SciELO - Scientific Electronic Library Online

 
vol.100 número especialDe la ecología de vegetación a la ciencia de la vegetación: tendencias actuales y perspectivasLa ciencia de los ecosistemas: un nuevo enfoque en el análisis de los procesos funcionales en ecosistemas terrestres naturales y transformados índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Botanical Sciences

versión On-line ISSN 2007-4476versión impresa ISSN 2007-4298

Bot. sci vol.100 spe México  2022  Epub 17-Oct-2022

https://doi.org/10.17129/botsci.3066 

Ecology

Wild plant conservation in Mexico in the 21st century

Conservación de plantas silvestres en México en el siglo XXI

Patricia Dávila, Writing – original draft, Conceptualization, Formal analysis1 
http://orcid.org/0000-0003-1985-2468

Fabiola Soto-Trejo, Writing – original draft, Formal analysis1 
http://orcid.org/0000-0003-3241-311X

Isela Rodríguez-Arévalo, Writing – original draft, Formal analysis1 
http://orcid.org/0000-0002-3817-938X

Armando Ponce, Writing – original draft, Formal analysis1 
http://orcid.org/0000-0002-8689-568X

Salvador Arias, Writing – original draft, Formal analysis2 
http://orcid.org/0000-0002-7674-7050

Ana Escalante, Writing – original draft, Formal analysis3 
http://orcid.org/0000-0001-8147-4598

Oswaldo Téllez, Writing – original draft, Formal analysis1 
http://orcid.org/0000-0002-7449-378X

Rafael Lira, Writing – original draft, Project administration, Formal analysis1  * 
http://orcid.org/0000-0003-3167-2734

1 Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Tlalnepantla de Baz, Estado de México, Mexico.

2 Instituto de Biología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.

3 Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico.


Abstract

Twenty-one years have elapsed of the 21st Century and within the framework of the celebration of the 100th volume of Botanical Sciences, it is relevant to assess the progress of the research on conservation and on the activities undertaken for protecting the plants of Mexico, including the complementary in situ and ex situ approaches. By means of a systematic search of scientific articles related to the conservation of the Mexican flora on the Web of Science database, for the 2000-2021 period, we identified different scientific inputs, all showing specific objectives for undertaking conservation activities. The publications that resulted from this search were classified into six categories: (a) Regions and Ecoregions; (b) Communities or Ecosystems; (c) Taxonomic Groups; (d) Species and Populations; (e) Botanical Gardens; and (f) Seed Banks. For these categories, the results are presented under the headings “in situ conservation” and “ex situ conservation.” Additionally, we assessed by a random examination, the bibliography used to support touristic development projects. The results show that, despite the wide temporal range considered in this review, and even though there is a vast number of publications related to the characterization of the Mexican biodiversity, the production of scientific work oriented to the development of plant conservation strategies and activities is still scarce. Also evident is the lack of connection and communication among researchers of different disciplines, highlighting the disciplinary or multidisciplinary activities that they undertake. Finally, ten conclusions are presented, and some future research activities are suggested for conserving the Mexican flora.

Keywords: Flora; in situ and ex situ conservation; biodiversity; plant diversity; natural resources

Resumen

Habiendo transcurrido los primeros 21 años del Siglo XXI y en el marco de la celebración del Volumen 100 de la Revista Botanical Sciences, es relevante realizar una evaluación de los avances en la investigación relacionada con la conservación in situ y ex situ de la diversidad vegetal de México. Mediante una búsqueda acotada y sistemática de los artículos científicos sobre la conservación de la flora mexicana, contenidos en la base de datos Web of Science para el periodo 2000-2021, se reconocieron aportaciones científicas enfocadas específicamente en actividades de conservación. Las publicaciones se clasificaron en seis categorías: (a) Regiones o Ecoregiones, (b) Comunidades o Ecosistemas, (c) Grupos Taxonómicos, (d) Especies y Poblaciones, (e) Jardines Botánicos, y, (f) Bancos de Semillas. Considerando estas categorías, los resultados se presentan bajo los rubros “conservación in situ” y “conservación ex situ”. Adicionalmente, se llevó a cabo una revisión acerca del apoyo bibliográfico que utilizan proyectos de desarrollo turístico. Los resultados mostraron que, a pesar del amplio intervalo temporal considerado en esta revisión y del abundante trabajo que existe con relación a la caracterización de la biodiversidad en México, es notable la escasa producción científica para el desarrollo de estrategias o actividades concretas de conservación de plantas. Es evidente una falta de conexión y comunicación entre investigadores de diferentes disciplinas, ya que prevalece el trabajo unidisciplinario o, en el mejor de los casos, el multidisciplinario. Finalmente, se presentan diez conclusiones y se sugieren algunas actividades futuras para trabajar en la conservación de la flora mexicana.

Palabras clave: Flora; conservación in situ y ex situ; biodiversidad; diversidad vegetal; recursos naturales

At the Rio Summit, held in 1992 in the city of Rio de Janeiro, sustainable development was proposed as the strategy to ensure environmentally sound and long-term development. Therefore, the United Nations Convention on Biological Diversity established the following main objectives: (1) to conserve biological diversity, (2) to use its components in a sustainable way, and (3) to make a fair and equitable distribution of benefits derived from that use (United Nations 1992). Within this framework, in March 1992 the National Commission for the Knowledge and Use of Biodiversity (CONABIO) was created in Mexico, as a permanent inter-ministerial commission, with the purpose to coordinate and promote actions related to the knowledge and the sustainable use of our country’s biodiversity (Sarukhán et al. 2009, CONABIO 2012). The work carried out by CONABIO is unprecedented in Mexico and its contributions have benefited different areas of the country and abroad.

Since then, milestones of the outmost importance have been reached in terms of integrating and analyzing information from different disciplines such as taxonomy, ecology, physiology, agronomy, geography, climatology, edaphology, and even from the social sciences to define both general and particular approaches to the biological conservation, as well as the use of technologies that are necessary to support increasingly robust conservation proposals (e.g., Bojórquez-Tapia et al. 1995, Álvarez-Buylla et al. 1996, Heywood & Iriondo 2003, Heywood & Dulloo, 2005, Lascuráin et al. 2009, Costedoat et al. 2015, Brooks et al. 2016, Larkin et al. 2016, Hayano-Kanashiro et al. 2017, List et al. 2017, Pfaff et al. 2017).

In general, biodiversity conservation is carried out using both in situ and ex situ approaches. These two are complementary and ensure the conservation of the genetic diversity of species and their populations in the short and long terms. In situ conservation encompasses the maintenance and sustainable use of species and their viable populations in their natural habitats as well as the ecosystem diversity. In situ conservation also includes the diversity of species used in agriculture and their wild relatives as source of genetic diversity in the habitats where such diversity appeared and/or where it continues to evolve (Heywood & Dulloo 2005, Pisanty et al. 2009). On the other hand, ex situ conservation is the application of a wide variety of resources, techniques and specialized infrastructure that contribute to the recovery and survival of individuals or populations outside their habitats. A central objective of ex situ conservation is to reduce the extinction risk of species or populations, as well as to reintroduce populations into their natural habitats (Lascuráin et al. 2009). There are various methods and techniques for ex situ conservation, such as seeds, pollen and tissues cryopreservation, gene banks, botanical gardens, and arboreta (Lascuráin et al. 2009). To date, it is widely accepted that ex situ conservation activities can play a very relevant role and complementary to the in situ approach, which integrates some conservation procedures such as the recovery and reintroduction of species and ecological restoration (Heywood & Iriondo 2003, IUCN/SSC 2014, Dávila-Aranda et al. 2016, Heywood 2017).

In this context, the objective of this work was to gather and analyze the information available in scientific publications explicitly related to in situ and ex situ conservation of wild plants in Mexico during the 2000-2021 period, with the purpose of answering questions such as: how much has been published on the subject in the last twenty years?, what are the themes or objects of study (disciplines, plant groups, regions, species, etc.) of the publications?, what have been the approaches and methods used?, and how much is the scientific information generated on plant conservation taken into consideration in public policy instruments on environmental matters?

Methods

Compilation and review of scientific literature. To determine the main scientific contributions to plant conservation in Mexico, a systematic search was carried out in May 2021 using the Web of Science search engine for scientific papers published on the subject between 2000 and 2021. The search criteria consisted in including those papers published in scientific journals in which the database included the terms plant conservation + Mexico in their title. In addition, we also included those papers that included in their abstracts, the terms “in situ conservation” or “ex situ conservation”. After checking and avoiding duplicates, 207 documents remained as the result of the search (articles, books or chapters). The final number of documents was 103 after filtering out articles that lacked information that could be clearly related to in situ or ex situ conservation activities on wild plants in Mexico.

Analysis of the consideration of scientific literature in public policy instruments in environmental themes. In order to know the use of scientific information in plant conservation in Mexico in the public policy on environmental themes, a sample of public documents associated to various tourism development projects in coastal areas of the country ruled by the authority for the years 2002, 2004, 2006, 2008 and 2010 was reviewed, specifically the documents that correspond to the Regional Environmental Impact Statements (MIA-R by its Spanish acronym). In the review of this documentation, it was determined that a MIA-R was considered to use scientific information on plant conservation if it complied to the following bibliographic sources: (i) publications on Protected Natural Areas that refer to plants (e.g., the flora of the Sian Ka’an or El Triunfo Biosphere Reserve, etc.); (ii) publications that indicate or suggest in the title that they include conservation issues; (iii) references of any of the Priority Areas defined by CONABIO.

According to the main topics addressed by the publications retrieved from the bibliographic search, they were classified into six categories: (a) Regions or Ecoregions, (b) Communities or Ecosystems, (c) Taxonomic Groups, (d) Species and Populations, (e) Botanical Gardens, and (f) Seed Banks. For these categories, publications are presented under the headings “in situ conservation” (topics a-d) and “ex situ conservation” (topics e and f); additionally, the results of analysis of the tourism development projects MIA-R are described.

In situ conservation

The literature review revealed that there is a scarce production of papers specifically aiming to undertake in situ conservation activities of the Mexican flora during the period considered in this work. The retrieved papers include data from regions or ecoregions, communities or ecosystems, taxonomic groups (e.g., genera or families), as well as from species and populations (e.g., endemic, threatened or endangered).

Regions or Ecoregions. Conservation studies of regions or ecoregions are focused on relatively large geographic areas, with hundreds of plant species and dozens of natural communities included. The Natural Protected Areas of Mexico (ANP by its Spanish acronym) were initially established based on aesthetic and recreational criteria, but gradually the criteria evolved to support initiatives that aim to contribute to the in situ conservation of the regions’ or ecoregions’ biodiversity. In the last 20 years, the scientific community and Mexican institutions such as the above mentioned CONABIO and the National Commission for Protected Natural Areas (CONANP by its Spanish acronym), both entities belonging to the Secretariat of Environment and Natural Resources (SEMARNAT by its Spanish acronym), became aware of the need to review the operation, size and connectivity of the country’s protected areas. Currently, the Mexican territory has a total of 182 ANPs covering about 90,839,522 ha (Table 1; CONANP 2018). The monitoring of the operation in some ANP has shown the successes and the difficulties regarding the management and conservation of natural resources in regions such as the Yucatán Peninsula (García-Frapolli et al. 2009). In addition, other studies have focused on redesigning and delimiting the ANPs, using new criteria and additional information in order to explore alternative designs that maximize the conservation of habitats and natural resources (e.g., in the Mariposa Monarca [Monarch Butterfly] Biosphere Reserve, Bojórquez-Tapia et al. 2003, and the Sierra de San Pedro Mártir National Park, Bojórquez-Tapia et al. 2004).

Table 1 Protected Natural Areas of Mexico by categories. 

Category Number Total area (ha) % Protected
Biosphere Reserve 44 62,952,750.50 69.3
Natural Park 67 16,220,099.30 5.5
Natural Monument 5 16,269.11 0.1
Natural Resources Protection Area 8 4,503,345.22 17.6
Flora and Fauna Protection Area 40 6,996,864.17 26.5
Santuaries 18 150,193.29 0.6
Total 182 90,839,521.55 100

Moreover, some studies have aimed to identify regions of high concentration of endemic plant species in order to propose and prioritize areas for conservation, such as in the Baja California Peninsula (Riemann & Ezcurra 2007), the Sierra Madre Oriental (Salinas-Rodríguez et al. 2018) and the Sierra Norte of Oaxaca (Suárez-Mota et al. 2018). Finally, some studies have focused on evaluating the loss of species due to habitat modification and alteration by large-scale human activities, such as grazing (e.g., Isla Guadalupe, León de la Luz et al. 2003) and agriculture (e.g., Baja California, Vanderplank et al. 2014). In addition, spatial models of land cover and land use change have been used to estimate the impact of human activities on natural ecosystems. An example of this is the Mesoamerican Biological Corridor in Chiapas (Ramírez-Mejía et al. 2017) or other sites on the Costa Grande region of Guerrero state and in central Quintana Roo state (Durán-Medina et al. 2007).

Communities or Ecosystems. Some studies on community or ecosystem conservation in Mexico have focused on habitat fragmentation effects on species composition and the physiognomy of the dominant vegetation (e.g., Arroyo-Rodríguez & Mandujano 2006, Sánchez-Gallen et al. 2010). For instance, a well-documented example is the humid tropical forest of Los Tuxtlas, Veracruz which has been particularly affected by deforestation (Arroyo-Rodríguez & Mandujano 2006). Oher studies have aimed to establish specific conservation and restoration programs at the local level, by implementing sustainable management schemes for threatened ecosystems such as the cloud forest (Luna Vega et al. 2000, Toledo-Aceves et al. 2011).

Additionally, several studies have evaluated the spatial variation of the impact of climate change on biodiversity across different ecosystems or communities in Mexico (Trejo et al. 2011). For example, Estrada-Contreras et al. (2015) evaluated the effects of climate change on tropical evergreen, coniferous and mesophyllous montane (cloud) forests in the state of Veracruz; according to their results and under the conditions expected in 2050, for about 20 species of this vegetation type there will be considerable reductions in their distribution ranges and others will probably become extinct, as is the case of Dialium guianense (Caesalpinoideae: Fabaceae), Calophyllum brasiliense (Calophyllaceae), and Brosimum alicastrum (Moraceae), since this ecosystem will be reduced to 60 % of its current surface. Similarly, Gómez-Mendoza & Arriaga (2007) predicted the reduction of the distribution area of several species of Quercus (7-48 %), and Pinus (0.2-64 %); the most vulnerable species of the Pinus genus were P. rudis, P. chihuahuana, P. oocarpa and P. culminicola, and of Quercus were Q. crispipilis, Q. peduncularis, Q. acutifolia, and Q. sideroxyla. By contrast, Rehfeldt et al. (2012) predicted the expansion of the tropical deciduous forest and the xerophilous scrub to suitable climates in several regions of Mexico.

Likewise, other studies addressing climate change seek to identify geographic areas with the potential to host the largest number of species representative of a particular ecosystem, to prioritize conservation areas (e.g., the mesophyllous montane (cloud) forest, López-Arce et al. 2019), such as the work undertaken by Worthington et al. (2020), in which the authors proposed to include Mexico in mangrove restoration and conservation programs at a global level. Another good example is the recent study undertaken by Tellez et al. (2020) that analyzes the richness of native trees in Mexico, including 2,885 species (ca. 44 % endemic to Mexico) that belong to 612 genera and 128 families listed in the IUCN Red List, in SEMARNAT’s NOM-059, or in both. In addition, a total of 98 Mexican tree species are listed in CITES for their protection. Moreover, in terms of current conservation efforts, they also document that 19 % of the Mexican tree species have an ex situ protection in seed banks, and that most species richness peaks overlap in protected areas.

From an ethnoecological perspective, in recent years the studies undertaken on agroforestry systems have provided relevant information on the conservation of locally important plant communities. These studies focus on the complexity of original vegetation zones interspersed with cultivated areas that include management strategies for the original communities and populations, which favor the maintenance of biological and cultural diversity, while providing numerous resources and ecosystem services to rural human communities (Schroth et al. 2004, Perfecto & Vandermeer 2008). For instance, these systems have been studied in detail in the Tehuacán-Cuicatlán Valley, where approximately 1,600 plant species are used by humans in numerous ways (Casas et al. 2001, Lira et al. 2009a). Results of these studies leave no doubt that such traditional exploitation of original vegetation areas represents sustainable practices where conservation is possible. Also, in the Tehuacán-Cuicatlán Valley, Vallejo et al. (2014) analyzed the biodiversity conservation success of the agroforestry systems of the temperate zones, as well as the motivation of people to carry out these practices. In this study, 79 tree and shrub species were recorded, 86 % of which are native and represent 43 % of all trees and shrubs species recorded in natural forests. Likewise, the authors identified that motivations to conserve standing plants in these systems are associated to their use as fruit trees, firewood, shade, beauty, as well as their nature and other environmental services.

In the case of the Tehuacán-Cuicatlán Valley, it has been reported that agroforestry systems derived from columnar cactus forests conserve between 50 and 90 % of the plant species richness existing in wild systems and on average close to 93 % of the genetic diversity of wild populations of cacti species representative of the original forests (Moreno-Calles & Casas 2008). Additionally, Rendón-Sandoval et al. (2021), who studied these systems in Cuicatlán, at the southern end of the Tehuacán-Cuicatlán Valley, agree in that agroforestry systems can maintain biodiversity while helping to satisfy human needs, and that those that protect or sponsor a greater proportion of forest cover and species diversity can provide a broader spectrum of benefits to people; such benefits include not only those obtained directly from the use or marketing of plant products (food, medicine, etc.) but also those that are less tangible, but equally essential, such as providing shade, maintaining humidity or providing habitat for pollinators.

Taxonomic Groups. The existing publications on taxonomic groups of vascular plants are aimed at analyzing diversity patterns at different spatial scales to prioritize areas for conservation. Such is the case of the studies on Asteraceae (Redonda-Martínez et al. 2021), Cactaceae (Gómez-Hinostrosa & Hernández 2000, Ortega-Baes & Godínez-Alvarez 2006, Ortega-Baes et al. 2010, Hernández & Gómez-Hinostrosa 2011), and Cucurbitaceae (Lira et al. 2002), as well as those undertaken on species of the genus Dahlia (Asteraceae; Carrasco-Ortiz et al. 2019) and Lycianthes series Meiozonodontae (Solanaceae; Anguiano-Constante et al. 2018).

Species and Populations. With the purpose of evaluating the genetic status and long-term viability of threatened species, important contributions related to population genetics have been published. Several species of the genus Agave (Asparagaceae) have been particularly studied from this perspective, for example A. cupreata and A. potatorum (Martínez-Palacios et al. 2011, Aguirre-Dugua & Eguiarte 2013), and A. angustifolia and A. victoriae-reginae (Eguiarte et al. 2013). Other threatened or endangered species in the order Cycadales (Cycads sensu lato, Gymnospermae) have also been addressed, such as Dioon angustifolium (González-Astorga et al. 2005), Zamia loddigesii (González-Astorga et al. 2006), and Microcycas calocoma (Pinares et al. 2009), as well as flowering plants in the family Orchidaceae, such as Laelia speciosa (Ávila-Díaz & Oyama 2007). In addition, similar works have been published on species of Cactaceae, including Mammillaria crucigera (Solórzano & Dávila 2015) and M. pectinifera (Maya-García et al. 2017), and in the Magnoliaceae, for Magnolia pacifica (Muñiz-Castro et al. 2020), M. decastroi, M. lopezobradorii, M. mexicana, M. sinacacolinii, and M. zoquepopolucae (Aldaba-Núñez et al. 2021).

Moreover, spatial analyses using distance indices have been carried out for undertaking in situ management and conservation of threatened species from arid and semi-arid environments, as in the case of Ariocarpus kotschoubeyanus and Mammillaria mathildae (Cactaceae), as well as Agave americana and A. salmiana (Asparagaceae) (Suzán-Azpiri et al. 2011). Other studies have focused on describing demographic parameters of populations in order to design conservation strategies to reduce the extinction probability of threatened species, such as Resinanthus aromaticus (Palacios-Wassenaar et al. 2016), Zamia inermis (Octavio-Aguilar et al. 2017), and Magnolia vovidesii (Galván-Hernández et al. 2020).

Niche modeling studies with different climate change scenarios have been published, aiming to identify future environmental changes and species or populations at risk of disappearing. Among the species included in these studies are Fagus grandifolia (Téllez-Valdés et al. 2006), Echinocereus reichenbachii (Butler et al. 2012), Neobuxbaumia tetetzo (Dávila et al. 2013), Magnolia schiedeana (Vásquez-Morales et al. 2014), Coryphantha macromeris, Mammillaria lasiacantha, Echinocereus dasyacanthus, and Ferocactus wislizenii (Cortes et al. 2014), eight species and two varieties of Abies (A. concolor, A. durangensis var. duragensis, A. durangensis var. coahuilensis, A. fincki, A. guatemalensis, A. hickelii, A. jaliscana, A. religiosa, and A. vejari) (Martínez-Méndez et al. 2016), Arenaria bryoides, Castilleja tolucensis, Chionolaena lavandulifolia, Draba nivicola, and Plantago tolucensis (Ramírez-Amezcua et al. 2016), as well as Guadua inermis and Otatea acuminata (Ruiz-Sánchez 2013), Cedrela odorata (Manzanilla-Quijada et al. 2020), Laelia speciosa (Flores-Tolentino et al. 2020), and Pinus gregii (Martínez-Sifuentes et al. 2020). In addition, there are studies evaluating the effects of climate change on the diversity of economically important crops and their wild relatives, which have allowed identifying geographic regions and taxa potentially vulnerable to extinction (e.g., Cucurbitaceae, Lira et al. 2009b, and corn (Ureta et al. 2012). In this context, Goettsch et al. (2021) analyzed information from various sources and used the IUCN Red List to determine the conservation status of 224 wild taxa closely related to several crops (e.g., corn, potatoes, beans, squash, chili, vanilla, avocado, tomatillo, and cotton); this work showed that 35 % of these taxa are threatened due to conversion of natural habitats for human use, abandonment of traditional agricultural methods and their replacement by intensified practices (i.e., highly mechanized and with the use of herbicides and pesticides).

Moreover, studies on plant domestication have documented processes that not only contribute to the conservation of the diversity of perennial and annual plants, but also enhances such a diversity through artificial selection that has resulted in numerous variants of some of the traditionally managed species (Casas et al. 2007, 2016a, b, c). In this context, there are some paradigmatic case studies in various species of Agave used for the production of alcoholic beverages and other purposes in western Mexico (Colunga-GarcíaMarín & Zizumbo-Villarreal 2007, Vargas-Ponce et al. 2007, Valenzuela-Zapata et al. 2011, Zizumbo-Villarreal et al. 2013), southern Altiplano (High Plateau) of the central-northern region of Mexico (Mora-López et al. 2011), and the Tehuacán-Cuicatlán Valley (Casas et al. 2016b).

Other perennial useful plants whose incipient or more intense human management has also been studied in this century include several species of Opuntia (Reyes Agüero et al. 2005) in the Southern Altiplano of Mexico, some columnar cacti in the Valle de Tehuacán-Cuicatlán, such as Escontria chiotilla, Polaskia chichipe, P. chende, Stenocereus pruinosus, S. stellatus, Myrtillocactus schenkii (Cruz & Casas 2002, Arellano & Casas 2003, Otero-Arnaiz et al. 2003, Oaxaca-Villa et al. 2006, Parra et al. 2008, Blancas et al. 2009), some trees such as Leucaena esculenta ssp. esculenta (Fabaceae) in Guerrero (Zárate et al. 2005), Prunus serotina ssp. capuli in Tlaxcala (Avendaño-Gómez et al. 2015), Sideroxylon palmeri (Sapotaceae) and Ceiba aesculifolia ssp. parvifolia (Bombacaceae) in the Tehuacán-Cuicatlán Valley (González-Soberanis & Casas 2004, Avendaño-Gómez et al. 2006, 2009), and a palm species (Sabal yapa) in the Yucatán Peninsula (Martínez-Ballesté et al. 2005).

In the case of annual useful plants, although many of them are generally considered weeds, the value of several of them in the diet and/or health care in rural communities has been demonstrated (Vieyra-Odilon & Vibrans 2001, Blanckaert et al. 2007, Albino-García et al. 2011, Vibrans 2016). Among the most amply studied taxa in the last two decades, in terms of incipient domestication processes, are Anoda cristata (Malvaceae) in the State of Mexico, several species of Amaranthus in the state of Puebla, and Dysphania ambrosioides (Chenopodiaceae) in the Tehuacán-Cuicatlán Valley (Rendón et al. 2001, Rendón & Núñez-Farfán 2001, Blanckaert et al. 2012).

Ex situ conservation

Botanical Gardens. A botanical garden is an institution that preserves documented collections of living plants, both native and exotic, which are maintained with a specific arrangement, and duly identified and labeled. The purposes of these gardens are to develop scientific research projects that contribute to the conservation of biological diversity, and to carry out education activities. In Mexico there are 64 botanical gardens, arboreta or living plants collections, of which 40 are currently registered at the Asociación Mexicana de Jardines Botánicos, A.C. (AMJB, the Mexican Association of Botanical Gardens), founded in 1980, for promoting biological studies, conservation and sustainable use of the Mexican flora, along with the development of educational programs for public awareness on the relevance of plant diversity and its conservation (Herrera et al. 1993, Caballero 2012). Nonetheless, to date only 19 botanical gardens have available information on their living collections and their advances in their ex situ plant conservation activities, considering goals 1-10 of the Global Strategy for Plant Conservation (GSPC) (Sharrock 2020, CONABIO 2021).

Available information (CONABIO 2021) shows that progress in the GSPC goals is variable among botanical gardens, especially in goals 1, 2, 3, 7, and 8 (Figure 1). Villaseñor (2016) determined that in these 19 collections there are around 9,016 records of higher plants, corresponding to 4,900 species from 195 families, which only represents 25 % of the recorded vascular flora of Mexico. Moreover, among the seven most diverse families in Mexico, Villaseñor (2016) states that the Cactaceae family has the highest number of specimens, while Orchidaceae is the second-best represented family, with 16.9 % of its species in botanical garden collections (Table 2). The effort made by scientists working in botanical gardens to document species kept in their collection is very important, and so has been the increase of taxa in these collections during the past two decades. The transition from 3,275 species recorded by Coombes et al. (2003) early in the century to 4,900 currently represented in the 19 botanical gardens considered here represents a huge conservation step.

Figure 1 The 19 Mexican botanical gardens members of the Mexican Association of Botanical Gardens, with their advances in 9 of the 10 goals of the Global Strategy for Plant Conservation (GSPC): (M1) To compile the list of flora available on the Internet; (M2) To evaluate the conservation status of all species; (M3) To develop and share information; (M4) To ensure at least 15 % of each ecological region or vegetation type; (M5) To protect at least 75 % of the most important areas for the diversity of plant species; (M7) To conserve in situ at least 75 % of known threatened plant species; (M8) To conserve in ex situ collections at least 75 % of threatened plant species; (M9) To conserve 70 % of the genetic diversity of crops; (M10) To implement effective management plans to prevent further biological invasions. 

Table 2 Plant families with the highest species richness in Mexico and their representation in 19 Mexican botanical gardens. 

Family Total species in Mexico
(Villaseñor 2016)
Botanical Gardens Collections Species in collections
Asteraceae 3,057 18 321 189
Fabaceae 1,903 16 191 105
Orchidaceae 1,213 15 328 205
Poaceae 1,047 13 57 47
Euphorbiaceae 714 17 194 104
Rubiaceae 707 15 65 36
Cactaceae 677 13 1,583 580

At the genus level, Quercus (Fagaceae), Mammillaria (Cactaceae) and Agave (Asparagaceae) have more than 50 % of their species represented in these 19 Mexican botanical gardens, while the rest have a modest representation (Table 3). According to CONABIO (2021), 12 of the 19 Mexican botanical gardens here considered keep species at risk in their collections. In this regard, it is remarkable that 48 % (458 species) of the species included in the list of the Mexican Official Norm of Threatened Species NOM-059-SEMARNAT-2010 (SEMARNAT 2010), are protected in botanical gardens. By contrast, the set of documented species in some of the IUCN risk categories is very low, since only 7.7 % (320 species) of the species included in the Red List are sheltered in Mexican botanical gardens.

Table 3 Plant genera with the greatest diversity in Mexico and their representation in 19 Mexican botanical gardens. 

Genera Total species in Mexico
(Villaseñor 2016)
Botanical Gardens Species in collections
Salvia 328 11 27
Euphorbia 245 18 43
Tillandsia 237 8 31
Quercus 174 11 98
Mammillaria 169 15 178
Ageratina 165 3 4
Verbesina 165 8 12
Agave 160 18 102

Given the complexity and high maintenance costs of living collections, the AMJB adopted the concept of “national collection”, which consists of sheltering a living heritage of a family or lower taxonomic group or a relevant thematic plant group, with the responsibility of having a curator or group of academics who can take care of the collections (AMJB 1994, Vovides et al. 2013). At present, eight national collections exist, seven of which represent taxonomic groups and one is thematic. Some have allowed advances in their biological knowledge, such as the bamboo collection (Ruiz-Sanchez 2013), or they have served as a basic complement for various floristic studies, such as the Palm Collection of the Culiacán Botanical Garden (Equihua Zamora et al. 2020). Others have allowed the development of propagation protocols such as the Crassulaceae Collection (Reyes Santiago et al. 2014), or ex situ rescue and conservation strategies as it occurs in the Cycad Collection (Iglesias-Andreu et al. 2017). Additionally, the AMJB has promoted the creation of networks among its members at national and international levels (Lascuráin et al. 2009, Vovides et al. 2013), and among its most remarkable objectives is a proposal to create a regional collection of cacti in the botanical gardens of southern United States and northern Mexico, as they share common arid environments (Hultine et al. 2016).

Seed Banks. One of the most efficient and affordable approaches for ex situ conservation is, undoubtedly, the safeguarding of seeds in the so-called “seed banks,” which are ideal living species reservoirs with controlled humidity and temperature conditions that can be used to guarantee long term preservation of plant resources. The benefits of ex situ conservation of seeds are innumerable and go from those related to the survival of the human species, given the fact that agriculture depends on preserving plant biodiversity, to the conservation of wild species, as an insurance policy against extinction. Ex situ conservation allows the long-term preservation of thousands of plant seeds in a reduced space, at a much lower cost (about 1 %) than in situ protection strategies (Li & Pritchard 2009), and in many cases it guarantees a wide spectrum of genetic variation (Bacchetta et al. 2008).

In Mexico, there are more than 50 seed banks, most of which, unfortunately, protect only a few species, generally related to food or timber uses, and only 10 banks protect wild species native to the country (Table 4). In this latter group, the Seed Bank of the FES Iztacala (National Autonomous University of Mexico) stands out, whose main objective is to protect native wild species of Mexico. Since its inception, this bank has been directly linked to the Millennium Seed Bank of the Royal Botanical Gardens of Kew, United Kingdom and currently protects 4,950 accessions of native plants from 26 states of Mexico, of a total of 2,700 species, among which are many useful, threatened or narrowly distributed species (Dávila-Aranda et al. 2016, Rodríguez-Arévalo et al. 2017).

Table 4 Available information on germplasm collections in Mexico. CONAFOR reports 18 germplasm banks in the national territory but only one of them was found. 

Official Name Location State Objectives Collections Type Duration and storage conditions Accessions Species
Banco de Semillas FESI-UNAM Facultad de Estudios Superiores Iztacala, UNAM State of México Wild and native germplasm Wild and native species Long term;
-20 °C/14 % HR
4,948 2,692
Banco de Germoplasma Vegetal Coahuila Universidad Autónoma de Coahuila Coahuila Forest seeds for production, conservation and supply to nurseries of the Secretaría de Medio Ambiente de Coahuila Cold climate, arid and urban species Medium term;
4 °C/40-60 % HR
90 30
Banco de Germoplasma de Maíces Universidad Agrícola, Agraria, Antonio Narro Coahuila Mexican corn collections Cultivated species. Corn from the states of Mexico and Tlaxcala. Some species from arid zones are currently being stored Medium term;
4 °C/40-60 % HR
Unknown, but can hold up to 100,000 -
Banco de Germoplasma-UAQ Universidad Autónoma de Querétaro Querétaro Native flora with an emphasis on plant genetic resources for food, agriculture, research and reintroduction Wild and cultivated species Short term;
-5 °C
More than 800 336
BG-CICY Centro de Investigación Científica de Yucatán Yucatán Conservation, reproduction, and availability of plant germplasm from the Yucatan Peninsula, and plant species from the Mexican tropics with emphasis on species related to the Mayan culture Wild and cultivated species useful for the Mayan culture, other species that are under some type of threat, as well as wild relatives of cultivars. Some exotic species are also conserved Long term;
4 -20 °C
560 208
Banco Nacional de Germoplasma Vegetal Universidad Autónoma de Chapingo (UACh) State of Mexico - Wild species and for food, medicinal and fuel use - 8,337 295
Banco de Semillas GUADA Universidad de Guadalajara Jalisco - - - - -
Universidad Veracruzana Veracruz Safeguarding the best germplasm of vegetables, fruit trees and other homegarden plants Cultivated species - - 56
Centro Nacional de Recursos Genéticos SINARGEN and INIFAP Jalisco Conservation, improvement and research for the rational use of Mexico’s genetic resources for the benefit of society, and in the event of a catastrophic event, prevention of the loss of genes and ensure the survival of useful species Cultivated and forest species -18 °C 16,677 -
Banco de Germoplasma de la CONAFOR, Estado de México* - State of Mexico - - Ten years;
5 °C/10 % HR
4,436 kg of seeds 36
Bancos de Semillas Comunitarios SNICS and SINAREFI Oaxaca, State of Mexico, Chiapas, Yucatán, Puebla Guanajuato, Mexico City, Coahuila, Chihuahua and Morelos To preserve the diversity of wild species, as well as having the collection in case of a natural disaster, as well as conserving in situ the diversity of the area - - - -
CIMMYT State of Mexico Develop nutritious, sustainable and resilient food systems to improve health and livelihoods Improved corn and wheat lines - - -

In the last 20 years, only seven research papers have been published addressing the conservation of Mexican plant species in seed banks. For instance, Ulloa et al. (2006) documented the collection and storage of the seeds of eight Gossypium species from western Mexico in the Cotton Collection of the US National Plant Germplasm System; Acosta-Diaz et al. (2015) carried out the collecting and characterization of 11 species of the genus Phaseolus from Nuevo León and Tamaulipas states in northeastern Mexico, which were deposited at the banks of the Western Region Conservation Center of the University of Guadalajara and the Northern Region Conservation Center of the Antonio Narro Autonomous Agrarian University in Saltillo, Coahuila. Moreover, Ramírez-Villegas et al. (2020) used spatial modeling and conservation gap analysis to achieve optimal representation of genetic variation in the collections of Phaseolus vulgaris varieties, while Toledo-Aceves (2017) analyzed the germination rate of some tree species at risk of extinction in Mexico, to assess their potential for ex situ propagation. Furthermore, León-Lobos et al. (2012) analyzed the role of seed banks in plant conservation, and Dávila-Aranda et al. (2016) and Rodríguez-Arévalo et al. (2017) described part of the FES Iztacala Seed Collection and proposed strategies for the sustainable management of the species.

Scientific literature in public policy instruments in environmental issues

In Mexico, one of the main public policy instruments that regulates human productive activities considering environmental protection and biodiversity conservation are the Environmental Impact Assessments (MIAs, by their Spanish acronym) that are issued by SEMARNAT through public consultation processes and expert reviewers of the proposed projects. In this work, a total of 782 resolutions on tourism development projects were examined and only 524 MIA documents were found to have been reviewed. The review of MIAs aimed to find evidence of the incorporation of scientific literature on conservation matters for the environmental diagnosis and the design of mitigation or damage repair measures. The results of the MIAs review showed that only 32 % of the examined documents included references of scientific literature on conservation. Also, it became evident that most of the literature considered does not have updated information on biodiversity, which strongly suggests that the impact of research, in terms of development decision making on biodiversity and its conservation, especially in recent years, is very limited. Furthermore, the scarcity and publication dates of the literature listed in the MIAs does not allow us to conclude that plant conservation studies have an actual impact in this regard, at least through public policy tools on environmental matters.

Discussion and conclusions

The first reflection derived from our work is that, despite the wide temporal range considered in this review (2000-2021), and the abundant existing work regarding biodiversity characterization in Mexico, the actual use of this information in the development of strategies or specific activities for plant conservation in Mexico is remarkably low. Additionally, it should be noted that even publications focused on conservation are limited to strictly disciplinary areas, lacking connection with other disciplines or sectors and, therefore, are disjointed from other complementary initiatives, as well as from environmental, social, and regulatory contexts. It is also possible to observe that, despite the clear feedback of information that could occur between different conservation approaches, in many cases it does not seem evident that this occurs in the design of conservation strategies. An example of this situation is the lack of integration of genetic considerations and spatial distribution of biodiversity in the design of protected natural areas and also in the ex situ conservation collections. According to our analysis, despite notable efforts and the relatively important advances achieved in both conservation strategies, they are still far from being successful.

The causes of the disarticulation of both conservation strategies, as well as the disconnection of efforts and information from the environmental, social, and regulatory spheres may be explained by the lack of professional teams capable of seeking these connections and establishing communication bridges between sectors that allow the best possible use of knowledge to make decisions and design effective strategies that lead to scenarios of sustainable development and biodiversity conservation. Such articulation should not only consist in the agglutination of multidisciplinary efforts around a specific problem; it has been demonstrated that there is a large gap between theory and practice regarding the collapse of ecosystems and the implementation of practices for their management, which results in the few existing capacities to predict which species are facing higher risk due to human activities (Valiente-Banuet & Verdú 2013).

A second reflection is related to the scope shown by the scientific publications that were reviewed. While it is true that several of these studies have made it possible to implement or at least propose strategies for sustainable use and conservation, particularly for species with small population sizes, others are still required to evaluate and integrate, for example, genetic data with information on demographic parameters, ecological niche modeling, phylogeographic patterns, and even social and economic aspects that more clearly suggest the causes of the extinction threat to species. These studies would provide a more complete ecological and evolutionary context to establish better planning and stronger biodiversity conservation actions (Bosch et al. 2019, Lin et al. 2021). Regarding the studies that analyze the possible effects of climate change, although it is true that they provide information that can be used by scientists to analyze climate variation over time and evaluate its effects on the distribution patterns of biodiversity, the fact is that they work in a highly reduced time window and their applications are also quite relative. Nevertheless, the projections of expansion or contraction of species’ distribution areas that can be derived from some of these studies could be important for Mexico. This type of information is fundamental to expand the sizes of protected natural areas, or to create new areas that conserve critical refuges (Michalak et al. 2018), and to seek the connection of habitats throughout the species’ migratory routes (Carroll et al. 2015). All of this could facilitate the ability of species to persist, adapt and migrate. Future work based on the climate analogous models could show such efforts by integrating more detailed information about the target species (e.g., dispersal distance), identifying important areas for their movement between protected natural areas (Littlefield et al. 2017) or critical refuges (Stralberg et al. 2018), considering habitat fragmentation impacts (Batllori et al. 2017). As a complementary effort, the fundamental role that botanical gardens and seed banks play in conserving the plant diversity not only of Mexico but worldwide is becoming increasingly evident. Nevertheless, there is still a very clear disconnection between those who work in these spaces and those that carry out in situ conservation and management, using different approaches and tools.

A final reflection is related to the fact that, even though the panorama shown from this review is inauspicious, it is encouraging that in various public educational institutions it is increasingly frequent to find study programs that pursue inter- and transdisciplinary training in sustainability matters. These programs are expected to contribute to solve, among other issues, the disarticulation of conservation strategies and plans. Given the enormous relevance and impact that biodiversity conservation at all scales has on the preservation of civilization, it is urgent to increase public investment in the training of professionals who can lead interdisciplinary research and professional work in conservation and sustainable development with a vision of knowledge-action. Similarly, it is essential to revise the regulatory processes in environmental matters and their correct and rigorous implementation. Often, MIAs are carried out in a purely administrative/bureaucratic manner, using outdated information, performing superficial analyses with poor technical-scientific rigor, and prioritizing in many cases the development of projects over their environmental impact.

Considering all the above, the following conclusions and perspectives are raised:

  • 1.There are very few studies and works that really include conservation activities on wild plant species.

  • 2. Little or no multidisciplinary or interdisciplinary work related to conservation activities is being carried out.

  • 3. There is little interest from the environmental governmental sphere to consider the scientific works related to the knowledge and conservation of the wild flora of the country.

  • 4. Many botanical gardens should join efforts to protect, study and propagate endemic or threatened wild species in the country.

  • 5. A shift should be made in scientific work to become less descriptive and turn into a more analytical and proactive conservation approach.

  • 6. The multi- and interdisciplinary work of scientists should be focused on contributing management programs and providing solutions for the conservation of plant germplasm in Mexico.

  • 7. It is important that educational and research institutions include in their study programs and research projects theoretical and practical aspects related to the conservation of the Mexican flora.

  • 8. Given its importance, ex situ conservation requires greater attention and support at the institutional and governmental levels. We need many Mexican scientists involved in the conservation of our country’s flora.

  • 9. Connectivity bridges should be strengthened between those carrying out in situ conservation activities with those who are interested in ex situ projects. The complementarity of both approaches will surely enhance the scientific documentation and conservation of species.

  • 10. The criteria for the declaration of new protected natural areas in the country should be reviewed within the framework of current conditions and the current knowledge on the many species of our flora, as well as the current and future data related to the changes on the distribution patterns of ecosystems and species due to climate change.

Acknowledgments

We wish to thank Paola Gómez Priego for sharing the organized public documents that correspond to the Regional Environmental Impact Statements (MIA-R by its acronym in Spanish) for tourism development projects in Mexico’s coastal areas ruled by the authority for the years 2002, 2004, 2006, 2008 and 2010. We also thank Victoria Sosa for the invitation to participate in this special number, Arturo de Nova for help us to prepare the manuscript for submission and the anonymous reviewers for their observations on the first versions of the paper.

Literature cited

Acosta-Diaz E, Hernandez-Torres I, Amador-Ramirez MD, Padilla-Ramirez JS, Zavala-García F, Baez-Gonzalez AD. 2015. Collection and characterization of wild species of Phaseolus (Fabaceae) in northeastern Mexico for ex situ conservation. Plant Ecology and Evolution 148: 119-127. DOI: https://doi.org/10.5091/plecevo.2015.1009 [ Links ]

Aguirre-Dugua X, Eguiarte LE. 2013. Genetic diversity, conservation, and sustainable use of wild Agave cupreata and Agave potatorum extracted for mezcal production in Mexico. Journal of Arid Environments 90: 36-44. DOI: https://doi.org/10.1016/j.jaridenv.2012.10.018 [ Links ]

Albino-García C, Cervantes H, López M, Ríos-Casanova L, Lira R. 2011. Patrones de diversidad y aspectos etnobotánicos de las plantas arvenses del valle de Tehuacán-Cuicatlán: el caso de San Rafael, municipio de Coxcatlán, Puebla. Revista Mexicana de Biodiversidad 82: 1005-1019. DOI: http://dx.doi.org/10.22201/ib.20078706e.2011.3.719 [ Links ]

Aldaba-Núñez FA, Veltjen E, Martínez-Salas EM, Samain M-S. 2021. Disentangling species delineation and guiding conservation of endangered Magnolias in Veracruz, Mexico. Plants 10: 673. DOI: https://doi.org/10.3390/plants10040673 [ Links ]

Álvarez-Buylla ER, García-Barrios R, Lara-Moreno C, Martínez-Ramos M. 1996. Demographic and genetic models in conservation biology: Applications and perspectives for tropical rain forest tree species. Annual Review of Ecology and Systematics 27: 387-421. DOI: https://doi.org/10.1146/annurev.ecolsys.27.1.387 [ Links ]

Anguiano-Constante MA, Munguía-Lino G, Ortiz E, Villaseñor JL, Rodríguez A. 2018. Riqueza, distribución geográfica y conservación de Lycianthes serie Meizonodontae (Capsiceae, Solanaceae). Revista Mexicana de Biodiversidad 89: 516-529. https://doi.org/10.22201/ib.20078706e.2018.2.2340 [ Links ]

Arellano E, Casas A. 2003. Morphological variation and domestication of Escontria chiotilla (Cactaceae) under silvicultural management in the Tehuacán Valley, Central Mexico. Genetic Resources and Crop Evolution 50: 439-453. DOI: https://doi.org/10.1023/A:1023902704131 [ Links ]

Arroyo-Rodríguez V, Mandujano S. 2006. The importance of tropical rain forest fragments to the conservation of plant species diversity in Los Tuxtlas, Mexico. Biodiversity & Conservation 15: 4159-4179. DOI: https://doi.org/10.1007/s10531-005-3374-8 [ Links ]

Avendaño-Gómez A, Casas A, Dávila P, Lira R. 2006. Use forms, management, and commercialization of “pochote” Ceiba aesculifolia (H.B. & K.) Britten & Baker f. subsp. parvifolia (Rose) P.E. Gibbs & Semir (Bombacaceae) in the Tehuacán Valley, Central Mexico. Journal of Arid Environments 67: 15-35. DOI: https://doi.org/10.1016/j.jaridenv.2006.02.004 [ Links ]

Avendaño-Gómez A, Casas A, Dávila P, Lira R. 2009. In situ management and patterns of morphological variation of Ceiba aesculifolia subsp. parvifolia (Bombacaceae) in the Tehuacán-Cuicatlán Valley. Economic Botany 63: 138-151. DOI: https://doi.org/10.1007/s12231-009-9083-6 [ Links ]

Avendaño-Gómez A, Lira-Saade R, Madrigal-Calle B, García-Moya E, Soto-Hernández M, Romo de Vivar-Romo A. 2015. Manejo y síndromes de domesticación del Capulín (Prunus serotina Ehrh ssp. capuli (Cav.) Mc Vaugh) en comunidades del Estado de Tlaxcala. Agrociencia 49: 189-204. [ Links ]

Ávila‐Díaz I, Oyama K. 2007. Conservation genetics of an endemic and endangered epiphytic Laelia speciosa (Orchidaceae). American Journal of Botany 94: 184-193. DOI: https://doi.org/10.3732/ajb.94.2.184 [ Links ]

Bacchetta G, Bueno Sánchez A, Fenu G, Jiménez-Alfaro B, Mattana E, Piotto B, Virevaire M, eds. 2008. Conservación ex situ De Plantas Silvestres. Gijón: Principado de Asturias/La Caixa. [ Links ]

Blancas J, Casas A, Lira R, Caballero J. 2009. Traditional management and morphological patterns of Myrtillocactus schenckii (Cactaceae) in the Tehuacán Valley, Central Mexico. Economic Botany 63: 375-387. DOI: https://doi.org/10.1007/s12231-009-9095-2 [ Links ]

Batllori E, Parisien M-A, Parks SA, Moritz MA, Miller C. 2017. Potential relocation of climatic environments suggests high rates of climate displacement within the North American protection network. Global Change Biology 7: 3219-3230. DOI: https://doi.org/10.1111/gcb.13663 [ Links ]

Blanckaert I, Vancraeynest K, Swennen RL, Espinosa-García FJ, Piñero D, Lira-Saade R. 2007. Non-crop resources and the role of indigenous knowledge in semi-arid production of Mexico. Agriculture, Ecosystems and Environment 119: 39-48. DOI: https://doi.org/10.1016/j.agee.2006.06.015 [ Links ]

Blanckaert I, Paredes-Flores M, Espinosa-García FJ, Piñero D, Lira R. 2012. Ethnobotanical, morphological, phytochemical, and molecular evidence for the incipient domestication of Epazote (Chenopodium ambrosioides L.: Chenopodiaceae) in a semi-arid region of Mexico. Genetic Resources and Crop Evolution 59: 557-573. DOI: https://doi.org/10.1007/s10722-011-9704-7 [ Links ]

Bojórquez-Tapia LA, Azuara I, Ezcurra E, Flores-Villela O. 1995. Identifying conservation priorities in Mexico through geographic information systems and modeling. Ecological Applications 5: 215-231. DOI: https://doi.org/10.2307/1942065 [ Links ]

Bojórquez-Tapia LA, Brower LP, Castilleja G, Sánchez-Colón S, Hernández M, Calvert W, Díaz S, Gómez-Priego P, Alcantar G, Melgarejo ED, Solares MJ, Gutiérrez L, Juárez MDL. 2003. Mapping expert knowledge: Redesigning the Monarch Butterfly Biosphere Reserve. Conservation Biology 17: 367-379. DOI: https://doi.org/10.1046/j.1523-1739.2003.01309.x [ Links ]

Bojórquez-Tapia LA, de la Cueva H, Díaz S, Melgarejo D, Alcantar G, Solares MJ, Grobet G, Cruz-Bello G. 2004. Environmental conflicts and nature reserves: redesigning Sierra San Pedro Mártir National Park, Mexico. Biological Conservation 117: 111-126. DOI: https://doi.org/10.1016/S0006-3207(03)00265-9 [ Links ]

Bosch M, Herrando-Moraira S, del Hoyo A, López-Pujol J, Massó S, Rosselló JA, Simon J, Blanché C. 2019. New conservation viewpoints when plants are viewed at one level higher. Integration of phylogeographic structure, niche modeling and genetic diversity in conservation planning of W Mediterranean larkspurs. Global Ecology and Conservation 18: e00580. DOI: https://doi.org/10.1016/j.gecco.2019.e00580 [ Links ]

Brooks TM, Akçakaya HR, Burgess ND, Butchart SHM, Hilton-Taylor C, Hoffmann M, Juffe-Bignoli D, Kingston N, MacSharry B, Parr M, Perianin L, Regan EC, Rodrigues ASL, Rondinini C, Shennan-Farpon Y, Young BE. 2016. Analysing biodiversity and conservation knowledge products to support regional environmental assessments. Scientific Data 3: 160007 DOI: https://doi.org/10.1038/sdata.2016.7 [ Links ]

Butler CJ, Wheeler EA, Stabler LB. 2012. Distribution of the threatened lace hedgehog cactus (Echinocereus reichenbachii) under various climate change scenarios. The Journal of the Torrey Botanical Society 139: 46-55. DOI: https://doi.org/10.3159/TORREY-D-11-00049.1 [ Links ]

Caballero J, ed. 2012. Jardines Botánicos: Contribución a la Conservación Vegetal de México. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 978-607-7607-70-0 [ Links ]

Carrasco-Ortiz M, Munguía Lino G, Castro-Castro A, Vargas-Amado G, Harker M, Rodríguez A. 2019. Riqueza, distribución geográfica y estado de conservación del género Dahlia (Asteraceae) en México. Acta Botanica Mexicana 126: e1354. DOI: https://doi.org/10.21829/abm126.2019.1354 [ Links ]

Carroll C, Lawler JJ, Roberts DR, Hamann A. 2015. Biotic and climatic velocity identify contrasting areas of vulnerability to climate change. PLoS One 10: e0140486. DOI: https://doi.org/10.1371/journal.pone.0140486 [ Links ]

Casas A, Valiente-Banuet A, Viveros JL, Caballero J, Cortés L, Dávila P, Lira R, Rodríguez-Arévalo I. 2001. Plant resources of the Tehuacán-Cuicatlán Valley, Mexico. Economic Botany 55: 129-166. DOI: https://doi.org/10.1007/BF02864551 [ Links ]

Casas A, Otero-Arnaiz A, Pérez-Negrón E, Valiente-Banuet A. 2007. In situ management and domestication of plants in Mesoamerica. Annals of Botany. 100: 1101-1115. DOI: https://doi.org/10.1093/aob/mcm126 [ Links ]

Casas A, Blancas J, Lira R. 2016a. Mexican Ethnobotany: Interactions of People and Plants in Mesoamerica. In: Lira R, Casas A, Blancas J, eds. Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica. New York: Springer, pp. 1-19. DOI: https://doi.org/10.1007/978-1-4614-6669-7_1 [ Links ]

Casas A, Blancas J, Otero-Arnaiz A, Cruse-Sanders J, Lira R, Avendaño A, Parra F, Guillén S, Figueredo CJ, Torres I, Rangel-Landa S. 2016b. Evolutionary ethnobotanical studies of incipient domestication of plants in Mesoamerica. In: Lira R, Casas A, Blancas J, eds. Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica. New York: Springer , pp. 257-285. DOI: https://doi.org/10.1007/978-1-4614-6669-7_11 [ Links ]

Casas A, Lira R, Torres I, Delgado A, Moreno-Calles AI, Rangel-Landa S, Blancas J, Larios C, Solis L, Pérez-Negrón E, Vallejo M, Parra F, Farfán-Heredia B, Arellanes Y, Campos N. 2016c. Ethnobotany for sustainable ecosystem management: A regional perspective in the Tehuacán Valley In: Lira, R, Casas A, Blancas J, eds. Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica. New York: Springer , pp. 179-206. DOI: https://doi.org/10.1007/978-1-4614-6669-7_8 [ Links ]

Colunga-GarcíaMarín P, Zizumbo-Villarreal D. 2007. Tequila and other Agave spirits from west-central Mexico: current germplasm diversity, conservation and origin. Biodiversity and Conservation 16: 1653-1667. DOI: https://doi.org/10.1007/s10531-006-9031-z [ Links ]

CONABIO [Comisión Nacional para el Conocimiento y Uso de la Biodiversidad]. 2012. Dos Décadas de Historia 1992-2012. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 9786077607595 [ Links ]

CONABIO [Comisión Nacional para el Conocimiento y Uso de la Biodiversidad]. 2021. Jardines Botánicos de México. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. https://dgcii.conabio.gob.mx/jardines-botanicos/Links ]

CONANP [Comisión Nacional de Áreas Naturales Protegidas]. 2018. 100 Años de Conservación en México 1917-2017: Áreas Naturales Protegidas de México. Mexico City: Comisión Nacional de Áreas Naturales Protegidas-Secretaría de Medio Ambiente y Recursos Naturales. [ Links ]

Coombes AJ, Barreiro-Zamorano S, Rodríguez­Acosta M. 2003. Lista de Plantas en los Jardines Botánicos de México. Mexico City: Asociación Mexicana de Jardines Botánicos A.C. [ Links ]

Cortes L, Domínguez I, Lebgue T, Viramontes O, Melgoza A, Pinedo C, Camarillo J. 2014. Variation in the distribution of four cacti species due to climate change in Chihuahua, Mexico. International Journal of Environmental Research and Public Health 11: 390-402. DOI: https://doi.org/10.3390/ijerph110100390 [ Links ]

Costedoat S, Corbera E, Ezzine-de-Blas D, Honey-Rosés J, Baylis K, Castillo-Santiago MA. 2015. How effective are biodiversity conservation payments in Mexico? PLoS One 10: e0119881. DOI: https://doi.org/10.1371/journal.pone.0119881 [ Links ]

Cruz M, Casas A. 2002. Morphological variation and reproductive biology of Polaskia chende (Cactaceae) under domestication in Central Mexico. Journal of Arid Environments 51: 561-576. DOI: https://doi.org/10.1006/jare.2001.0955 [ Links ]

Dávila P, Téllez O, Lira R. 2013. Impact of climate change on the distribution of populations of an endemic Mexican columnar cactus in the Tehuacán-Cuicatlán Valley, Mexico. Plant Biosystems 147: 376-386. DOI: https://doi.org/10.1080/11263504.2012.749955 [ Links ]

Dávila-Aranda P, Rodríguez-Arévalo, García-Rojas L, Lecona-Rodríguez A. 2016. Ethnobotany and ex situ conservation of plant genetic resources in México. In: Lira R, Casas A, Blancas J, eds. Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica. New York: Springer , pp. 475-489. DOI: https://doi.org/10.1007/978-1-4614-6669-7_20 [ Links ]

Durán-Medina E, Mas J-F, Velázquez A. 2007. Cambios en las coberturas de vegetación y usos del suelo en regiones con manejo forestal comunitario y áreas naturales protegidas de México. In: Bray DB, Merino Pérez L, Barry D, eds. Los Bosques Comunitarios de México. Manejo Sustentable de Paisajes Forestales. Mexico City: Instituto Nacional de Ecología , pp. 267-299. ISBN: 978-968-817-841-6 [ Links ]

Eguiarte LE, Aguirre-Planter E, Aguirre X, Colín R, González A, Rocha M, Scheinvar E, Trejo L, Souza V. 2013. From isozymes to genomics: Population genetics and conservation of Agave in México. The Botanical Review 79: 483-506. DOI: https://doi.org/10.1007/s12229-013-9123-x [ Links ]

Equihua Zamora C, Pagaza Calderón E, Zona S. 2020. Colección de Palmas. Jardín Botánico Culiacán. Culiacán: Turner Publicaciones. ISBN:‎ 978-8417141905 [ Links ]

Estrada-Contreras I, Equihua M, Castillo-Campos G, Rojas-Soto O. 2015. Climate change and effects on vegetation in Veracruz, Mexico: an approach using ecological niche modelling. Acta Botanica Mexicana 112: 73-93. DOI: https://doi.org/10.21829/abm112.2015.1090 [ Links ]

Flores-Tolentino M, García-Valdés R, Saénz-Romero C, Ávila-Díaz I, Paz H, Lopez-Toledo L. 2020. Distribution and conservation of species is misestimated if biotic interactions are ignored: the case of the orchid Laelia speciosa. Scientific Reports 10: 9542. DOI: https://doi.org/10.1038/s41598-020-63638-9 [ Links ]

Galván-Hernández DM, Octavio-Aguilar P, Bartolo-Hernández CJ, García-Montes MA, Sánchez-González A, Ramírez-Bautista A, Vovides A. 2020. Current status of Magnolia vovidesii (Magnoliaceae, Magnoniales): New data on population trends, spatial structure, and disturbance threats. Tropical Conservation Science 13: 1940082920923894. DOI: https://doi.org/10.1177/1940082920923894 [ Links ]

García-Frapolli E, Ramos-Fernández G, Galicia E, Serrano A. 2009. The complex reality of biodiversity conservation through natural protected area policy: Three cases from the Yucatan Peninsula, Mexico. Land Use Policy 26: 715-722. DOI: https://doi.org/10.1016/j.landusepol.2008.09.008 [ Links ]

Goettsch B, Urquiza-Haas T, Koleff P, Acevedo Gasman F, Aguilar-Meléndez A, Alavez V, Alejandre-Iturbide G, Aragón Cuevas F, Azurdia Pérez C, Carr JA, Castellanos-Morales G, Cerén G, Contreras-Toledo AR, Correa-Cano ME, De La Cruz Larios L, Debouck DG, Delgado-Salinas A, Gómez-Ruiz EP, González-Ledesma M, González-Pérez E, Hernández-Apolinar M, Herrera-Cabrera BE, Jefferson M, Kell S, Lira-Saade R, Lorea-Hernández F, Martínez M, Mastretta-Yanes A, Maxted N, Menjívar J, Mérida Guzmán MA, Morales Herrera AJ, Oliveros-Galindo O, Orjuela-R MA, Pollock CM, Quintana-Camargo M, Rodríguez A, Ruiz Corral JA, Sánchez González JJ, Sánchez-de la Vega G, Superina M, Tobón Niedfeldt W, Tognelli MF, Vargas-Ponce O, Vega M, Wegier A, Zamora Tavares P, Jenkins RKB. 2021. Extinction risk of Mesoamerican crop wild relatives. Plants, People, Planet 3: 775-795. DOI: https://doi.org/10.1002/ppp3.10225 [ Links ]

Gómez-Hinostrosa C, Hernández HM. 2000. Diversity, geographical distribution, and conservation of Cactaceae in the Mier y Noriega region, Mexico. Biodiversity and Conservation 9: 403-418. DOI: https://doi.org/10.1023/A:1008935710910 [ Links ]

Gómez-Mendoza L, Arriaga L. 2007. Modeling the effect of climate change on the distribution of oak and pine species of Mexico. Conservation Biology 21: 1545-1555. DOI: https://doi.org/10.1111/j.1523-1739.2007.00814.x [ Links ]

González-Astorga J, Vovides AP, Cruz-Angon A, Octavio-Aguilar P, Iglesias C. 2005. Allozyme variation in the three extant populations of the narrowly endemic cycad Dioon angustifolium Miq. (Zamiaceae) from north-eastern Mexico. Annals of Botany 95: 999-1007. DOI: https://doi.org/10.1093/aob/mci106 [ Links ]

González-Astorga J, Vovides AP, Octavio-Aguilar P, Aguirre-Fey D, Nicolalde-Morejón F, Iglesias C. 2006. Genetic diversity and structure of the cycad Zamia loddigesii Miq. (Zamiaceae): implications for evolution and conservation. Botanical Journal of the Linnean Society 152: 533-544. DOI: https://doi.org/10.1111/j.1095-8339.2006.00579.x [ Links ]

González-Soberanis C, Casas A. 2004. Traditional management and domestication of tempesquistle, Sideroxylon palmeri (Sapotaceae) in the Tehuacán-Cuicatlán Valley, Central Mexico. Journal of Arid Environments 59: 245-258. DOI: https://doi.org/10.1016/j.jaridenv.2004.01.018 [ Links ]

Hayano-Kanashiro C, Martínez de la Vega O, Reyes-Valdés MH, Pons-Hernández J-L, Hernández-Godinez F, Alfaro-Laguna E, Herrera-Ayala JL, Vega-Sánchez MC, Carrera-Valtierra JA, Simpson J. 2017. An SSR-based approach incorporating a novel algorithm for identification of rare maize genotypes facilitates criteria for landrace conservation in Mexico. Ecology and Evolution 7: 1680-1690. DOI: https://doi.org/10.1002/ece3.2754 [ Links ]

Hernández HM, Gómez-Hinostrosa C. 2011. Areas of endemism of Cactaceae and the effectiveness of the protected area network in the Chihuahuan Desert. Oryx 45: 191-200. DOI: https://doi.org/10.1017/S0030605310001079 [ Links ]

Herrera E, García-Mendoza A, Linares E. 1993. Directorio de los Jardines Botánicos de México. Mexico City: Asociación Mexicana de Jardines Botánicos A.C. [ Links ]

Heywood VH. 2017. Plant conservation in the Anthropocene - Challenges and future prospects. Plant Diversity 39: 314-330. DOI: https://doi.org/10.1016/j.pld.2017.10.004 [ Links ]

Heywood VH, Dulloo ME. 2005. In situ Conservation of Wild Plant Species: A Critical Global Review of Best Practices. IPGRI Technical Bulletin 11. Rome: International Plant Genetic Resources Institute. [ Links ]

Heywood VH, Iriondo JM. 2003. Plant conservation: old problems, new perspectives. Biological Conservation 113: 321-335. DOI: https://doi.org/10.1016/S0006-3207(03)00121-6 [ Links ]

Hultine KR, Majure LC, Nixon VS, Arias S, Búrquez A, Goettsch B, Puente-Martinez R, Zavala-Hurtado JA. 2016. The role of botanical gardens in the conservation of Cactaceae. BioScience 66: 1057-1065. DOI: https://doi.org/10.1093/biosci/biw128 [ Links ]

Iglesias-Andreu LG, Octavio-Aguilar P, Vovides AP, Meerow AW, de Cáceres-González FN, Galván-Hernández DM. 2017. Extinction risk of Zamia inermis (Zamiaceae): a genetic approach for the conservation of its single natural population. International Journal of Plant Sciences 178: 715-723. DOI: https://doi.org/10.1086/694080 [ Links ]

IUCN/SSC [International Union for Conservation of Nature/Species Survival Commission]. 2014. Guidelines on the Use of Ex Situ Management for Species Conservation . Version 2.0. Gland: IUCN Species Survival Commission. https://www.eaza.net/assets/Uploads/Position-statements/IUCN-Guidelines-on-the-Use-of-ex-situ-management-for-species.pdfLinks ]

Larkin DJ, Jacobi SK, Hipp AL, Kramer AT. 2016. Keeping All the pieces: Phylogenetically informed ex situ conservation of endangered species. PLoS One 11: e0156973. DOI: https://doi.org/10.1371/journal.pone.0156973 [ Links ]

Lascuráin M, List R, Barraza L, Díaz Pardo E, Gual Sil F, Maunder M, Dorantes J, Luna VE. 2009. Conservación de especies ex situ. In: Sarukhán J, coord. Capital Natural de México, Vol. II: Estado de Conservación y Tendencias de Cambio. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, pp. 517-544. ISBN: 9786077607083 [ Links ]

León de la Luz JL, Rebman JP, Oberbauer T. 2003. On the urgency of conservation on Guadalupe Island, Mexico: is it a lost paradise? Biodiversity and Conservation 12: 1073-1082. DOI: https://doi.org/10.1023/A:1022854211166 [ Links ]

León-Lobos P, Way M, Aranda PD, Lima JM. 2012. The role of ex situ seed banks in the conservation of plant diversity and in ecological restoration in Latin America. Plant Ecology & Diversity. 5: 245-258. DOI: https://doi.org/10.1080/17550874.2012.713402 [ Links ]

Li DZ, Pritchard HW. 2009. The science and economics of ex situ plant conservation. Trends in Plant Science 14: 614-621. DOI: https://doi.org/10.1016/j.tplants.2009.09.005 [ Links ]

Lin L, He J, Lyu R, Luo Y, Yao M, Xie L, Cui G. 2021. Targeted conservation management of white pines in China: Integrating phylogeographic structure, niche modeling, and conservation gap analyses. Forest Ecology and Management 492: 119211 DOI: https://doi.org/10.1016/j.foreco.2021.119211 [ Links ]

Lira R, Casas A, Rosas-López R, Paredes-Flores M, Pérez-Negrón E, Rangel-Landa S, Solís L, Torres I, Dávila P. 2009a. Traditional knowledge and useful plants richness in the Tehuacán-Cuicatlán Valley, Mexico. Economic Botany 63: 271-287. DOI: https://doi.org/10.1007/s12231-009-9075-6 [ Links ]

Lira R, Téllez O, Dávila P. 2009b. The effects of climate change on the geographic distribution of Mexican wild relatives of domesticated Cucurbitaceae. Genetic Resources and Crop Evolution 56: 691-703. DOI: https://doi.org/10.1007/s10722-008-9394-y [ Links ]

Lira R, Villaseñor JL, Ortíz E. 2002. A proposal for the conservation of the family Cucurbitaceae in Mexico. Biodiversity and Conservation 11: 1699-1720. DOI: https://doi.org/10.1023/A:1020303905416 [ Links ]

List R, Rodríguez P, Pelz-Serrano K, Benítez-Malvido J, Lobato JM. 2017. La conservación en México: exploración de logros, retos y perspectivas desde la ecología terrestre. Revista Mexicana de Biodiversidad 88: 65-75. DOI: https://doi.org/10.1016/j.rmb.2017.10.007 [ Links ]

Littlefield CE, McRae BH, Michalak JL, Lawler JJ, Carroll C. 2017. Connecting today's climates to future climate analogs to facilitate movement of species under climate change. Conservation Biology 31: 1397-1408. DOI: https://doi.org/10.1111/cobi.12938 [ Links ]

López-Arce L, Ureta-Sánchez Cordero C, Granados-Sánchez D, Rodríguez-Esparza L, Monterroso-Rivas A. 2019. Identifying cloud forest conservation areas in Mexico from the potential distribution of 19 representative species. Heliyon 5: e01423. DOI: https://doi.org/10.1016/j.heliyon.2019.e01423 [ Links ]

Luna Vega I, Alcántara Ayala O, Morrone JJ, Espinosa Organista D. 2000. Track analysis and conservation priorities in the cloud forests of Hidalgo, Mexico. Diversity and Distributions 6: 137-143. DOI: https://doi.org/10.1046/j.1472-4642.2000.00079.x [ Links ]

Manzanilla-Quijada GE, Treviño-Garza EJ, Aguirre-Calderón OA, Yerena-Yamallel JI, Manzanilla-Quiñones U. 2020. Current and future potential distribution and identification of suitable areas for the conservation of Cedrela odorata L. in the Yucatan Peninsula. Revista Chapingo Serie Ciencias Forestales y del Ambiente. 26: 391-408. DOI: https://doi.org/10.5154/r.rchscfa.2019.10.075 [ Links ]

Martínez-Ballesté A, Martorell C, Martínez-Ramos M, Caballero J. 2005. Applying retrospective demographic models to assess sustainable use: the Maya management of Xa’an palms. Ecology and Society 10: 17. DOI: https://doi.org/10.5751/ES-01600-100217 [ Links ]

Martínez-Méndez N, Aguirre-Planter E, Eguiarte LE, Jaramillo-Correa JP. 2016. Modelado de nicho ecológico de las especies del género Abies (Pinaceae) en México: Algunas implicaciones taxonómicas y para la conservación. Botanical Sciences 94: 5-24. DOI: https://doi.org/10.17129/botsci.508 [ Links ]

Martínez-Palacios A, Gómez-Sierra JM, Sáenz-Romero C, Pérez-Nasser N, Sánchez-Vargas N. 2011. Genetic diversity of Agave cupreata Trel. & Berger. considerations for its conservation. Revista Fitotecnia Mexicana 34: 159-165. [ Links ]

Martínez-Sifuentes AR, Villanueva-Díaz J, Manzanilla-Quiñones U, Becerra-Lopez JL, Hernández-Herrera JA, Estrada-Ávalos J, Velázquez-Pérez AH. 2020. Spatial modeling of the ecological niche of Pinus greggii Engelm. (Pinaceae): a species conservation proposal in Mexico under climatic change scenarios. iForest-Biogeosciences and Forestry 13: 426-434. DOI: https://doi.org/10.3832/ifor3491-013 [ Links ]

Maya-García R, Arizaga S, Cuevas-Reyes P, Peñaloza-Ramírez JM, Rocha Ramírez V, Oyama K. 2017. Landscape genetics reveals inbreeding and genetic bottlenecks in the extremely rare short-globose cacti Mammillaria pectinifera (Cactaceae) as a result of habitat fragmentation. Plant Diversity 39: 13-19. DOI: https://doi.org/10.1016/j.pld.2016.09.005 [ Links ]

AMJB [Mesa Directiva 1992-1994 de la Asociación Mexicana de Jardines Botánicos]. 1994. Importancia de las colecciones nacionales de los jardines botánicos de México. Amaranto 7: 28-31. [ Links ]

Michalak JL, Lawler JJ, Roberts DR, Carroll C. 2018. Distribution and protection of climatic refugia in North America. Conservation Biology 32: 1414-1425. DOI: https://doi.org/10.1111/cobi.13130 [ Links ]

Mora-López JL, Reyes-Agüero JA, Flores-Flores JL, Peña-Valdivia CB, Aguirre-Rivera JR. 2011. Variación morfológica y humanización de la sección Salmianae del género Agave Agrociencia 45: 465-477. [ Links ]

Moreno-Calles AI, Casas A. 2008. Conservación de biodiversidad y sustentabilidad en sistemas agroforestales de zonas áridas del valle de Tehuacán, México. Zonas Áridas 12: 13-35. [ Links ]

Muñiz-Castro MÁ, Castro-Félix P, Carranza-Aranda AS, Vázquez-García JA, Santerre A. 2020. Population genetics, species boundaries, and conservation in the Magnolia pacifica species complex along a continentality and moisture gradient in western Mexico. Botanical Sciences 98: 500-516. DOI: https://doi.org/10.17129/botsci.2551 [ Links ]

Oaxaca-Villa B, Casas A, Valiente-Banuet A. 2006. Reproductive biology in wild and silvicultural management populations of Escontria chiotilla (Cactaceae) in the Tehuacán Valley, Central Mexico. Genetic Resources and Crop Evolution 53: 277-287. DOI: https://doi.org/10.1007/s10722-004-6147-4 [ Links ]

Octavio-Aguilar P, Rivera-Fernández A, Iglesias-Andreu LG, Vovides PA, Núñez de Cáceres-González FF. 2017. Extinction risk of Zamia inermis: a demographic study in its single natural population. Biodiversity and Conservation 26: 787-800. DOI: https://doi.org/10.1007/s10531-016-1270-z [ Links ]

Ortega-Baes P, Godínez-Alvarez H. 2006. Global diversity and conservation priorities in the Cactaceae. Biodiversity and Conservation 15: 817-827. DOI: https://doi.org/10.1007/s10531-004-1461-x [ Links ]

Ortega-Baes P, Sühring S, Sajama J, Sotola E, Alonso-Pedano M, Bravo S, Godínez-Alvarez H. 2010. Diversity and conservation in the cactus family. In: Ramawat KG, ed. Desert Plants. Biology and Biotechnology, pp. 157-173. Berlin, Heidelberg: Springer. [ Links ]

Otero-Arnaiz A, Casas A, Bartolo C, Pérez-Negrón E, Valiente-Banuet A. 2003. Evolution of Polaskia chichipe (Cactaceae) under domestication in the Tehuacán Valley, Central Mexico: reproductive biology. American Journal of Botany 90: 593-602. DOI: https://doi.org/10.3732/ajb.90.4.593 [ Links ]

Palacios-Wassenaar O, Castillo-Campos G, Vázquez-Torres SM. 2016. Análisis de la estructura poblacional como indicador rápido del estado de conservación de especies arbóreas amenazadas. El caso de Resinanthus aromaticus en el centro de Veracruz, México. Botanical Sciences 94: 241-252. DOI: https://doi.org/10.17129/botsci.271 [ Links ]

Parra F, Pérez-Nasser N, Lira R, Pérez-Salicrup D, Casas A. 2008. Population genetics, and process of domestication of Stenocereus pruinosus (Cactaceae) in the Tehuacán Valley, México. Journal of Arid Environments 72: 1997-2010. DOI: https://doi.org/10.1016/j.jaridenv.2008.06.007 [ Links ]

Perfecto I, Vandermeer J. 2008. Biodiversity conservation in tropical agroecosystems. Annals of the New York Academy of Sciences 1134: 173-200. DOI: https://doi.org/10.1196/annals.1439.011 [ Links ]

Pfaff A, Santiago-Ávila F, Joppa L. 2017. Evolving protected-area impacts in Mexico: Political shifts as suggested by impact evaluations. Forests 8: 17. DOI: https://doi.org/10.3390/f8010017 [ Links ]

Pinares A, González-Astorga J, Vovides AP, Lazcano J, Vendrame WA. 2009. Genetic diversity of the endangered endemic Microcycas calocoma (Miq.) A. DC (Zamiaceae, Cycadales): Implications for conservation. Biochemical Systematics and Ecology 37: 385-394. DOI: https://doi.org/10.1016/j.bse.2009.07.006 [ Links ]

Pisanty I, Urquiza-Haas E, Vargas-Mena y Amezcua A, Ruiz González SP, Urquiza-Haas T, García Méndez G. 2009. Instrumentos de conservación in situ en México: logros y retos. In: Sarukhán J, coord. Capital Natural de México , Vol. IV: Capacidades Humanas e Institucionales, pp. 245-302. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 9786078328697 [ Links ]

Ramírez-Amezcua Y, Steinmann VW, Ruiz-Sanchez E, Rojas-Soto OR. 2016. Mexican alpine plants in the face of global warming: potential extinction within a specialized assemblage of narrow endemics. Biodiversity and Conservation 25: 865-885. DOI: https://doi.org/10.1007/s10531-016-1094-x [ Links ]

Ramírez-Mejía D, Cuevas G, Meli P, Mendoza E. 2017. Land use and cover change scenarios in the Mesoamerican Biological Corridor-Chiapas, México. Botanical Sciences 95: 221-234. DOI: https://doi.org/10.17129/botsci.838 [ Links ]

Ramírez-Villegas J, Khoury CK, Achicanoy HA, Mendez AC, Díaz MV, Sosa CC, Debouck DG, Kehel Z, Guarino L. 2020. A gap analysis modelling framework to prioritize collecting for ex situ conservation of crop landraces. Diversity and Distributions. 26:730-742. DOI: https://doi.org/10.1111/ddi.13046 [ Links ]

Redonda-Martínez R, Pliscoff P, Moreira-Muñoz A, Martínez Salas EM, Samain M-S. 2021. Towards conservation of the remarkably high number of daisy trees (Asteraceae) in Mexico. Plants 10: 534. DOI: https://doi.org/10.3390/plants10030534 [ Links ]

Rehfeldt GE, Crookston NL, Sáenz-Romero C, Campbel EM. 2012. North American vegetation model for land-use planning in a changing climate: a solution to large classification problems. Ecological Applications 22: 119-141. DOI: https://doi.org/10.1890/11-0495.1 [ Links ]

Rendón B, Bye R, Núñez-Farfán J. 2001. Ethnobotany of Anoda cristata (L.) Schl. (Malvaceae) in Central Mexico: Uses, management and population differentiation in the community of Santiago Mamalhuazuca, Ozumba, state of Mexico. Economic Botany 55: 545-554. DOI: https://doi.org/10.1007/BF02871717 [ Links ]

Rendón B, Núñez-Farfán J. 2001. Population differentiation and phenotypic plasticity of wild and agrestal populations of the annual Anoda cristata (Malvaceae) growing in two contrasting habitats. Plant Ecology 156: 205-213. DOI: https://doi.org/10.1023/A:1012657730991 [ Links ]

Rendón-Sandoval FJ, Casas A, Sinco-Ramos PG, García-Frapolli E, Moreno-Calles AI. 2021. Peasants’ motivations to maintain vegetation of tropical dry forests in traditional agroforestry systems from Cuicatlán, Oaxaca, Mexico. Frontiers in Environmental Science 9: 682207. DOI: https://doi.org/10.3389/fenvs.2021.682207 [ Links ]

Reyes-Agüero JA, Aguirre Rivera R, Flores Flores JL. 2005. Variación morfológica de Opuntia (Cactaceae) en relación con su domesticación en la altiplanicie meridional de México. Interciencia 30: 476-484. [ Links ]

Reyes-Santiago J, Islas-Luna MA, González-Zorzano O. 2014. Guía Práctica de Propagación y Cultivo de las Especies del Género Echeveria: También Conocidas como Conchitas, Lenguas de Vaca, Rosetas y Tememetla. Mexico City: Universidad Nacional Autónoma de México. ISBN: 9786070240607 [ Links ]

Riemann H, Ezcurra E. 2007. Endemic regions of the vascular flora of the peninsula of Baja California, Mexico. Journal of Vegetation Science 18: 327-336. DOI: https://doi.org/10.1111/j.1654-1103.2007.tb02544.x [ Links ]

Rodríguez-Arévalo I, Mattana E, García L, Liu U, Lira R, Dávila P, Hudson A, Pritchard HW, Ulian T. 2017. Conserving seeds of useful wild plants in Mexico: main issues and recommendations. Genetic Resources and Crop Evolution 64: 1141-1190. DOI: https://doi.org/10.1007/s10722-016-0427-7 [ Links ]

Ruiz-Sanchez E. 2013. Otatea ramirezii (Poaceae: Bambusoideae: Bambuseae) flower description and the importance of the Mexican national living bamboo collection. Phytotaxa 150: 54-60. DOI: https://doi.org/10.11646/phytotaxa.150.1.4 [ Links ]

Salinas-Rodríguez MM, Sajama MJ, Gutiérrez-Ortega JS, Ortega-Baes P, Estrada-Castillón AE. 2018. Identification of endemic vascular plant species hotspots and the effectiveness of the protected areas for their conservation in Sierra Madre Oriental, Mexico. Journal for Nature Conservation 46: 6-27. DOI: https://doi.org/10.1016/j.jnc.2018.08.012 [ Links ]

Sánchez-Gallen I, Álvarez-Sánchez FJ, Benítez-Malvido J. 2010. Structure of the advanced regeneration community in tropical rain forest fragments of Los Tuxtlas, Mexico. Biological Conservation 143: 2111-2118. DOI: https://doi.org/10.1016/j.biocon.2010.05.021 [ Links ]

Sarukhán J, Koleff P, Carabias J, Soberón J, Dirzo R, Llorente-Bousquets J, Halffter G, González R, March I, Mohar A, Anta S, de la Maza J. 2009. Capital Natural de México. Síntesis: Conocimiento Actual, Evaluación y Perspectivas de Sustentabilidad. Mexico City: Comisión Nacional para el Conocimiento y Uso de la Biodiversidad. ISBN: 978-607-7607-09-0 [ Links ]

Sharrock S. 2020. Plant Conservation Report 2020: A Review of Progress Towards the Global Strategy for Plant Conservation 2011-2020. Richmond: Secretariat of the Convention on Biological Diversity, Montréal, Canada, and Botanic Gardens Conservation International, Technical Series No. 95. ISBN: 978-929-2257-05-7. [ Links ]

Schroth G, da Fonseca GAB, Harvey CA, Gascon C, Vasconcelos H, Izac A-MN, eds. 2004. Agroforestry and biodiversity conservation in tropical landscapes. Washington, DC: Island Press. ISBN: 1559633573 [ Links ]

SEMARNAT [Secretaría del Medio Ambiente y Recursos Naturales]. 2010. Norma Oficial Mexicana NOM-059-SEMARNAT-2010, Protección ambiental - Especies nativas de México de flora y fauna silvestres - Categorías de riesgo y especificaciones para su inclusión, exclusión o cambio-Lista de especies en riesgo. Diario Oficial de la Federación. 2da Sección, December 30th 2010 [ Links ]

Solórzano S, Dávila P. 2015. Identification of conservation units of Mammillaria crucigera (Cactaceae): perspectives for the conservation of rare species. Plant Ecology and Diversity 8: 559-569. DOI: https://doi.org/10.1080/17550874.2015.1044581 [ Links ]

Stralberg D, Carroll C, Pedlar JH, Wilsey CB, Mckenney DW, Nielsen SE. 2018. Macrorefugia for North American trees and songbirds: Climatic limiting factors and multi-scale topographic influences. Global Ecology & Biogeography. 27: 1-14. DOI: https://doi.org/10.1111/geb.12731 [ Links ]

Suárez-Mota ME, Villaseñor JL, Ramírez-Aguirre MB. 2018. Sitios prioritarios para la conservación de la riqueza florística y el endemismo de la Sierra Norte de Oaxaca, México. Acta Botanica Mexicana 124: 49-74. DOI: https://doi.org/10.21829/abm124.2018.1296 [ Links ]

Suzán-Azpiri H, Malda G, Caiceros A, Sánchez A, Guevara A, García O. 2011. Spatial analysis for management and conservation of Cactaceae and Agavaceae species in Central Mexico. Procedia Environmental Sciences 7: 329-334. DOI: https://doi.org/10.1016/j.proenv.2011.07.057 [ Links ]

Téllez-Valdés O, Dávila-Aranda P, Lira-Saade R. 2006. The effects of climate change on the long-term conservation of Fagus grandifolia var. mexicana, an important species of the cloud forest in eastern Mexico. Biodiversity and Conservation 15: 1095-1107. DOI: https://doi.org/10.1007/s10531-004-1868-4 [ Links ]

Tellez O, Mattana E, Diazgranados M, Kühn N, Castillo-Lorenzo E, Lira R. Montes-Leyva L, Rodriguez I, Flores Ortiz CM, Way M, Dávila P, Ulian, T. 2020. Native trees of Mexico: diversity, distribution, uses and conservation. PeerJ 8: e9898 http://doi.org/10.7717/peerj.9898 [ Links ]

Toledo-Aceves T. 2017. Germination rate of endangered cloud forest trees in Mexico: potential for ex situ propagation. Journal of Forest Research 22: 61-64. DOI: https://doi.org/10.1080/13416979.2016.1273083 [ Links ]

Toledo-Aceves T, Meave JA, González-Espinoza M, Ramírez-Marcial N. 2011. Tropical montane cloud forests: Current threats and opportunities for their conservation and sustainable management in Mexico. Journal of Environmental Management 92: 974-981. DOI: https://doi.org/10.1016/j.jenvman.2010.11.007 [ Links ]

Trejo I, Martínez-Meyer E, Calixto-Pérez E, Sánchez-Colón S, Vázquez de la Torre R, Villers-Ruíz L. 2011. Analysis of the effects of climate change on plant communities and mammals in México. Atmósfera 24: 1-14. [ Links ]

Ulloa M, Stewart JM, Garcia-C EA, Godoy-A S, Gaytan-M A, Acosta NS. 2006. Cotton genetic resources in the western states of Mexico: in situ conservation status and germplasm collection for ex situ preservation. Genetic Resources and Crop Evolution 53: 653-668. DOI https://doi.org/10.1007/s10722-004-2988-0 [ Links ]

United Nations. 1992. Convention on Biological Diversity. United Nations Environmental Program. https://www.cbd.int/doc/legal/cbd-en.pdfLinks ]

Ureta C, Martínez‐Meyer E, Perales HR, Álvarez‐Buylla ER. 2012. Projecting the effects of climate change on the distribution of maize races and their wild relatives in Mexico. Global Change Biology. 18: 1073-1082. DOI: https://doi.org/10.1111/j.1365-2486.2011.02607.x [ Links ]

Valenzuela-Zapata AG, Lopez-Muraira I, Gaytán MS. 2011. Traditional knowledge, Agave inaequidens (Koch) conservation, and the Charro Lariat Artisans of San Miguel Cuyutlán, Mexico. Ethnobiology Letters 2: 72-80. DOI: https://doi.org/10.14237/ebl.2.2011.24 [ Links ]

Valiente-Banuet A, Verdú M. 2013. Human impacts on multiple ecological networks act synergistically to drive ecosystem collapse. Frontiers in Ecology and the Environment 11: 408-413. DOI: https://doi.org/10.1890/130002 [ Links ]

Vallejo M, Casas A, Blancas J, Moreno-Calles AI, Solís L, Rangel-Landa S, Dávila P , Téllez O. 2014. Agroforestry systems in the highlands of the Tehuacán Valley, Mexico: indigenous cultures and biodiversity conservation. Agroforestry Systems 88: 125-140. DOI: https://doi.org/10.1007/s10457-013-9660-7 [ Links ]

Vanderplank S, Ezcurra E, Delgadillo J, Felger R, McDade LA. 2014. Conservation challenges in a threatened hotspot: agriculture and plant biodiversity losses in Baja California, Mexico. Biodiversity and Conservation 23: 2173-2182. DOI: https://doi.org/10.1007/s10531-014-0711-9 [ Links ]

Vargas-Ponce O, Zizumbo-Villarreal D, Colunga-García Marín P. 2007. In situ diversity and maintenance of traditional Agave landraces used in spirits production in West-Central Mexico. Economic Botany 61: 362. DOI: https://doi.org/10.1663/0013-0001(2007)61[362:ISDAMO]2.0.CO;2 [ Links ]

Vásquez-Morales SG, Téllez O, Pineda-López MR, Sánchez-Velásquez LR, Flores-Estevez N, Viveros-Viveros H. 2014. Effect of climate change on the distribution of Magnolia schiedeana: a threatened species. Botanical Sciences 92: 575-585. DOI: https://doi.org/10.17129/botsci.116 [ Links ]

Vibrans H. 2016 Ethnobotany of Mexican weeds. In: Lira R , Casas A, Blancas J. eds. Ethnobotany of Mexico: Interactions of People and Plants in Mesoamerica. New York: Springer . pp. 287-317. DOI: https://doi.org/10.1007/978-1-4614-6669-7 [ Links ]

Vieyra-Odilon L, Vibrans H. 2001. Weeds as crops: the value of maize field weeds in the Valley of Toluca, Mexico. Economic Botany 55: 426-443. DOI: https://doi.org/10.1007/BF02866564 [ Links ]

Villaseñor JL. 2016. Checklist of the native vascular plants of Mexico. Revista Mexicana de Biodiversidad 87: 559-902. DOI: http://dx.doi.org/10.1016/j.rmb.2016.06.017 [ Links ]

Vovides AP, Iglesias C, Luna V, Balcázar T. 2013. Los jardines botánicos y la crisis de la biodiversidad. Botanical Sciences 91: 239-250. DOI: https://doi.org/10.17129/botsci.5 [ Links ]

Worthington TA, Andradi-Brown DA, Bhargava R, Buelow C, Bunting P, Duncan C, Fatoyinbo L, Friess DA, Goldberg L, Hilarides L, Lagomasino D, Landis E, Longley-Wood K, Lovelock CE, Murray NJ, Narayan S, Rosenqvist A, Sievers M, Simard M, Thomas N, van Eijk P, Zganjar C, Spalding M. 2020. Harnessing big data to support the conservation and rehabilitation of mangrove forests globally. One Earth 2: 429-443. DOI: https://doi.org/10.1016/j.oneear.2020.04.018 [ Links ]

Zárate S, Pérez-Nasser N, Casas A . 2005. Genetics of wild and managed populations of Leucaena esculenta subsp. esculenta (Fabaceae: Mimosoideae) in La Montaña of Guerrero, Mexico. Genetic Resources and Crop Evolution 52: 941-957. DOI: https://doi.org/10.1007/s10722-003-6088-3 [ Links ]

Zizumbo-Villarreal D, Vargas-Ponce O, Rosales-Adame JJ, Colunga-GarcíaMarín P. 2013. Sustainability of the traditional management of Agave genetic resources in the elaboration of mezcal and tequila spirits in western Mexico. Genetic Resources and Crop Evolution 60: 33-47. DOI: https://doi.org/10.1007/s10722-012-9812-z [ Links ]

Received: November 22, 2021; Accepted: May 08, 2022; Published: August 16, 2022

*Author for correspondence: rlira@unam.mx

Guest Editors: Victoria Sosa, Jorge A. Meave, Ken Oyama, Arturo de Nova

Author contributions: PD design and conception of the study, as well as analysis and writing of the whole paper; FST analysis and writing of information about species, populations and taxonomic groups; IRA, analysis and writing of information about ex situ conservation, specially germplasm collections; AP analysis and writing of information about natural protected areas; SA analysis and writing of information about ex situ conservation, specially botanic gardens; AE analysis and writing of information about regions, ecoregions, communities, ecosystems and tourism development projects; OT analysis and writing of information about species, populations, taxonomic groups, regions and ecoregions; RL design, conception and coordination of the study, as well as analysis and writing of the whole paper.

Creative Commons License This is an open-access article distributed under the terms of the Creative Commons Attribution License