SciELO - Scientific Electronic Library Online

 
vol.96 número4Functional responses of recently emerged seedlings of an endemic Mexican oak (Quercus eduardii) under climate change conditionsPropuesta de evaluación para asignar tentativamente riesgo de extinción (ETRE): el caso de Peltogyne mexicana (Leguminosae) índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.96 no.4 México oct./dic. 2018

https://doi.org/10.17129/botsci.1993 

Ecology

Differences in vegetation structure and diversity of a forest in an altitudinal gradient of the Sierra La Laguna Biosphere Reserve, Mexico

Jesús Manuel Rascón-Ayala1 

Eduardo Alanís-Rodríguez1  * 

Arturo Mora-Olivo2 

Enrique Buendía-Rodríguez3 

Laura Sánchez-Castillo1 

Jesús Eduardo Silva-García1 

1 Universidad Autónoma de Nuevo León, Facultad de Ciencias Forestales, Linares, Nuevo León, México.

2 Universidad Autónoma de Tamaulipas, Instituto de Ecología Aplicada, Ciudad Victoria, Tamaulipas, México.

3 Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias, Campo Experimental Valle de México, Texcoco, Estado de México, México.


Abstract:

Background:

The Sierra La Laguna Biosphere Reserve is located which is considered an “island of vegetation” within an arid environment. Considering that this protected natural area has an altitudinal gradient that ranges from 500 to 2,100 meters above sea level.

Hypothesis:

Higher altitudinal gradient decreases abundance, basal area and diversity of plant species.

Studied species and data description:

The data analyzed in this study included the structural variables of abundance (N ha-1), basal area (m2 ha-1) and diversity (alfa and beta) of arborous species in areas with different elevations.

Study site and dates:

This study was carried out in four localities of the tropical deciduous forest and broadleaved forest. In the spring of 2016.

Methods:

Five circular sampling plots of 500 m2 for arborous vegetation and 1m2 for herbaceous vegetation were established in every vegetation community, resulting in 20 sampling plots.

Results:

Sixteen families, 22 genera and 22 vascular plant species were recorded. The most diverse family was Fabacea with four species followed by Cactaceae with three species. The abundance, dominance and diversity of vegetation species did not show any decrease (or increase) tendency of values as the altitudinal gradient augmented.

Conclusions:

The hypothesis is rejected because abundance, dominance and diversity of vegetation species do not show any decrease or increase tendency as the altitudinal gradient augmented. The vegetation communities showed a high similarity in the composition of species.

Key words: Altitudinal gradient; Baja California; diversity; species richness; vegetation structure

Resumen:

Antecedentes:

La Reserva de la Biosfera Sierra la Laguna se encuentra en lo que es considerado una “isla de vegetación” dentro de un ambiente árido. Considerando que esta área natural protegida tiene un rango altitudinal que va desde los 500 a 2,100 metros sobre el nivel del mar.

Hipótesis:

A mayor gradiente altitudinal disminuye la abundancia, área basal y diversidad de las especies vegetales.

Especies de estudio y descripción de datos:

La información analizada en este estudio incluyó las variables estructurales de abundancia (N ha-1), el área basal (m2 ha-1) y diversidad (alfa y beta) de especies arbóreas en áreas con diferentes elevaciones.

Sitio de estudio y año de estudio:

Este estudio fue realizado en cuatro comunidades de selva baja caducifolia y bosque de latifoliadas. En la primavera de 2016.

Métodos:

Cinco parcelas circulares de 500 m2 para vegetación arbórea y 1m2 para vegetacion herbácea fueron establecidas en cada comunidad vegetal, resultado en 20 parcelas de muestreo.

Resultados:

Dieciséis familias, 22 géneros y 22 especies de plantas vasculares fueron registradas. La familia más diversa fue Fabacea con cuatro especies, seguido de Cactaceae con tres especies. La abundancia, dominancia y diversidad de especies vegetales no mostró una tendencia decreciente (o incremento) conforme el gradiente altitudinal aumentó.

Conclusiones:

La hipótesis fue rechazada debido a que la abundancia, dominancia y diversidad de especies vegetales no mostró ninguna tendencia decreciente (o incremento) en los valores conforme el gradiente altitudinal aumenta. Las comunidades vegetales mostraron una alta similitud en la composición de especies.

Palabras clave: Baja California; diversidad; estructura vegetal; gradiente altitudinal; riqueza de especies

Ecological studies that describe the variation of both structure and floristic composition along an altitudinal gradient are common in mountainous areas of many parts of the world (Vetaas & Grytnes 2002, Gould et al. 2006, Alves et al. 2010). Although in Mexico these studies are not abundant, some have been carried out, such as: Sierra de Catorce in San Luis Potosi (Granados-Sánchez & Sánchez-González 2003) and Sierra Nevada in Mexico state (Sánchez-González & López-Mata 2003). However, in Northwest Mexico, particularly Baja California the information is scarce.

The Baja California Peninsula includes mountainous massifs throughout its territory, the southern part known, as the Cabo Region is perhaps the most interesting due to its floristic, biogeographic and evolutionary characteristics (Wiggins 1980, León de la Luz & Domínguez-Cadena 1989). In this area is located the Sierra La Laguna, which is considered an "island of vegetation" within the environment characterized by arid areas (Padilla et al. 1988). The biophysical characteristics of this mountain area justified the creation of the Sierra La Laguna Biosphere Reserve in 1994 (CONANP, 2003).

The Sierra La Laguna includes six main vegetation types (sarcocaule and sarcocrasicaule scrub, deciduous and semi deciduous lowland rainforest, oak forest, pine-oak forest, gallery forest and natural grassland), although the mesic and tropical communities are considered of greater relevance (Arriaga & León-de la Luz 1989, CONANP 2003). From a floristic point of view, this reserve has been well studied since 1892, registering more than 900 species of vascular plants of which, about 89 are endemic (León-de la Luz & Domínguez-Cadena 1989, León de la Luz et al. 1999, CONANP 2003, León-de la Luz & Breceda 2005). However, ecological studies of vegetation have not been abundant and are restricted usually to conservation and phytogeographic studies (León-de la Luz et al. 2000, León-de la Luz & Breceda 2005).

Considering that this protected natural area has an altitudinal gradient that ranges from 500 to 2,100 meters above sea level (CONANP 2003) and that until now, the vegetation communities with these specific characteristics have not been compared, this study was proposed. The objective of this study was to evaluate the structural variables of abundance (N ha-1), basal area (m2 ha-1) and diversity (alfa and beta) of arboreous species in areas with different elevations in the Sierra La Laguna Biosphere Reserve. The results of this study are expected to confirm the hypothesis that establishes that higher altitudinal gradient decreases abundance, basal area and diversity of plant species.

Materials and methods

Study area. This study was carried out in four localities (Las Tinajas, El Portezuelo, Agua Blanca and El Parteaguas) of the tropical deciduous forest and broadleaved forest of the Sierra La Laguna Biosphere Reserve in the municipalities of La Paz and Los Cabos, Baja California Sur (Northwest Mexico; Figure 1). The study area is located on 23º 24’ 11.63’’ N and 110º 4’ 49.54’’ W. Table 1 shows some physical and climatic variables as a description of the studied areas.

Table 1 Physical and climatic characteristics of the areas. 

Locality Las Tinajas El Portezuelo Agua Blanca El Parteaguas
Altitudinal Gradient I II III IV
Vegetation Tropicaldeciduous forest Tropicaldeciduous forest Broadleaved forest Broadleaved forest
Abbreviation SBC SBC BL BL
Coordinates 23° 24’ 50.8’’ N
109°57’27.2’’W
23° 25’ 26.3’’ N
109°58’48.0’’W
23° 25’ 52.5’’ N
109° 57’ 36.3’’W
23° 27’ 01.8’’N
109° 58’ 05.1’’ W
Altitude (m a.s.l.) 508 1,032 1,092 1,521
Average annual temperature
(°C)
27 to 31 18 to 25 16 to 22 12 to 18
Average annual rainfall (mm) 75 to 150 200 to 300 200 to 300 300 to 400
Soil type Vertisol Regosol, Vertisol Regosol, Vertisol Regosol

Figure 1 Study area (Left side: the four localities studied; Upper-right: Northwest Mexico; Lower-right: Baja California Sur, Mexico. 

Sampling method. In the spring of 2016, five circular sampling plots of 500 m2 for arboreous vegetation and 1.0 m2 for herbaceous vegetation were established in every vegetation community, resulting in 20 sampling plots. A distance of 50 meters between sampling plots on each vegetation community was established in order to avoid differences on physical and climatic characteristics. Individuals with diameters higher than 7.5 cm and heights above 1.30 m, were considered arboreous. The diameter and taxonomical information of each specimen was obtained.

Data analysis. In order to evaluate the importance of the species using the information obtained from the sample plots, the Importance Value Index (IVI) was calculated. The Importance Value Index defines which species contributes to the characteristics and structure of the ecosystem (Cottam & Curtis 1956), and is calculated as showed in Formula 1. Where, Relative Abundance (A rel ) that is, the percentage of number of individuals of each species in relation to the total number of individuals of all species per 100; Relative dominance (D rel ) that is, the percentage of basal area of a species between the basal area of all the species in the sampling plot per 100, and Relative Frequency (F rel ) that is, the percentage of subplots in which the species appears in relation with the frequency of all species per 100 (Dombois & Ellenberg 1974, Mostacedo & Fredericksen 2000).

IVI=(Arel+Drel+Frel)/3 (1)

To evaluate the alpha diversity the Index of Shannon-Weaver (H’) was used. This Index considers that individuals are shown randomly from an infinitely large population and assumes that all species are represented in the sample (Shannon & Weaver 1949; Magurran 1988).

H=−iSpi×ln(pi) (2)

where S is the number of species; p i is the proportion of the species and p i =n i /N; n i is the number of individuals of the species i and N the total number of individuals.

To calculate the species richness in the study area, the Margalef index (DMg) (Margalef 1958) was used, which is the simplest way to measure biodiversity (Moreno 2001). Particularly, this index is one of the most used and is defined as follows:

DMg=(S1)ln(N) (3)

where S is the number of species and N is the total number of individuals.

Statistical tests were carried out to verify that all the assumptions of the residuals were fulfilled, normality test by means of Shapiro-Wilk and the homogeneity of variances by the Levene test, both with a degree of significance (p < 0.05). After the assumptions were fulfilled, an analysis of variance (ANOVA) of a single factor (Altitude) for Shannon-Weaver index, Specific Richness, Abundance and Dominance was performed. The Duncan test was used to determine if there were significant differences (p < 0.05) of the variables analyzed by altitude group. Tests were performed using the IBM© SPSS© Statistic version 19 (Zar 2010).

To evaluate the beta diversity, a Bray-Curtis ordering model was generated using BioDiversity Pro 2.0 (McAleece et al. 1997); this model is a graphic representation of the variation of plant composition (0-100 %) in an extent of distance (Beals 1984). The Bray-Curtis ordering model is the most appropriate when a multivariate phytosociological analysis is needed.

Results

Sixteen families, 22 genera and 22 vascular plant species were recorded (Appendix 1). The most diverse family was Fabaceae with four species, followed by Cactaceae with three species.

Abundance. The most abundant species in the altitudinal gradients were shrubs, agaves and cacti. In the altitudinal gradient I (altitude 508 m a.s.l.), the most abundant species were Mimosa xanti (300 N ha-1), Ruellia californica (300 N ha-1) and Jatropha cinerea (240 N ha-1). In the altitudinal gradient II (altitude 1032 m a.s.l.) were Agave promontorii (360 N ha-1), Lysiloma divaricatum (240 N ha-1) and Ruellia californica (210 N ha-1). In the altitudinal gradient III (altitude 1092 m a.s.l.) Tecoma stans (540 N ha-1), Dodonaea viscosa (490 N ha-1) and Lysiloma divaricatum (440 N ha-1). In the altitudinal gradient IV (altitude 1,521 m a.s.l.) Ruellia californica (256 N ha-1), Turnera diffusa (253 N ha-1) and Jatropha cinerea (250 N ha-1). From the three most abundant species in each altitudinal gradient, the altitude one and four share Ruellia californica and the altitude II and III share Lysiloma divaricatum.

Dominance: The arboreal Quercus tuberculata was the most dominant species in the altitudinal gradients I, III and IV and the second in gradient II. The space occupied by this species ranged from 4.5 m2 ha-1 (altitudinal gradient I) to 22.3 m2 ha-1 (altitudinal gradient III). The second most dominant species in the altitudinal gradient one and four is Bursera microphylla. The space occupied by this species ranged from 3.4 m2 ha-1 (altitudinal gradient I) to 4.3 m2 ha-1 (altitudinal gradient IV).

Frequency: In altitudinal gradients II, III and IV, the most frequent species were Mimosa xanti with 13.8 %, 17.1 % and 17.3 % respectively. In altitudinal gradient I the most frequent species were Bursera microphylla (14.7%), Jatroha cinerea (13.9 %) and Quercus tuberculate (13.9 %).

Importance value index (IVI): The species with the highest value of IVI in the altitudinal gradient I were: Mimosa xanti (13.6 %), Ruellia californica (13.6 %) and Jatropha cinerea (10.9 %). In the altitudinal gradient II: Agave promontorii (18.9%), Lysiloma divaricatum (12.8 %) and Ruellia californica (11.0 %). In the III: Tecoma stans (16.8 %), Dodonaea viscosa (15.3 %) and Lysiloma divaricatum (13.9 %). In the IV: Ruellia californica (11.2 %), Jatropha cinerea (11.1 %) and Brahea brandegeei (11.0 %). The three species with higher IVI and abundance in each altitudinal gradient, gradient I and IV share Jatropha cinerea, and gradient II and III share Lysiloma divaricatum (Table 2).

Table 2 Abundance (N ha-1), dominance (m2 ha-1), frequency (Freq ha-1) and Importance Value Index by altitudinal gradient (Species data is arranged in decreasing order according with IVI values). 

  Abundance Dominance Frequency IVI
Species Abs Rel Abs Rel Abs Rel Rel
N ha-1 % m2 ha-1 % Freq ha-1 % %
Altitudinal gradient I
(508 m a.s.l.)
Mimosa xanti 300 13.8 0.2 1 0.3 6.9 13.6
Ruellia californica 300 13.8 0.2 0.9 0.2 3.5 13.6
Jatropha cinerea 240 11 0.3 1.4 0.6 13.9 10.9
Lysiloma divaricatum 176 8.1 2.9 13.1 0.2 4.6 8.1
Quercus tuberculata 170 7.8 4.5 20.5 0.6 13.9 7.9
Viguiera deltoidea 170 7.8 2 9.2 0.2 4.6 7.8
Stenocereus thurberi 160 7.3 2.4 10.7 0.4 9.3 7.4
Karwinskia humboldtiana 140 6.4 0.2 1 0.4 9.3 6.4
Randia capitata 120 5.5 0.3 1.1 0.3 7.7 5.5
Bursera microphylla 113 5.2 3.4 15.6 0.6 14.7 5.3
Agave promontorii 110 5 1.5 6.8 0.2 4.6 5.1
Brahea brandegeei 100 4.6 3.1 13.8 0.1 2.3 4.7
Opuntia lagunae 80 3.7 1 4.7 0.2 4.6 3.7
Subtotal 2179 100 22.2 100 4.3 100 100
Altitudinal gradient II
(1,032 m a.s.l.)
Agave promontorii 360 19.2 0 0 0.2 3.9 18.9
Lysiloma microphyllum 240 12.8 3.4 13.1 0.4 6.9 12.8
Ruellia californica 210 11.2 0 0 0.2 3.9 11
Mimosa xantii 160 8.5 1.2 4.4 0.7 13.8 8.5
Tecoma stans 115 6.1 0.6 2.1 0.3 4.9 6.1
Jatropha cinerea 110 5.9 0.3 1.1 0.4 8.4 5.8
Randia megacarpa 110 5.9 0.2 0.6 0.4 8.6 5.8
Quercus tuberculata 100 5.3 6.3 24.2 0.6 11.8 5.6
Viguieria deltoidea 100 5.3 0.6 2.3 0.2 3.9 5.3
Bursera microphylla 80 4.3 1.9 7.3 0.6 11.8 4.3
Pachycereus pringlei 80 4.3 1.3 5.1 0.1 2 4.3
Stenocereus thurberi 53 2.8 0.7 2.8 0.4 7.9 2.9
Opuntia laguneae 47 2.5 0.2 0.6 0.2 3.9 2.5
Yucca valida 40 2.1 7.2 27.5 0.1 1 2.5
Karwinskia humboldtiana 30 1.6 0.7 2.6 0.3 5.4 1.6
Erythrina flabelliformis 20 1.1 1.6 6.2 0.1 1 1.1
Lippia palmeri 20 1.1 0 0.1 0.1 1 1.1
Subtotal 1875 100 26.1 100 5.1 100 100
Altitudinal gradient III
(1,092 m a.s.l.)
Tecoma stans 540 17.1 0.8 1.5 0.3 6.1 16.8
Dodonaea viscosa 490 15.5 0.6 1.2 0.4 8.5 15.3
Lysiloma divaricatum 440 13.9 7.1 13.3 0.4 8.5 13.9
Ruellia californica 370 11.7 0.3 0.5 0.2 4.9 11.5
Stenocereus thurberi 360 11.4 7 13.1 0.4 9.8 11.4
Quercus tuberculata 250 7.9 22.2 41.4 0.6 14.6 8.5
Jatropha cinerea 240 7.6 0.3 0.6 0.5 12.2 7.5
Mimosa xanti 230 7.3 5.9 10.9 0.7 17.1 7.4
Bursera microphylla 160 5.1 2.6 4.9 0.6 14.6 5.1
Senna atomaria 40 1.3 5.6 10.4 0.1 1.2 1.4
Pachycereus pringlei 40 1.3 1.1 2.1 0.1 2.4 1.3
Subtotal 3160 100 53.6 100 4.1 100 100
Altitudinal gradient IV
(1,521 m a.s.l.)
Ruellia californica 256 11.3 0.1 0.8 0.2 4.9 11.2
Turnera diffusa 253 11.2 0 0 0.2 3.7 11.1
Jatropha cinerea 250 11.1 0.3 1.3 0.4 9.9 11
Dodonaea viscosa 207 9.2 0.1 0.6 0.4 8.6 9.1
Quercus tuberculata 190 8.4 7.8 40.1 0.6 14.8 8.7
Mimosa xanti 192 8.5 0.2 0.9 0.7 17.3 8.5
Bursera microphylla 180 8 4.3 22.3 0.6 14.8 8.1
Merremia aurea 150 6.6 2.2 11.4 0.1 2.5 6.7
Randia capitata 140 6.2 0.3 1.7 0.2 4.9 6.2
Viguiera deltoidea 140 6.2 0.2 1 0.2 4.9 6.2
Agave promontorii 140 6.2 0 0 0.2 4.9 6.1
Brahea brandegeei 80 3.5 2.5 12.8 0.1 2.5 3.6
Stenocereus thurberi 80 3.5 1.4 7 0.3 6.2 3.6
Subtotal 2258 100 19.4 100 4.1 100 100

The values of the Shannon-Weaver index, Margalef index, abundance and dominance showed significant differences in the altitudinal gradients (p < 0.05), not showing any tendency of decrease or increase of the values as the altitudinal gradient increased. The altitudinal gradient III presented the lowest values of Shannon-Weaver and Margalef index values and the highest values of abundance and dominance (Figure 2).

Figure 2 Means and standard error of A) Margalef index, B) Shannon index, C) Abundance and D) Dominance for plant communities in the altitudinal gradients. Altitudinal gradient 1: 508 m a.s.l., 2: 1,032 m a.s.l., 3: 1,092 m a.s.l. and 4: 1,521 m a.s.l. Means followed by different letters (a and b) indicate different levels of significance for p < 0.05. 

The values of the Shannon index showed average values that range between 1.37 ± 0.17 and 1.83 ± 0.15 (± standard deviation). The values of the Margalef Index were between 0.89 ± 0.27 and 1.73 ± 0.70. The abundance showed values from 856 ± 375 N ha-1 to 1436 ± 255 N ha-1 and the dominance of 9.57 ± 6.4 to 28.1 ± 21.04 (Figure 2).

The dendrogram of plant communities depending on altitudinal ranges can be observed in Figure 3. In general, a high similarity is present among communities. In the first group (that joins the other two) exists a 55 % of similarity, the gradient III and IV have a similarity of 60 % and I and II of 72 %. This analysis indicates that plant communities have a high number of species in common, which could be considered generalist, since they have the capacity to develop in a wide range of environmental conditions (Figure 3).

Figure 3 Dendrogram of similarity between the different altitudinal ranges based on the Bray-Curtis analysis. Las Tinajas altitudinal gradient (508 m a.s.l.), El Portezuelo (1,032 m a.s.l.), Agua Blanca (1,092 m a.s.l.) and El Parteaguas (1,521 m a.s.l.). 

Discussion

Species richness-elevation relationships have received considerable attention during the last two decades, as a response to the major challenge of documentation and explanation of global and regional gradients of species richness (Kessler et al. 2011, Trigas et al. 2013). Most studies indicate that vascular plants show a decrease in species richness as elevation increases, either in a hump-shaped or monotonically (Bachman et al. 2004, Wang et al. 2007).

Climatic factors play an important role in the distribution of plant communities (Rüdiger et al. 2001). In dry regions, the floristic composition and the structure of the vegetation are determined mainly by water availability, so it is assumed that this is the main limiting factor in these regions (Paruelo et al. 2000, Tateno et al. 2017). The availability of water is directly related not only to the annual rainfall, but also to factors such as topography and soil characteristics since they play an important role (Reynolds et al. 2000, Tateno et al. 2017). Altitude represents a complex combination of climatic variables to which the species have to adapt and is considered an environmental factor that affects the structure and organization of the communities (Pavón et al. 2000, Rüdiger et al. 2001). The variables of average annual temperature and total annual precipitation are significantly correlated with altitude (Wang et al. 2015).

The results obtained indicated that in Sierra de la Laguna, different plant communities can be recognized physiognomically along the altitudinal gradient, which had already been mentioned in the Management Program of National Protected Areas (CONANP, 2003). Five species (Erythrina flabelliformis, Lippia palmeri, Senna atomaria, Turnera difusa and Yucca valida) that are distributed only in a single altitudinal gradient were recorded and all of them have low importance value index values. In contrast, there are five species (Ruellia californica, Jatropha cinerea, Quercus tuberculata, Mimosa xanti and Bursera microphylla) with presence in all altitudinal gradients and have intermediate or high values of importance value index. Arriaga and León (1989) also recorded Jatropha cinerea and Bursera microphylla as species with high density and coverage in lowland rainforest of Baja California.

Because there is a high number of species in all studied communities and all showed high abundance values, there is a high similarity between the composition of species in the communities (≥ 55 % in all cases), which could be considered generalist, since they have the capacity to develop in a wide range of environmental conditions.

The topographic pattern of “Sierra La Laguna” have different characteristics, in higher altitude parts there are very steep slopes, in intermediate altitude sites slopes are less inclined and the lower altitudes are constituted of expositions with scarce slopes because are located at sea level. The topographical variation (longitude, form and inclination of slope) is attributed to humidity distribution so that higher parts retain less humidity. The Föhn effect that is characterized by an increase in evaporation rate and a decrease in relative humidity is an important factor in the physiognomy and distribution of plant communities, since it affects considerably the availability of water and temperature (Zhao et al., 2018). The rainfall is other important factor because occurs in very low amounts, which influences the development of vegetation.

In this study, the values of Shannon-Weaver Index and Margalef Index showed significant differences in the altitudinal gradients but did not show any increasing or decreasing tendency of values as the altitudinal gradient increased. This information is different from the results of numerous authors that reported a decreasing of species and diversity richness as the altitudinal gradient increases (Vetaas & Grytnes 2002, Gould et al. 2006). An explanation of why in our study there no trends of declining values as altitude are increased, can be related to temperature and precipitation influences. Table 1 illustrates the average values of the temperature and indicate that even the maximum altitude (1,521 m a.s.l.) show values above the freezing point, which gives the environmental conditions to develop a high variety of species. In addition, all altitudinal gradients are arid (precipitation less than 400 mm), which led to the conditions for establishing this generalist species adapted to arid zones.

In accordance to the results of this research, the hypothesis is rejected because abundance, dominance and diversity of vegetation species do not show any decrease (or increase) tendency of values as the altitudinal gradient augmented. The vegetation communities showed a high similarity in the composition of species (≥ 55 %), because Ruellia californica, Jatropha cinerea, Quercus tuberculata, Mimosa xanti and Bursera microphylla are dominant species and are distributed in all altitudinal gradients.

Literature cited

Alves LF, Vieira SA, Scaranello MA, Camargo PB, Santos FAM, Joly CA, Martinelli LA. 2010. Forest structure and live aboveground biomass variation along an elevational gradient of tropical Atlantic moist forest (Brazil). Forest Ecology and Management 260: 679-91. DOI: https://doi.org/10.1016/j.foreco.2010.05.023 [ Links ]

Arriaga L, León-de la Luz JL. 1989. The tropical deciduous forest of Baja California Sur, Mexico: A floristic and vegetational analysis. Vegetatio 84: 45-52. DOI: https://doi.org/10.1007/BF00054664 [ Links ]

Bachman S, Baker WJ, Brummitt N, Dransfield J, Moat J. 2004. Elevational gradients, area and tropical island diversity: an example from the palms of New Guinea. Ecography 27: 299-310. DOI: https://doi.org/10.1111/j.0906-7590.2004.03759.x [ Links ]

Beals EW. 1984. Bray-Curtis ordination: An effective strategy for analysis of multivariate ecological data. Advances in Ecological Research 14: 1-56. DOI: https://doi.org/10.1016/S0065-2504(08)60168-3 [ Links ]

CONANP [Comisión Nacional de Áreas Naturales Protegidas]. 2003. Programa de manejo Reserva de la Biosfera Sierra La Laguna, México. México, D.F.: Comisión Nacional de Áreas Naturales Protegidas. ISBN 968-817-594-3 [ Links ]

Cottam G, Curtis JT. 1956. The use of distance measures in phytosociological sampling. Ecology 37: 451-460. DOI: https://doi.org/10.2307/1930167 [ Links ]

Dombois DM, Ellenberg H. 1974. Aims and Methods of Vegetation Ecology. John Wiley & Sons. ISBN: 0471622907, 9780471622901 [ Links ]

Gould WA, González G, Carrero-Rivera G. 2006. Structure and composition of vegetation along an elevational gradient in Puerto Rico. Journal of Vegetation Science 17: 563-574. DOI: https://doi.org/10.1658/1100-9233(2006)17[653:SACOVA]2.0.CO;2 [ Links ]

Granados-Sánchez D, Sánchez-González A. 2003. Clasificación fisonómica de la vegetación de la Sierra de Catorce, San Luis Potosí, a lo largo de un gradiente altitudinal. Terra Latinoamericana 21: 321-332. [ Links ]

Kessler M, Kluge J, Hemp A, Ohlemüller R. 2011. A global comparative analysis of elevational species richness patterns of ferns. Global Ecology and Biogeography 20: 868-880. DOI: https://doi.org/10.1111/j.1466-8238.2011.00653.x [ Links ]

León-de la Luz JL, Breceda A. 2005. Using endemic plant species to establish critical habitats in the Sierra de La Laguna Biosphere Reserve, Baja California Sur, Mexico. Biodiversity and Conservation 15: 1043-1055. DOI: https://doi.org/10.1007/s10531-004-3887-6 [ Links ]

León-de la Luz JL, Domínguez-Cadena R. 1989. Flora of the Sierra de La Laguna, Baja California Sur, Mexico. Madroño 63: 61-83. [ Links ]

León-de la Luz JL, Pérez-Navarro JJ, Breceda A. 2005. A transitional xerophytic tropical plant community of the Cape Region, Baja California. Journal of Vegetation Science 11: 555-564. DOI: https://doi.org/10.2307/3246585 [ Links ]

León-de la Luz JL, Pérez-Navarro JJ, Domínguez-León M, Domínguez-Cadena R. 1999. Flora de la Región del Cabo de Baja California Sur. Listados Florísticos de México XVIII. Instituto de Biología. Universidad Nacional Autónoma de México. [ Links ]

Magurran AE. 1988. Ecological diversity and its measurement. New Jersey: Princeton University Press. DOI: https://doi.org/10.1007/978-94-015-7358-0. ISBN: 978-94-015-7360-3 [ Links ]

Margalef R. 1958. Information Theory in Ecology. General Systems. 3: 36-71. [ Links ]

McAleece N, Gage JDG, Lambshead PJD, Paterson GLJ. 1997 BioDiversity Professional statistics analysis software v2.0. Scottish Association for Marine Science/Natural History Museum London. <https://www.sams.ac.uk/science/outputs> (accessed January, 2018). [ Links ]

Moreno C. 2001. Métodos Para Medir la Biodiversidad. Zaragoza, España: La Sociedad Entomológica Aragonesa. ISBN: 84 - 922495 - 2 - 8 [ Links ]

Mostacedo B, Fredericksen TS. 2000. Manual de métodos básicos de muestreo y análisis en ecología vegetal. Santa Cruz, Bolivia: Editorial el País. < http://www.bio-nica.info/biblioteca/mostacedo2000ecologiavegetal.pdf > (accessed March, 2018). [ Links ]

Padilla G, Pedrin S, Díaz E. 1988. Historia geológica y paleoecología. In: Arriaga L, Ortega A, eds. La Sierra de La Laguna en Baja California Sur. Centro de Investigaciones Biológicas de Baja California A.C., La Paz, Baja California Sur, México. ISBN: 978-607-424-558-5 [ Links ]

Paruelo JM, Sala OE, Beltrán AB. 2000. Long-term dynamics of water and carbon in semi-arid ecosystems: A gradient analysis in the Patagonian steppe. Plant Ecology 150: 133-143. DOI: https://doi.org/10.1023/A:1026578403956 [ Links ]

Pavón NP, Hernández-Trejo H, Rico-Gray V. 2000. Distribution of plant life forms along altitudinal gradient in the semi-arid valley of Zapotitlán, Mexico. Journal of Vegetation Science 11: 39-42. DOI: https://doi.org/10.2307/3236773 [ Links ]

Reynolds JF, Kemp PR, Tenhunen JD. 2000. Effects of long-term variability on evapotranspiration and soil water distribution in the Chihuahuan Desert: A modeling analysis. Plant Ecology 150: 145-159. DOI: https://doi.org/10.1023/A:1026530522612 [ Links ]

Rüdiger O, Fernández-Palacios JM, Krüsi BO. 2001. Variation in species composition and vegetation structure of succulent scrub on Tenerife in relation to environmental variation. Journal of Vegetation Science 12: 237-248. DOI: https://doi.org/10.2307/3236608 [ Links ]

Sánchez-González A, López-Mata L. 2003. Clasificación y ordenación de la vegetación del norte de la Sierra Nevada, a lo largo de un gradiente altitudinal. Anales del Instituto de Biología. Serie Botánica 74: 47-71. [ Links ]

Shannon CE, Weaver W. 1964. The Mathematical Theory of Communication. USA: University of Illinois Press. [ Links ]

Tateno R, Taniguchi T, Zhang J, Shi WY, Zhang JG, Du S, Yamanaka N. 2017. Net primary production, nitrogen cycling, biomass allocation, and resource use efficiency along a topographical soil water and nitrogen gradient in a semi-arid forest near an arid boundary. Plant and Soil 420: 209-222. DOI: https://doi.org/10.1007/s11104-017-3390-y [ Links ]

Trigas P, Panitsa M, Tsiftsis S. 2013. Elevational Gradient of Vascular Plant Species Richness and Endemism in Crete - The Effect of Post-Isolation Mountain Uplift on a Continental Island System. PLOS ONE 8: e59425. DOI: https://doi.org/10.1371/journal.pone.0059425 [ Links ]

Vetaas OR, Grytnes JA. 2002. Distribution of vascular plant species richness and endemic richness along the Himalayan elevation gradient in Nepal. Global Ecology and Biogeography 11: 291-301. DOI: https://doi.org/10.1046/j.1466-822X.2002.00297.x [ Links ]

Wang Z, Tang W, Fang J. 2007. Altitudinal patterns of seed plant richness in the Gaoligong Mountains, south-east Tibet, China. Diversity and Distributions 13: 845-854. DOI: https://doi.org/10.1111/j.1472-4642.2007.00335.x [ Links ]

Wang Z, Yang B, Deslauriers A, Bräuning A. 2015. Intra-annual stem radial increment response of Qilian juniper to temperature and precipitation along an altitudinal gradient in northwestern China. Trees 29: 25-34. DOI: https://doi.org/10.1007/s00468-014-1037-7 [ Links ]

Wiggins IL. 1980. Flora of Baja California. Stanford University Press, Stanford, CA.1025 pp. ISBN-13: 978-0804710169 [ Links ]

Zar JH. 2010. Biostatistical Analysis. New Jersey: Prentice Hall. ISBN-13: 978-0321656865 [ Links ]

Zhao W, Reich PB, Yu Q, Zhao N, Yin C, Zhao C, Li D, Hu J, Li T, Yin H, Liu Q. Shrub type dominates the vertical distribution of leaf C: N: P stoichiometry across an extensive altitudinal gradient. Biogeosciences 15: 2033-2053. DOI: https://doi.org/10/5194/bg-15-2033-2018. [ Links ]

1Associated editor: Eduardo Ruiz-Sánchez

Appendix 1

Study Area floristic inventory including common names. 

ACANTHACEAE Spanish common name
Ruellia californica (Rose) I.M. Johnst. “Rama prieta”
ASPARAGACEAE
Agave promontorii Trel. “Maguey”
Yucca valida Brandegee “Datilillo”
ARECACEAE
Brahea brandegeei (Purpus) H.E. Moore “Palma”
ASTERACEAE
Viguiera deltoidea A. Gray “Tacote”
BIGNONIACEAE
Tecoma stans (L.) Kunth “Palo de arco”
BURSERACEAE
Bursera microphylla A. Gray “Torote colorado”
CACTACEAE
Opuntia lagunae Baxter in Bravo “Nopal tuna roja”
Pachycereus pringlei Britton & Rose “Cardón”
Stenocereus thurberi (Engelm.) Buxb. “Pitaya dulce”
CONVOLVULACEAE
Merremia aurea (Kellogg) O'Donell “Yuca”
EUPHORBIACEAE
Jatropha cinerea Müll. Arg. “Lomboy blanco”
FABACEAE
Erythrina flabelliformis Kearney “Chilicote”
Lysiloma divaricatum (Jacq.) Benth. “Mauto”
Mimosa xanti A. Gray “Celosa”
Senna atomaria (L.) H.S. Irwin & Barneby “Palo zorrillo”
FAGACEAE
Quercus tuberculata Liebm. “Encino roble”
PASSIFLORACEAE
Turnera diffusa Willd. “Damiana”
RHAMNACEAE
Karwinskia humboldtiana (Schult.) Zucc. “Cacachila”
RUBIACEAE
Randia capitata DC. “Papache”
SAPINDACEAE
Dodonaea viscosa Jacq. “Guayabillo”
VERBENACEAE
Lippia palmeri S. Watson “Oreganillo”

Received: April 12, 2018; Accepted: July 19, 2018

* Corresponding author: Eduardo Alanís-Rodríguez, e-mail: eduardo.alanisrd@uanl.edu.mx.

Author Contributions: Jesús Manuel Rascón- Ayala: Fieldwork, Framing experimental design. Eduardo Alanís-Rodríguez: Data analysis and interpretation. Enrique Buendía- Rodríguez: Fieldwork, Data analysis. Arturo Mora-Olivo: Identification of specimens. Laura Sanchez-Castillo: Manuscript translation. Jesús Eduardo Silva-García: Manuscript preparation. All authors wrote and approved the final manuscript.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License