potential of botanical species in temporary wetlands is the first step to establish conservation policies (Calhoun et al. 2016), as they are a very peculiar and highly threatened environment of central Mexico.

Acknowledgements

We thank the following researchers for plant identifications: Socorro González (Cyperaceae), Maricela Gómez Sánchez (Poaceae), Yolanda Herrera (Poaceae), Samuel Rico-Romero (Characeae), Luis Hernández-Sandoval (Alismataceae, Amarylidaceae, Commelinaceae). Marcelo Silva, Roberto Vizcaya, Gerardo Guerrero, Carlos Varela, Arturo de Nova, Pedro Castillo, Hugo Castillo, Héctor Hernández showed us the localities in Aguascalientes, San Luis Potosí and Zacatecas and helped with the field work. Funding for field work came from CONACYT through the LANIVEG research grants during 2015 and 2016. The first author holds a postgraduate fellowship from CONACYT.

Literature cited

Aavik T, Holderegger R, Edwards PJ, Billeter R. 2013. Patterns of contemporary gene flow suggest low functional connectivity of grasslands in a fragmented agriculture landscape. Journal of Applied Ecology 50: 395-403. DOI:10.1111/1365-2664.12053 [ Links ]

Abraham G, Yadav RK, Kaushik GK. 2015. Antimicrobial activity and identification of potential antimicrobial compounds from aquatic pteridophyte, Azolla microphylla Kaulf. Indian Journal of Experimental Biology 53: 232-235. [ Links ]

Alves TMDA, Ribeiro FL, Kloos H, Zani CL. 2001. Polygodial, the fungitoxic component from the Brazilian medicinal plant Polygonum punctatum. Memórias do Instituto Oswaldo Cruz96: 831-833. DOI:10.1590/S0074-02762001000600016 [ Links ]

APG Angiosperm Phylogeny Group. 2016. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants: APG IV. Botanical Journal of the Linnean Society 118: 1-20. DOI:10.1046/j.1095-8339.2003.t01-1-00158.x [ Links ]

Arroyave MP. 2004. La lenteja de agua (Lemna minor L.): una planta acuática promisoria. Revista Escuela de Ingeniería de Antioquia 1: 33-38. [ Links ]

Balian EV, Segers H, Martens K, Lévéque C. 2008. The freshwater animal diversity assessment: an overview of the results. Hydrobiologia 595: 627-637. DOI: 10.1007/s10750-007-9246-3 [ Links ]

Bird MS, Day JA. 2014. Wetlands in changed landscape: the influence of habitat transformation on the physico-chemistry of temporary depression wetlands. PLOS ONE 9. DOI: 10.1371/journal.pone.0088935 [ Links ]

Bonilla-Jaime H, Guadarrama-Cruz G, Alarcón-Aguilar FJ, Limón-Morales O, Vazquez-Palacios G. 2015. Antidepressant-like activity of Tagetes lucida Cav. is mediated by 5-HT1A and 5-HT2A receptors.Journal of Natural Medicines69: 463-470. DOI: 10.1007/s11418-015-0909-5 [ Links ]

Calhoun AJ, Mushet DM, Bell KP, Boix D, Fitzsimons JA, Isselin-Nondedeu F. 2016. Temporary wetlands: challenges and solutions to conserving a ‘disappearing’ ecosystem. Biological Conservation 211: 3-11. DOI: 10.1016/j.biocon.2016.11.024 [ Links ]

Cariño-Cortés R, Hernández-Ceruelos A, Torres-Valencia JM, González-Avila M, Arriaga-Alba M, Madrigal-Bujaidar E. 2007. Antimutagenicity of Stevia pilosa and Stevia eupatoria evaluated with the Ames test. Toxicology in vitro21: 691-697. DOI: 10.1016/j.tiv.2006.12.001 [ Links ]

Chang CI, Kuo CC, Chang JY, Kuo YH. 2004. Three new oleanane-type triterpenes from Ludwigia octovalvis with cytotoxic activity against two human cancer cell lines. Journal of Natural Products67: 91-93. DOI:10.1021/np030267m [ Links ]

Cohen MJ, Creed IF, Alexander L, Basu NB, Calhoun AJ, Craft C, D’Amico E, DeKeyser E, Fowler L, Golden HE, Jawitz JW, Kalla P, Kirkman LK, Lane CR, Lang M, Leibowitz SG, Lewis DB, Marton J, MacLaughlin DL, Mushet DM, Raanan-Kiperwas H, Rains MC, Smith L, Walls SC. 2016. Do geographically isolated wetlands influence landscape functions? Proceedings of the National Academy of Sciences 113: 1978-1986. DOI: 10.1073/pnas.1512650113 [ Links ]

CONABIO [Comisión Nacional para el Conocimiento y Uso de la Biodiversidad]. 2017. Geoportal. < http://www.conabio.gob.mx/informacion/gis/ > (accessed May 15 2017) [ Links ]

Cuasquer E, Salvatierra D, Jimenez E, Boira H. 2016. La vegetación del humedal “Abras de Mantequilla”. Composición florística. Bases para su restauración. Ciencia y Tecnología 9: 17-30. [ Links ]

Cui B, Zhang Z, Lei X. 2012. Implementation of diversified ecological networks to strengthen wetland conservation. Clean – Soil, Air, Water 40: 1015-1026. DOI:10.1002/clen.201200026 [ Links ]

Dar NA, Pandit AK, Ganai BA. 2014. Factors affecting the distribution patterns of aquatic macrophyte. Limnological Review 14: 75-81. DOI:10.2478/limre-2014-0008 [ Links ]

Davidson NC. 2014. How much wetlands has the world lost? Long-term and recent trends in global wetlands area. Marine and Freshwater 65: 936-941. DOI:10.1071/MF14173 [ Links ]

De la Lastra CA, Martin MJ, La-Casa C, Motilva V. 1994. Antiulcerogenicity of the flavonoid fraction from Bidens aurea: comparison with ranitidine and omeprazole. Journal of Ethnopharmacology42: 161-168. DOI: 10.1016/0378-8741(94)90081-7 [ Links ]

Declaración de Cancún. 2002. Declaración de Cancún de Países Megadiversos Afines. < http://www.inecc.gob.mx/descargas/ai/con199328.pdf > (accessed May 15 2017) [ Links ]

Declerck S, De Bie T, Ercken D, Hampel H, Schrijvers S. 2006. Ecological characteristics of small farmland ponds: Associations with landuse practices at multiple spatial scales. Biological Conservation 131: 523-532. DOI:10.1016/j.biocon.2006.02.024 [ Links ]

Delgado G, Tejeda V, Salas A, Chávez MI, Guzmán S, Bolaños A, Aguilar ML, Navarro V, Villarreal ML. 1998. New Melampolides from Schkuhria schkuhrioides. Journal of Natural Products61: 1082-1085. DOI:10.1021/np970548s [ Links ]

Demirezer LO, Uzun M. 2016. Determination of sun protection factor (SPF) of Rumex crispus and main anthraquinones. Planta Medica 82: S01 DOI: 10.1055/s-0036-1596459 [ Links ]

Di-Baccio D, Pietrini F, Bertolotto P, Pérez S, Barcelò D, Zacchini M, Donati E. 2017. Response of Lemna gibba L. to high and environmentally relevant concentrations of ibuprofen: Removal, metabolism and morpho-physiological traits for biomonitoring of emerging contaminants. Science of the Total Environment 584: 363-373. DOI: 10.1016/j.scitotenv.2016.12.191 [ Links ]

Dierberg FE, DeBusk TA, Jackson MJ, Chimeney MJ, Pietro K. 2002. Submerged aquatic vegetation-based treatment wetlands for removing phosphorous from agricultura runnof: response to hydraulic and nutrient loading. Water Research 36: 1409-1422. DOI: 10.1016/S0043-1354(01)00354-2 [ Links ]

Dumac Ducks Unlimited de México AC. 2017. Inventario y Clasificación de Humedales en México, Parte I. < http://www.dumac.org/dumac/habitat/esp/publicaciones03.htm > (accessed May 15 2017) [ Links ]

Fisher J, Acreman MC. 2004. Wetland nutrient removal: a review of the evidence. Hydrology and Earth System Sciences 8: 673-685. DOI: 10.5194/hess-8-673-2004 [ Links ]

Friendly M. 2002. Corrgrams: Exploratory displays for correlation matrices. The American Statistician56: 316-324. DOI: 10.1198/000313002533 [ Links ]

Frohn RC, Reif M, Lane C, Autrey B. 2009. Satellite remote sensing of isolated wetlands using object-oriented. Wetlands 29: 931-941. DOI: 10.1672/08-194.1 [ Links ]

Gallardo-Williams MT, Whalen VA, Benson RF, Martin DF. 2002. Accumulation and retention of lead by cattail (Typha domingensis), hydrilla (Hydrilla verticillata), and duckweed (Lemna obscura). Journal of Environmental Science and Health, Part A. 37: 1399-1408. DOI: 10.1081/ESE-120013265 [ Links ]

García M, Donadel OJ, Ardanaz CE, Tonn CE, Sosa ME. 2005. Toxic and repellent effects of Baccharis salicifolia essential oil on Tribolium castaneum. Pest Management Science61: 612-618. DOI:10.1002/ps.1028 [ Links ]

GBIF Global Biodiversity Information Facility. 2017. Free and open source access to biodiversity database. < www.gbif.org > (accessed May 15 2017) [ Links ]

Gür N, Türker OC, Böcük H. 2016. Toxicity assessment of boron (B) by Lemna minor L. and Lemna gibba L. and their possible use as model plants for ecological risk assessment aquatic ecosystems boron pollution. Chemosphere157: 1-9. DOI: 10.1016/j.chemosphere.2016.04.138 [ Links ]

Ha NTH, Sakakibara M, Sano S. 2011. Accumulation of Indium and other heavy metals by Eleocharis acicularis: an option for phytoremediation and phytomining. Bioresource Technology 102: 2228-2234. DOI: 10.1016/j.biortech.2010.10.014 [ Links ]

IPNI International Plant Name Index. 2017. < http://www.ipni.org/ > (accessed May 15 2017) [ Links ]

INEGI Instituto Nacional de Estadística y Geografía. 2017. Atlas Nacional Interactivo de México. < http://www.inegi.org.mx/ > (accessed May 15 2017) [ Links ]

Ishiyama N, Akasaka T, Nakamura F. 2014. Mobility-dependent response of aquatic animal species richness to a wetland network in an agricultural landscape. Aquatic Sciences 76: 437-449. DOI: 10.1007/s00027-014-0345-8 [ Links ]

IUCN International Union for Conservation of Nature. 2017. Red List of threatened species. 2015 < 2015 http://www.iucnredlist.org/ > (accessed May 15 2017) [ Links ]

Jaccard P. 1908. Nouvelles recherches sur la distribution florale. Bulletin Société Sciences Naturelles, 44: 223-270. DOI: 10.5169/seals-268384 [ Links ]

Kostel J. 2016. The wetlands initiative. Q: The wetlands initiative is helping farmers install wetlands to naturally reduce nutrient runoff. How exactly do wetlands remove nutrients? < How exactly do wetlands remove nutrients? http://www.wetlands-initiative.org/nutrient-removal/ > (accessed May 15 2017) [ Links ]

Krebs CJ. 1999. Ecological Methodology. Menlo Park, California: Benjamin Cummings. [ Links ]

Lacoul P, Fredman B. 2006. Environmental influences on aquatic plants in freshwater ecosystems. Environmental Reviews 14: 89-136. DOI: 10.1139/a06-001 [ Links ]

Landgrave R, Moreno-Casasola P. 2012. Evaluación cuantitativa de la pérdida de humedales en México. Investigación Ambiental 4: 19-35. [ Links ]

Lee K, Shen CC, Lin CF, Li SY, Huang YL. 2012. A Phenolic Derivative and Two Diacetylenes from Symphyotrichum subulatum. Planta Medica78: 1780-1783. DOI: 10.1055/s-0032-1315372 [ Links ]

Linares E, Bye RA. 1987. A study of four medicinal plant complexes of Mexico and adjacent United States. Journal of Ethnopharmacology19: 153-183. DOI: 10.1016/0378-8741(87)90039-0 [ Links ]

Lorenzi H. 1991. Plantas daninhas do Brasil: Terrestres, Aquáticas, Parasitas, Tóxicas e Medicinais. Nova Odessa: Editora Plantarum. [ Links ]

Lot A. 1986. Acuáticas Vasculares. In: Lot A, Chiang F. Manual de Herbario. México: Consejo Nacional de la Flora de México, 87-92. [ Links ]

Lot A. 2012. Las monocotiledóneas acuáticas y subacuáticas de México. Acta Botanica Mexicana 100: 135-148. [ Links ]

Lot A, Novelo A, Ramírez-García P. 1986. Listados florísticos de México V: Angiospermas acuáticas mexicanas 1 México: Universidad Nacional Autónoma de México. 60pp. [ Links ]

Lot A, Novelo A, Ramírez-García P. 1993. Diversity of mexican aquatic vascular plant flora. In: Ramamoorthy TP, Bye R, Lot A, Fa J. Biological Diversity of Mexico: origins and distribution. New York: Oxford University. [ Links ]

Lot A, Ramos F, Ramírez-García P. 2002. Sagittaria demersa (Alismataceae) en la Sierra Tarahumara, México. Anales del Instituto de Biología - Serie Botánica 73: 95-97. [ Links ]

Lot A, Lemos RM, Chiang F. 2013. Plantas Acuáticas Mexicanas: una contribución a la Flora de México. Vol I. México: Universidad Nacional Autónoma de México, [ Links ]

Lot A, Olvera M, Flores C, Díaz A. 2015. Guía ilustrada de Campo Plantas Indicadoras de Humedales. México: Universidad Nacional Autónoma de México. [ Links ]

Lu Y, Xu XL, Zhang DY, Zhu XN, Feng F, Zhou QJ, Xie P. 2014. Correlations between aquatic plant diversity and water environmental in the typical sites of Hangzhou section of the Beijing-Hangzhou Grand Canal. Huan Jing Ke Xue 35: 1708-1717. [ Links ]

Magalhães TL, Bortoluzzi RLC, Mantovani A. 2016. Plant distribution in freshwater wetlands of the Brazilian subtropical highland grasslands. Brazilian Journal of Botany 39: 239-249. DOI: 10.1007/s40415-015-0226-y [ Links ]

Martínez M, García A. 2001. Flora y vegetación acuática de localidades selectas del estado de Querétaro. Acta Botanica Mexicana 54: 1-23. DOI: 10.21829/abm54.2001.864 [ Links ]

Martínez M, Vargas O, Rodríguez A, Chiang F, Ocegueda S. 2017. Solanaceae family in Mexico. Botanical Sciences 95: 131-145. DOI: 10.17129/botsci.658 [ Links ]

Marton JM, Creed IF, Lewis DB, Lane CR, Basu NB, Cohen MJ, Craft CB. 2015. Geographically isolated wetlands are important biogeochemical reactors on the landscape. BioScience 65: 408-418. DOI: 10.1093/biosci/biv009 [ Links ]

Mauerhofer V, Kim RE, Stevens C. 2015. When implementation works: A comparison of Ramsar Convention implementation in different continents. Environmental Science and Policy 51: 95-105. DOI: 10.1016/j.envsci.2015.03.016 [ Links ]

Medline. 2017. < https://www.nlm.nih.gov/bsd/pmresources.html > (accessed May 15 2017) [ Links ]

Mickel JT, Smith AR. 2004. The Pteridophytes of Mexico. In: Memoirs of the New York Botanical Garden, 88. New York. [ Links ]

Miranda AF, Biswas B, Ramkumar N, Singh R, Kumar J, James A, Roddick F, Lal B, Subudhi S, Bhaskar T, Mouradov A. 2016. Aquatic plant Azolla as the universal feedstock for biofuel production. Biotechnology for Biofuels 9: 1-17. DOI 10.1186/s13068-016-0628-5. [ Links ]

Mora-Olivo A, Villaseñor JL, Martínez M. 2013. Las plantas vasculares acuáticas estrictas y su conservación en México.Acta Botanica Mexicana 103: 27-63. DOI: 10.21829/abm103.2013.50 [ Links ]

Murray-Hudson M, Lane CR, North S, Brown MT. 2012. Macrophyte Species Distribution, Indices of Biotic Integrity and Sampling Intensity in Isolated Florida Marshes. Wetlands 32: 449-460. DOI: 10.1007/s13157-012-0278-8 [ Links ]

Myers N, Mittermeier RA, Mittermeier CG, Da Fonseca GA, Kent J. 2000. Biodiversity hotspots for conservation priorities. Nature403: 853-858. DOI: 10.1038/35002501 [ Links ]

Olajuyigbe O, Ashafa A. 2014. Chemical Composition and Antibacterial Activity of Essential Oil of Cosmos bipinnatus Cav. Leaves from South Africa.Iranian Journal of Pharmaceutical Research 13: 1417-1423. [ Links ]

Olmos-Márquez MA, Alarcón-Herrera MT, Martín-Domínguez IR. 2012. Performance of Eleocharis macrostachya and its importance for arsenic retention in constructed wetlands. Environmental Science and Pollution Research 19: 763-771. DOI: 10.1007/s11356-011-0598-x [ Links ]

Ot’ahel’ová H, Valachovič M, Hrivnák R. 2007. The impact of environmental factors on the distribution pattern of aquatic plants along the Danube River corridor (Slovakia). Limnologica Ecology and Management of Inland Waters 37: 290-302. DOI: 10.1016/j.limno.2007.07.003 [ Links ]

Pekel JF, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nature 450: 418-422. DOI: 10.1038/nature20584 [ Links ]

Pollock MM, Naiman RJ, Hanley TA. 1998. Plant species richness in riparian wetlands: a test of biodiversity theory. Ecology 79: 94-105. DOI:10.1890/0012-9658(1998)079[0094:PSRIRW]2.0.CO;2 [ Links ]

Pott VJ, Pott A. 2000. Plantas Aquáticas do Pantanal. Brasília: Embrapa. [ Links ]

R Development Core Team. 2017. R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. < http://www.R-project.org > (accessed January 28 2017) [ Links ]

Rai PK. 2008. Heavy metal pollution in aquatic ecosystems and its phytoremediation using wetlands plants: an ecosustainable approach. International Journal of Phytoremediation 10: 133-160. DOI: 10.1080/15226510801913918 [ Links ]

Rico-Romero SER. 2015. Relación entre las algas y plantas acuáticas en cuerpos de agua de Querétaro y Guanajuato. BSc Thesis, Universidad Autónoma de Querétaro. [ Links ]

Rocha DC, Martins D. 2011. Adaptações morfoanatômicas de Cyperaceae ao ambiente aquático. Planta Daninha 29: 7-15. DOI: 10.1590/S0100-83582011000100002 [ Links ]

Rolon AS, Homem HF, Maltchik L. 2010. Aquatic macrophytes in natural and managed wetlands of Rio Grande do Sul State, Southern Brazil. Acta Limnologica Brasileira 22: 133-146. DOI: 10.4322/actalb.02202003 [ Links ]

Rzedowski J. 1978. Vegetación de México. Ciudad de México: Limusa. [ Links ]

Rzedowski JR, Rzedowski GC (Eds.). 2017. Flora del Bajío y Regiones Adyacentes. < http://www1.inecol.edu.mx/publicaciones/FLOBA.htm > (accessed May 15 2017) [ Links ]

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental – Especies nativas de México de flora y fauna silvestres – Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio – Lista de especies en riesgo. Diario Oficial de la Federación. 2da Sección, 30de diciembre de 2010 [ Links ]

Smith AR, Pryer KM, Schuettpelz E, Korall P, Schineider H, Wolf PG. 2006. A classification for extant ferns. Taxon 55: 705-731. DOI: 10.2307/25065646 [ Links ]

Sohn SH, Yun BS, Kim SY, Choi WS, Jeon HS, Yoo JS, Kim SK. 2013. Anti-inflammatory activity of the active components from the roots of Cosmos bipinnatus in lipopolysaccharide-stimulated RAW 2647macrophages. Natural Product Research27: 1037-1040. DOI: 10.1080/14786419.2012.686906 [ Links ]

Thiers, B. [continuously updated]. Index Herbariorum: A global directory of public herbaria and associated staff. New York Botanical Garden’s Virtual Herbarium. < http://sweetgum.nybg.org/science/ih/ > (accessed May 15 2017) [ Links ]

Tropicos. 2017. < http://www.tropicos.org/ > (accessed May 15 2017) [ Links ]

Tsuji K, Asayama T, Shiraki N, Inoue S, Okuda E, Hayashi C, Nishida K, Hasegawa H, Harada E. 2017. Mn accumulation in a submerged plant Egeria densa (Hydrocharitaceae) is mediated by epiphytic bacteria. Plant, Cell & Environment 40: 1163-1173. DOI:10.1111/pce.12910 [ Links ]

Uden DR, Hellman ML, Angeler DG, Allen CR. 2014. The role of reserves and anthropogenic habitats for functional connectivity and resilience of ephemeral wetlands. Ecological Applications 24: 1569-1582. DOI:10.1890/13-1755.1 [ Links ]

Villaseñor JL, Espinosa-García FJ. 1998. Catálogo de malezas de México. Ciudad de México: Universidad Nacional Autónoma de México. [ Links ]

Villaseñor JL, Ortiz E. 2014. Biodiversidad de las plantas con flores (División Magnoliophyta) en México. Revista Mexicana de Biodiversidad 85: 134-142. DOI: 10.7550/rmb.31987 [ Links ]

Wei T, Simko V. 2017. R package “corrplot”: Visualization of a Correlation Matrix (Version 084) < R package “corrplot”: Visualization of a Correlation Matrix (Version 084) https://github.com/taiyun/corrplot > (accessed May 15 2017) [ Links ]

Zedler JB, Kercher S. 2005. Wetland resources: status, trends, ecosystems services, and restorability. Annual Review of Environmental Resources 30: 39–74. DOI: 10.1146/annurev.energy.30.050504.144248 [ Links ]

Associated Editor: Martha Martínez Godillo

Appendix 1

Temporary wetlands localization of the studied areas and water parameters. * Average of four measurements with Hanna equipment model HI 9829 ** the wetland was dry. 

Site Municipality State Latitude Longitude Altitude pH* ppmDO* µSTm* mΩ* ppmT* PSU*
1 Asientos Aguascalientes 22.1769 -102.0252 2,009 6.7 5.90 681.5 0.0015 343.75 0.3375
2 Asientos Aguascalientes 22.1847 -102.0214 2,004 6.4 7.17 112.5 0.0089 57.50 0.0525
3 Asientos Aguascalientes 22.1986 -102.064 2,058 6.1 5.75 86.3 0.0143 44.00 0.0400
4 Asientos Aguascalientes 22.1974 -102.0725 2,078 6.0 5.62 65.0 0.0152 34.00 0.0300
5 Calvillo Aguascalientes 21.8885 -102.8437 2,342 6.0 4.54 55.0 0.0165 31.00 0.0300
6 Calvillo Aguascalientes 21.8915 -102.8448 2,345 5.0 4.69 24.5 0.0502 15.00 0.0150
7 Calvillo Aguascalientes 21.884 -102.8464 2,382 6.0 2.84 73.5 0.0131 39.00 0.0375
8 San José de Gracia Aguascalientes 22.1681 -102.4166 2,031 5.3 3.71 200.5 0.0050 103.25 0.0975
9 San José de Gracia Aguascalientes 22.1588 -102.4848 2,047 5.4 5.02 24.0 0.0380 13.75 0.0125
10 San José de Gracia Aguascalientes 22.1688 -102.5834 2,580 4.8 4.75 6.0 0.0161 3.75 0.0050
11 San José de Gracia Aguascalientes 22.1905 -102.6102 2,613 4.8 4.31 6.5 0.1260 7.00 0.0050
12 San José de Gracia Aguascalientes 22.1627 -102.6511 2,646 4.9 6.15 2.0 0.1250 1.00 0.0000
13 Jerécuaro Guanajuato 20.2542 -100.5477 2,123 5.0 2.67 141.5 0.0065 80.00 0.0800
14 San Felipe Guanajuato 21.3232 -101.6058 2,669 5.0 4.37 78.5 0.0147 41.00 0.0400
15 San Miguel de Allende Guanajuato 20.8064 -101.0356 2,303 6.0 2.80 48.8 0.0207 24.50 0.0200
16 San Miguel de Allende Guanajuato 20.8089 -101.0339 2,307 6.3 7.84 30.5 0.0332 15.25 0.0100
17 San Miguel de Allende Guanajuato 20.8033 -101.0308 2,276 6.8 5.91 36.0 0.0278 18.00 0.0200
18 Santa Cruz de Juventino Rosas Guanajuato 20.7492 -101.0244 2,189 6.8 5.88 73.5 0.0136 36.75 0.0300
19 Lagos de Moreno Jalisco 21.3813 -102.1381 1,992 5.0 5.50 120.8 0.0080 62.25 0.0600
20 Lagos de Moreno Jalisco 21.334 -102.0883 1,964 5.0 3.39 171.8 0.0060 89.00 0.0850
21 Lagos de Moreno Jalisco 21.3307 -102.0851 1,975 5.0 3.70 42.8 0.0210 25.75 0.0225
22 Lagos de Moreno Jalisco 21.3756 -102.1353 2,021 5.0 6.56 8.3 0.1450 5.75 0.0075
23 Epitacio Huerta Michoacán 20.1405 -100.2947 2,508 5.0 5.58 146.8 0.0069 74.75 0.0725
24 Amealco de Bonfil Querétato 20.2903 -100.185 2,314 6.7 1.87 85.8 0.0118 43.00 0.0375
25 Amealco de Bonfil Querétato 20.2122 -100.1186 2,577 6.4 1.85 152.0 0.0066 77.75 0.0725
26 Amealco de Bonfil Querétato 20.1717 -100.0733 2,614 ** ** ** ** ** **
27 Amealco de Bonfil Querétato 20.3181 -100.1442 2,245 7.2 4.83 181.8 0.0070 91.75 0.0875
28 Amealco de Bonfil Querétaro 20.312 -100.2063 2,359 5.0 1.82 111.3 0.0091 60.00 0.0575
29 Huimilpan Querétato 20.3922 -100.2692 2,318 7.2 2.89 501.8 0.0020 249.75 0.2425
30 Pedro Escobedo Querétato 20.3994 -100.2686 2,324 7.3 4.83 127.0 0.0079 63.50 0.0600
31 Pedro Escobedo Querétato 20.4164 -100.2661 2,266 6.8 3.47 40.8 0.0243 20.50 0.0200
32 San Juan del Río Querétato 20.3283 -100.1328 2,222 7.0 5.71 82.5 0.0135 42.00 0.0375
33 Mexquitic de Carmona San Luis Potosí 22.2293 -101.2941 2,045 5.0 5.62 39.5 0.0279 22.00 0.0200
34 Villa de Arriaga San Luis Potosí 21.9556 -101.1876 2,147 5.0 6.56 8.3 0.0700 5.75 0.0075
35 Cañitas de Felipe Pescador Zacatecas 23.5742 -102.7525 2,032 8.0 4.75 513.0 0.0029 181.50 0.1800
36 Pinos Zacatecas 22.4481 -101.4958 2,141 9.4 6.88 190.3 0.0053 95.25 0.0900
37 Teúl de González Ortega Zacatecas 21.4524 -103.4746 1,961 5.0 6.47 6.5 0.1172 4.50 0.0250
38 Tlaltenango de Sánchez Román Zacatecas 21.7018 -103.1778 2,563 5.0 5.41 121.0 0.0082 68.50 0.0750
39 Villa de Cos Zacatecas 23.1225 -102.4367 2,008 8.2 7.51 402.0 0.0026 199.50 0.1850

Appendix 2

Species presence/absence in the studied temporary wetlands (X = presence, * = new state record, ** = probably an undescribed specie, *** = introduced specie). V = voucher (T. Lobato collector number, deposited at QMEX); LF = Life form (E = rooted emergent, RS = rooted submersed, RF = rooted floating, FF = free floating, FS = free submersed); Obs = observations: Affinity (A = aquatic, S = subaquatic, T = tolerant), Use (B = biofilter/bioful, M = medicinal, F = fodder), Endangered (E = endangered in a IUCN list or Mexican list). 

Taxon V LF Obs Wetlands/states
Aguascalientes Guanajuato Jalisco Mich. Querétaro SLP Zacatecas
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39
CHAROPHYTA
CHARACEAE
Chara cf. globularis Thuiller 821 RS A X
Chara sp. L. 963 RS A X X
Nitella gracilis (J.E. Smith) C.Agardh 855 RS A X X
PTERIDOPHYTA
ISOETACEAE
* Isoetes mexicana Underw. 1061 RS A X* X X X*
MARSILEACEAE
* Marsilea mollis B. L. Rob. & Fernald 1608 RF A X X X X X X X X X X X X X X X X X X X X X X X X X* X* X* X*
SALVINACEAE
Azolla filiculoides Lam. 1459 FF A, B X X X X
Azolla microphylla Kaulf. 1355 FF A, M/B, E X X* X*
ANGIOSPERM
ALISMATACEAE
Sagittaria demersa J.G. Sm. 1463 RF A X X X X X
AMARANTHACEAE
Iresine sp. P. Browne 774 E T X
AMARYLLIDACEAE
Allium glandulosum Link & Otto 599 E T X X
Allium sp. L. 550 E T X
Nothoscordum bivalve (L.) Britton 1583 E T X X X X X X X
ARACEAE
Lemna gibba L. 812 FF A, B, E X X
* Lemna minuta Kunth 653 FF A, B, E X*
* Lemna obscura (Austin) Daubs 1460 FF A, B X* X* X*
ASTERACEAE
Acmella repens (Walter) Rich. 1571 E - X X X X
Aster moranensis Kunth 1305 E - X X
Baccharis salicifolia (Ruiz & Pav.) Pers. 639 E S, M X
Bahia absinthifolia Benth. 1368 E - X
Bidens aurea (Aiton) Sherff 799 E - , M X X X X
Cosmos bipinnatus Cav. 1036 E - , M X X X
Gnaphalium luteoalbum L. 1567 E - X X X X X
Helenium mexicanum Kunth 687 E S X
Heterosperma pinnatum Cav. 1340 E - X
Jaegeria glabra (S. Watson) B.L. Rob. 1456 RF A X X
* Jaegeria purpurascens B.L. Rob 1614 RF A X X X X* X X X X
Schkuhria schkuhrioides Thell. 1367 E S, M X X
Stevia eupatoria (Spreng.) Willd. 753 E T, M X X
Symphyotrichum subulatum (Michx.) G.L. Nesom 1566 E T, M X X X X X X X X X X X X X
Tagetes lucida Cav. 1037 E - , M X
Tagetes micrantha Cav. 1477 E - , M X X X X X X X X X X
Tagetes pringlei S. Watson 1457 E A X X X X X X X
BRASSICACEAE
Rorippa mexicana (DC.) Standl. & Steyerm. 1584 E A X X X X
CAMPANULACEAE
Lobelia fenestralis Cav. 1025 E T X
Lobelia irasuensis var.fucata McVaugh 1493 E T X X X X
CARYOPHYLLACEAE
Stellaria ovata Willd. ex D.F.K. Schltdl. 1572 RS A X X
COMMELINACEAE
Commelina dianthifolia Delile 1095 E T X X X X X X
Tripogandra purpurascens (S. Schauer) Handlos 1496 E S X X X X X X X X X
CYPERACEAE
Cyperus aff. entrerianus Boeck. 1526 E T X X
Cyperus esculentus L. 1315 E T, E X X X X
Cyperus flavescens L. var. piceus (Liebm.) Fernald 1482 E T X X
Cyperus luzulae (L.) Rottb. ex Retz. 1007 E T X X X X
Cyperus manimae Kunth 662 E T X
Cyperus reflexus Vahl 1617 E T X X
Cyperus sanguineo ater Boeck. 1364 E T X X
Cyperus virens Michx. 1556 E T X
Eleocharis aciculares (L.) Roem. & Schult. 1609 RS A, B, E X X X X X X X X X X X X X X X X X
Eleocharis atropurpurea (Retz.) J. Presl & C. Presl 1535 E T, E X X X
Eleocharis coloradoensis (Britton) Gilly 828 E T X
Eleocharis densa Benth. 1619 E A, E X X X X X X X X X X X X
Eleocharis dombeyana (Kunth) Roem. & Schult. 973 E T X X X X X X X X
* Eleocharis ignota S. González & M. Reznicek 1105 E A X X* X*
Eleocharis macrostachya Britton 1603 E S, B, E X X X X X X X X X X X X X X X X X X X X X X X X
Eleocharis minima Kunth 891 E A X X
Eleocharis montana (Kunth) Roem. & Schult. 1555 E S, B X X X X X X X X
* Eleocharis aff. parishii Britton 1109 E S X*
* Eleocharis reznicekii S. González, D.J. Rosen, R. Carter & P.M. Peterson. 1437 E A X*
Eleocharis schaffneri Boeck. 1598 E S X X X X X X X X X X X X X X X X X X
* Eleocharis tenarum S. González & M. González E. 1481 E T X X* X* X X X X X X
* Eleocharis yecorensis Roalson 1589 E A X* X X
** Eleocharis new specie 1 1313 E S X
** Eleocharis new specie 2 1440 E S X
Karinia mexicana (C.B. Clarke ex Britton) Reznicek & McVaugh 1575 E T X X X X X X X
Pycreus niger (Ruiz & Pav.) Cufod. 1127 E T X X
* Schoenoplectus californicus (C.A. Mey.) Soják 1134 E S X* X*
ELATINACEAE
* Elatine brachy sperma A. Gray 1618 RS A, E X X X X X X X X*
Elatine sp. L. 669 RS A X
ERIOCAULACEAE
* Eriocaulon bilobatum Morong 1550 E A X* X* X* X X* X*
FABACEAE
Dalea foliolosa (Aiton) Barneby 1379 E - X X X X X
Macroptilium sp. (Benth.) Urb. 716 E - X X
Mimosa aculeaticarpa Ortega 634 E - X
Trifolium amabile Kunth 742 E - , E X
Trifolium wormskioldii Lehm. 714 E - , E X
HYDROCHARITACEAE
*** Egeria densa Planch. 1115 RS A, B X
Najas guadalupensis (Spreng.) Magnus 1611 RS A, E X X X X X X X X X X X X X X X X X X X X
HYPERICACEAE
Hypericum sp. L. 787 E T X X X
IRIDACEAE
Sisyrinchium convolutum Nocca 1243 E S X
JUNCACEAE
* Juncus arcticus Willd. 1580 E A X X*
Juncus dichotomus Elliott 1568 E A X X X X X X X X X X X X X
* Juncus ebracteatus E. Mey. 1210 E S X X X X X X* X
Juncus microcephalus Kunth 1613 E A X X X X X X X X X X X X X X
JUNCAGINACEAE
Triglochin scilloides (Poir.) Mering & Kadereit 1607 E A, E X X X X X X X X X X X X X X
LAMIACEAE
Salvia sp. L. 783 E T X
LENTIBULARICACEAE
Utricularia perversa P. Taylor 1564 FS A X X X X
LYTHRACEAE
Cuphea wrightii A. Grey 1301 E T X
MENYANTHACEAE
Nymphoides fallax Ornduff 1586 RF A X X X X X X X X X X X X X X X X X X X X X X X X X
NYMPHAEACEAE
Nymphaea gracilis Zucc. 1510 RF A, E X
ONAGRACEAE
Ludwigia octovalvis (Jacq.) P.H. Raven 1551 E S, M, E X X X X X X X X X
Ludwigia peploides (Kunth) P.H. Raven 1596 RF A X X X X X X X X X X X X X X X
PLANTAGINACEAE
Bacopa procumbens (Mill.) Greenm. 1585 E T X X X
Callitriche deflexa A. Braun ex Hegelm. 1606 RF A X X X X X
Callitriche heterophylla Pursh 1605 RF A, E X X X X X X
Hippuris vulgaris L. 1354 RS A, E X X
Plantago linearis Kunth 1242 E S X
POACEAE
Bouteloua dactyloides (Nutt.) Columbus 1226 E S X
Diplachne fusca L.) P. Beauv. ex Roem. & Schult. 1592 E S, E X X X X X X X X X X X
Distichlis spicata (L.) Green 1569 E T, E X X
Echinochloa crus galli (L.) P. Beauv. 926 E T, F, E X X
Echinochloa crus pavonis (Kunth) Schult 1474 E S X X X X X X X X X X X X
* Echinochloa oplismenoides (E. Fourn.) Hitchc. 1602 E S, F X X X* X X X X X X X
Eragrostis plumbea Scribn. ex Beal 1488 E T, F X X X
*** Glyceria fluitans (L.) R. Br. 1601 E A, E X X
Luziola fluitans (Michx.) Terrell & H. Rob. 1615 RS A X X X X X X X X X X X X X X X X X X X X X X X X X X
Panicum aff. lacustre Hitchc. & Ekman 1387 E S X X X X
Paspalum distichum L. 1506 E A, E X X X X X X X X X X X X X X X X X X X X X X X
Paspalum plicatulum Michx. 1031 E T X
Poa annua L. 561 E T, E X
Setaria parviflora (Poir.) Kerguélen 555 E T, E X
Sporobolus atrovirens (Kunth) Kunth 1498 E T X X
Sporobolus indicus (L.) R.Br. 757 E T X X X
POLYGALACEAE
Polygala alba Nutt. 970 E T X
Polygala subalata S. Watson 1519 E T X X X X
POLYGONACEAE
Persicaria mexicana (Small) Small 1616 E S X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X X
Polygonum punctatum Elliott 1347 E A, M, E X X X X X
Rumex crispus L. 1570 E T, M X X X X X X X X X X X X
PONTEDERIACEAE
* Heteranthera limosa (Sw.) Willd. 1574 RF A X X X X X X X X X X X X X X X X X X X X X*
Heteranthera peduncularis Benth. 1588 RF A X X X X X X X X X X X X X X X X X X X X X X X X X
POTAMOGETONACEAE
Potamogeton diversifoliusRaf. 1542 RF A X X X X X X X X X X
* Potamogeton nodosusPoir. 1612 RF A, E X* X* X* X* X* X* X* X* X* X* X* X X X X X X X X X X
RUBIACEAE
Galium cf. proliferum A. Gray 1068 E - X X X
SCROPHULARIACEAE
Limosella aquatica L. 1604 RS A, E X X X
Limosella australis R. Br. 628 RS A X
SOLANACEAE
* Nierembergia angustifolia Kunth 1312 E A X*
VERBENACEAE
Glandularia teucriifolia (M. Martens & Galeotti) Umber 788 E - X
Verbena carolina L. 789 E - X X X X X
Verbena sp. L. 824 E -

Received: May 19, 2017; Accepted: October 16, 2017

* Corresponding author: Mahinda Martínez, e-mail: mahinda@uaq.mx.

Author Contributions. Tatiana Lobato de Magalhães conceived, designed, and performed the experiments, analyzed the data, and wrote the paper. Mahinda Martínez conceived and designed the experiments, analyzed the data, reviewed drafs of the paper.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License