SciELO - Scientific Electronic Library Online

 
vol.28 número3La investigación participativa en niños como herramienta en la promoción de la salud para la prevención de la Enfermedad de Chagas en Yucatán, MéxicoEstudio sobre roedores sinántropicos como reservorios de patógenos zoonóticos en Yucatán índice de autoresíndice de materiabúsqueda de artículos
Home Pagelista alfabética de revistas  

Servicios Personalizados

Revista

Articulo

Indicadores

Links relacionados

  • No hay artículos similaresSimilares en SciELO

Compartir


Revista biomédica

versión On-line ISSN 2007-8447versión impresa ISSN 0188-493X

Rev. biomédica vol.28 no.3 Mérida sep./dic. 2017

https://doi.org/10.32776/revbiomed.v28i3.571 

Artículo de Revisión

Plantas con actividad insecticida: una alternativa natural contra mosquitos

Insecticidal activity plants: A natural alternative against mosquitoes. Current status of the topic in the America´s region.

Maureen Leyva1  * 

Leidys French2 

Oriela Pino3 

Domingo Montada1 

Gisel Morejón4 

Maria del Carmen Marquetti1 

1 Instituto de Medicina Tropical "Pedro Kourí", Cuba.

2 Centro de Investigaciones Químicas, Morelos, México.

3 Centro Nacional Sanidad Agropecuaria, Cuba.

4 Facultad Biología Universidad de la Habana, Cuba.


Resumen

El siguiente trabajo pretende reunir la información existente con respecto la evaluación de la actividad insecticida de plantas contra mosquitos realizados en la región de las Américas en los últimos veinte años. Se utilizó Pubmed Central, SCielo regional y BioOne y se acudió a buscadores como Google y Bing. Como criterio de inclusión se introdujeron las categorías: actividad larvicida, adulticida-repelente, ovicida e inhibidora del desarrollo de aceites esenciales y extractos de plantas en condiciones de laboratorio contra mosquitos en el área de las Américas en un período desde 1995-2015. La especie de mosquito más estudiada ha sido Ae aegypti seguido de Cx. quinquefascitus, Ae. albopictus, Cx. tarsalis, Cx. pipiens, An. albimanus. El país a la vanguardia en estudios sobre esta temática es Brasil seguido de Cuba México, Estados Unidos. Estados Unidos se destaca por la evaluación de productos comerciales registrados a base de plantas con actividad repelente. En 239 plantas se evaluó la actividad larvicida. El 64 % de los artículos revisados estudia este tipo de actividad con aceites esenciales. La repelencia es el acápite más estudiado después de la actividad larvicida, dentro de los que se destacan la evaluación de formulaciones comerciales con principios activos naturales. Con escasa representación, se encuentran los estudios sobre la actividad ovicida e inhibidora del desarrollo. Más de 85 plantas se evaluaron en forma de extractos y el extracto mas evaluado fue el etanólico seguido del metanólico y el acuoso.

Palabras claves: actividad larvicida; adulticida; repelencia aceites esenciales; mosquitos

Abstract

The following paper aims to gather the existing information regarding the evaluation of the insecticidal activity of plants against mosquitoes made in the region of the Americas in the last twenty years. Pubmed Central, SCielo regional and BioOne were used and search engines such as Google and Bing were used. As an inclusion criterion, the categories were introduced: larvicidal, adulticidal-repellent, ovicidal activity and inhibitor of the development of essential oils and extracts of plants under conditions of Laboratory in the area of the Americas in a period from 1995-2015. The most studied mosquito species was Ae aegypti followed by Cx. quinquefascitus, Ae. albopictus and Cx tarsalis, Cx. pipiens, An. albimanus. The country at the forefront in studies on this subject is Brazil followed by Cuba Mexico, United States. The United States stands out by evaluating commercially registered herbal products with repellent activity. The larvicidal activity was evaluated in 239 plants. 64% of the reviewed articles study this type of activity with essential oils. The repellency is the most studied section after the larvicidal activity, among which the evaluation of commercial formulations with natural active principles. With little representation, there are studies on ovicidal and developmental inhibitory activity. More than 85 plants have been evaluated in the form of extracts and the most evaluated extract has been ethanolic followed by methanolic and aqueous.

Keywords: larvicidal; adulticidal repellence activity; essential oils; mosquitoes

Introducción

La región de las Américas ha sufrido en los últimos tres años una importante reemergencia de arbovirosis trasmitidas por mosquitos. Culex quinquefasciatus, Aedes albopictus y Aedes aegypti constituyen dentro de la fauna entomológica de mosquitos, los vectores responsables del mantenimiento y circulación de virus como oeste del Nilo (1), dengue (2), chikungunya (3) zika (4) y Mayaro en el continente americano.

Los factores sociales y económicos, relacionados en gran medida con estilos de vida, las malas condiciones habitacionales, el alto nivel de desempleo, pobreza, y la falta de voluntad política, entre otros, son factores que favorecen la circulación y el mantenimiento de éstas endemias en las comunidades de países en vías de desarrollo (5). Desafortunadamente para muchas de las enfermedades transmitidas por vectores, no se encuentran disponibles candidatos vacunales, constituyendo el control químico, la medida básica para disminuir las poblaciones de mosquitos y así la incidencia de las enfermedades. Dicha reducción suele ser transitoria, cuando no se tiene en cuenta aspectos de ecología de las especies responsables de la transmisión: como su comportamiento, su preferencia de hábitat y el estado de susceptibilidad a los insecticidas aplicados, entre otros (6-8).

En el campo de la Salud Pública la resistencia a insecticidas sintéticos pertenecientes a varios grupos, se generaliza en varias especies de mosquitos lo que origina costos sustanciales de manera indirecta, además de los costos directos de los insecticidas de sustitución (9). Sin contar de que la exposición a dicha toxicidad directa o indirecta se manifiestan en el aumento de la longevidad, disminución de la fertilidad y fecundidad en los insectos (10). La resistencia a insecticidas y sus mecanismos de acción es un fenómeno sumamente variable, aun en la misma especie sometida a distintas intensidades de aplicación de insecticidas, de ahí que su monitoreo constante de forma local y en el tiempo sea una necesidad para cualquier programa de control de vectores (8).

En la región de las Américas son varios los estudios en cuanto a la susceptibilidad frente a los productos sintéticos utilizados para el control de mosquitos. El plaguicida que durante más tiempo se ha utilizado para el control de vectores, es el larvicida Temefos y sus niveles de resistencia han sido documentado en diversos países de Latinoamérica (11-13). La detección en Cuba de la resistencia a insecticidas sintéticos en Ae. aegypti a nivel de laboratorio se manifestó desde finales de la década del 90 (7,14) y aunque estudios posteriores (15,16) plantean que la mayoría de los plaguicidas presentan efectividad contra Ae. aegypti se hace necesario un enfoque integral que disminuyan la resistencia a insecticidas sintéticos en las poblaciones de campo.

Los insecticidas químicos dentro de la lucha integrada para el control de vectores, en muchos casos se complementan con otros métodos de control como el físico, el biológico, las campañas educativasyla participación de lacomunidad (17). Un método alternativo de control lo constituye la utilización de plantas, las cuales representan una fuente promisoria, segura y sostenible ecológicamente para el control vectorial. Sobre la década del 40, del siglo pasado se describió aproximadamente 1 200 especies de plantas con valor insecticida (18). Estudios a principios de los años 90 del siglo pasado (19) resumen alrededor de 344 especies de plantas con actividad específica larvicida en mosquito. En el año 2005 se amplia esta información incluyendo no solo la actividad larvicida y ovicida de plantas, sino también la actividad reguladora del crecimiento, el efecto de mezclas de aceites, capacidad residual de los mismos y su efecto en organismos que no son objeto de control (20). Pasada la primera década de este siglo, estudios reducen a 150 especies de plantas la actividad insecticida sobre diferentes especies de mosquito objeto de control, estadío larvario utilizado, valores de concentraciones letales y tipos de solventes empleados (21). Un año después (22) se reunió información sobre 269 especies de plantas con actividad larvicida de las cuales más del 60 % poseen una significativa potencialidad (CL50<100mg/L).

Dentro de los aspectos que hacen valorar lo promisorio de una planta además de su probada actividad insecticida (ser efectiva a bajas dosis), es no tener alto valor económico, poseer un valor adicional como el medicinal o condimentício y que la utilización de su principio activo no conlleve a la extinción de la especie (23). Estos aspectos describen y concluyen los principios de ecosostenibilidad; la cual se refiere a la explotación de cualquiera que sea el recurso biológico por debajo de su límite de renovación, sin afectar la diversidad y productividad del ecosistema adyacente (24). Diversos son los estudios que implican el uso y la explotación de aceites esenciales y extractos de plantas con actividad biológica sobre varias especies de mosquitos en la región oriental de nuestro planeta (25-29).

El siguiente trabajo pretende reunir la información existente con respecto a la evaluación de la actividad insecticida de plantas contra mosquitos realizados en la región de las Américas en los últimos veinte años. Se utilizó Pubmed Central, SCielo regional y BioOne y se acudió a buscadores como Google y Bing para localizar artículos de revistas que no estuviesen indexados a estos sitios. Como criterio de inclusión se introdujeron las categorías: actividad larvicida, adulticida-repelente, ovicida e inhibidora del desarrollo de aceites esenciales y extractos de plantas, en condiciones de laboratorio contra mosquitos en el área de las Américas en un período desde 1995-2015. Los resultados se muestran en los Cuadros 1-4.

Se recopilaron algo más de 13000 artículos científicos siendo descartados los que no cumplieron con los criterios de inclusión, utilizando para esta revisión un total 124 trabajos. El país a la vanguardia en estudios sobre esta temática es Brasil. Luego en este orden lo siguen: México, Cuba y Estados Unidos (Fig 1). Estados Unidos se destaca por la evaluación de productos comerciales registrados a base de plantas con actividad repelente. La especie de mosquito más estudiada es Ae. aegypti seguido de Cx. quinquefascitus, Ae. albopictus y otras especies menos representada lo constituyen; Cx. tarsalis, Cx. pipiens, Anopheles albimanus.

En 239 especies de plantas se evalúa la actividad larvicida, el 64 % de los artículos revisados estudia este tipo de actividad con aceites esenciales. El resto de los trabajos evalúa, las variantes conjuntas del aceite esencial y los extractos de diversos tipos en una misma planta o los extractos por separados del aceite esencial. En más de 85 plantas se evaluaron extractos y el más evaluado fue el etanólico seguido del metanólico y el acuoso.

La repelencia es el acápite más estudiado seguido de la actividad larvicida, dentro de los que se destacan la evaluación de formulaciones comerciales con principios activos naturales. Con escasa representación, se encuentran estudios sobre la actividad ovicida e inhibidora del desarrollo.

Figura 1. Total, de trabajos publicados por países de la región de las Américas en cuanto a la evaluación de la actividad insecticida de plantas contra mosquitos en el período 1995-2015.

En orden decreciente las familias de plantas más estudiada son Asteraceae con 31 especies, Myrtaceae con 27 especies dentro de las que se destacan 15 especies de Eucaliptus, Lamiaceae con 20 especies, Fabaceae 19 especies, Euphorbiaceae 14 especies, Anacardiaceae con 10 especies y Annonaceae, Piperaceae, Meliaceae, Verbenaceae con 9 especies. Eucaliptus globulus, Guettarda grazielae y Lantana camara son especies de las que se evaluaron al menos 4 extractos. La parte vegetal más utilizada para la obtención de los principios activos fueron las hojas en el 73 % de los artículos revisados.

Actividad insecticida de plantas

Podría pensarse, primeramente, que se han evaluado un gran número de plantas, pero en realidad los estudios son insuficientes. América es el segundo continente más grande del planeta, después de Asia, con 35 países y solamente en esta revisión se totalizan estudios de 11 países. América del Sur abarca una gran variedad de regiones biogeográficas, donde la mayor extensión es en selvas y bosques lluviosos. Aún con sus divisiones geográficas y políticas este continente en general posee una inmensa y rica flora prácticamente sin explotar. Existen mas de 30 especies de plantas invasivas y nocivas con peligro para los ecosistemas en donde se encuentran establecidas (154) las que pudiesen estudiarse y valorar su utilización para el control de plagas. Millones de personas están expuestas o sufren de una u otra enfermedad tropical trasmitida por vectores anualmente. La problemática más grave, es que los grandes brotes epidémicos ocurren en países pobres o en vías de desarrollo, los que, en ocasiones, le es imposible adquirir las nuevas, mejoradas y perfeccionadas formulaciones insecticidas, por lo que se recurre a las antiguas y baratas trayendo como consecuencia problemas medioambientales y de resistencia. Las plantas por su uso ancestral y por ser precursora de insecticidas sintéticos se ubican como una alternativa a tener en cuenta.

La mayoría de las plantas, que se infieren, tengan actividad insecticida contra mosquitos presentan, al menos actividad larvicida (22, 106,155). Según estudios, un compuesto larvicida actúa por absorción a través de la cutícula o el tracto respiratorio o por ingestión a través del tracto gastrointestinal (156). Una vez en el interior de la larva el tóxico alcanza el sitio de acción causando un efecto sistémico por difusión en los diferentes tejidos (127), conllevando a la muerte de la larva en minutos o en horas según la dosis que se utilice y la toxicidad del producto.

El principal conflicto en la introducción de resultados en cuanto a la actividad larvicida de plantas radica en la dificultad en añadir formulaciones de aceites o sus extractos en los sitios de cría de mosquitos, sin cambiar la textura, el sabor del agua o sin afectar a la fauna acompañante en el caso de criaderos naturales.

Estudios alentadores (143,99) se han realizados al evaluar una lectina obtenida de Moringa oleifera, la cual es soluble en agua, atrayente a la oviposición y con acción ovicida, además de inhibir mecanismos enzimáticos en cepas susceptibles de referencia y resistentes de laboratorio de Aedes aegypti.

La actividad reguladora de crecimiento en insectos con productos naturales señala a metabolitos secundarios que provocan inestabilidad hormonal, lo que impide el desarrollo normal del insecto. Dicho desequilibrio genera mudas prematuras o tardías y la muerte de los individuos al ser imposible emerger de las pupas (157-159). Los procesos de muda y metamorfosis se encuentran regulados por 2 hormonas efectoras: la 20-hidroxiecdisona (ecdisona) y la hormona juvenil (HJ). Si la 20 hidroxiecdisona inicia y coordina cada muda y regula cambios que ocurren durante la metamorfosis, la hormona juvenil previene los cambios en expresión génica inducidos por la ecdisona, cambios que son necesarios para que tenga lugar la metamorfosis, impidiendo de esta manera que la larva se desarrolle antes de tiempo y permitiendo que ocurran las mudas necesarias para el crecimiento (160). Especies de plantas enmarcadas en los géneros Pteridium, Polypodium, Osmunda constituyeron en el pasado fuentes de ecdisona y ponasterona, mientras que Ajuga remota de cyasterona y ecdisterona (161) y Azadirachta indica y Melia azederach del limonoide Azadirachtin (162). Si bien es cierto que la actividad inhibidora del desarrollo está directamente relacionada con la fase larval, presenta las mismas dificultades de implementación que la acción larvicida; la transformación de las características organolépticas del agua en los sitios de cría y su influencia en la biodiversidad del ecosistema adyacente. Por lo que de encontrar candidatos promisorios para ambas actividades, debe ser complementada con estudios de toxicidad en mamíferos y organismos acuáticos.

En las plantas que presentan actividad adulticida, los análogos de metabolitos secundarios interfieren con una serie de enzimas vitales que actúan directamente en la síntesis y almacenamiento de neurotransmisores, comprometiendo la activación y liberación de receptores y enzimas responsables de las señales de transducción (163). Los insectos mueren debido al efecto neurotóxico que se produce donde predominan los síntomas de hiperactividad e hiperexitabilidad destacándose un efecto rápido de knock down, inmovilización y muerte (164). El potencial repelente de plantas es uno de los aspectos mas evaluados en diferentes países. Algunos estudios consideran estas dos actividades muy relacionadas, pero los mecanismos que intervienen son diferentes. Estudios actuales demuestran que el DEET (dietil toluamida), un conocido repelente sintético y ampliamente utilizado contra insectos se activa selectivamente (165) o inhibe receptores olfatorios (OR) en los mosquitos (167). Otras sustancias repelentes pueden estimular ORs específicos o inhibir las respuestas de los OR para atrayentes en Ae. aegypti. Por lo tanto, los mensajes recibidos por las células neurosecretoras se mezclan lo que resulta en la desorientación del insecto (168). La citronela es utilizada como repelente botánico e interactúa con dos vías moleculares distintas que median la repelencia. Estudios realizados mostraron que citronela interactuó con el co- receptor olfativo Orco y con los canales TRPA1 en An. gambiae y D. melanogaster (169). Mientras que la mayoría de los repelentes de mosquitos se estudian en un contexto de receptores olfatorios, algunos trabajos plantean que los repelentes pueden ser detectados por medio de los receptores gustativos (=quimiorreceptores de contacto) ubicados en el labellum lo que conlleva a la disuasión de alimentación (167). Estudios realizados a nivel de células de los sensilios en el labellum de Ae. aegypti demostraron la presencia de un receptor gestatorio neuronal (GRN) que responde a la disuasión provocado por el DEET y otros repelentes incluyendo Picaridin, IR3535 y citronela (169).

Dentro de los ingredientes de algunos repelentes naturales encontramos el 3.8-diolparamentano (PMD), el mismo se obtiene de la destilación de Corymbia citriodora (Myrtaceae) (170). El PMD puede ser fabricado sintéticamente a partir de materiales derivados de fuentes naturales. (171). Tiene un efecto muy similar al DEET y es recomendado por el CDC (Centros para el Control de Enfermedades) debido a su demostrada eficacia en la prevención de malaria proporcionando protección por varias horas (172).

Comprender el modo de acción de los repelentes en insectos y cómo estos productos químicos o naturales interactúan con las señales sensoriales de los insectos, nos permitirá diseñar formulaciones conloscandidatosmás promisorios en este campo. Aunque en nuestra región se han estudiado unas pocas plantas, esta es una de las variantes más aplicables en la introducción de resultados. No obstante, para proponer una planta como repelente de uso tópico, deben realizarse estudios de inocuidad, irritabilidad dérmica y oftálmica, toxicidad aguda. Una planta que tenga actividad repelente y no sea confiable su uso tópico en humanos, pudiese ser utilizada su formulación, en la fabricación de espirales o vaporizadores.

Estudios complementarios que respaldan la actividad insecticida de plantas

La amplia acción insecticida de plantas, en gran número de estudios, es respaldada, además de los bioensayos, con los análisis cromatográficos que permiten determinar no solo cualitativamente y cuantitativamente la composición química de aceites esenciales y extractos, sino también responsabilizarlos por la toxicidad encontrada (47,173-175). Estudios complementarios realizados con aislamientos -en la mayoría de los casos contra plagas de la agricultura - refuerzan que metabolitos como:

  • 1,8-Cineol provocan inhibición de la acetilcolinesterasa en adultos de Sitophilus oryzae (176,177). Causa toxicidad por contacto y actividad antialimenticia (178) y afectación de las funciones reproductivas contra adultos de Tribolium castaneum (179). Presenta acción fumigante contra Tribolium castaneum, Sitophilus oryzae (180,181), Oryzaephilus surinamensis, Musca domestica, y Blattella germanica (182) y Pediculus humanus capitis (183)

  • Limoneno Posee actividad fumigante contra Sitophilus oryzae, Oryzaephilus surinamensis, Musca domestica, Blattella germanica (180) y Tribolium castaneum (182); actividad repelente contra Blattella germanica, Periplaneta americana y Periplaneta fuliginosa (184) y Pediculus humanus capitis (183) y actividad larvicida contra Ae aegypti (185)

  • α-Pineno y β-Pineno Manifiesta actividad fumigante contra adultos de Tribolium castaneum (180,186), Pediculus humanus capitis (183) Blattella germanica, Periplaneta americana y Periplaneta fuliginosa (184)

  • 4 terpineol Evidencia actividad larvicida y adulticida contra Leptinotarsa decemlineata (187) fumigante contra Sitophilus zeamais, Tribolium castaneum, Anisopteromalus calandrae y Trichogramma deion (188). Causa toxicidad por contacto contra adultos de Bovicola ocellatus (189)

  • Mirceno Presenta actividad fumigante contra Tribolium castaneum (186)

  • Verbenona Tiene actividad fumigante contra Sitophilus oryzae, Tribolium castaneum, Oryzaephilus surinamensis, Musca domestica y Blattella germanica (182).

  • Eugenol Causa actividad fumigante contra Blattella germanica (190), adulticida contra Pediculus capitis (191) repelente contra Pediculus humanus capitis (183)

  • Geranial y neral Presenta actividad repelente contra Cx pipiens (192)

  • Rotundifolona Evidencia actividad larvicida contra Ae aegypti (193)

Algunos estudios enzimáticos vienen a corroborar la actividad insecticida de los aceites esenciales. Los mecanismos de acción de los metabolitos secundarios de muchas plantas, coinciden con los utilizados por los insecticidas sintéticos en los insectos (194;195). Estudios sugieren a compuestos de origen vegetal como sinergistas de insecticidas sintéticos, al actuar inhibiendo la actividad de enzimas detoxificadoras (196-199; 99). Esta inhibición o estimulación de enzimas implicadas en los mecanismos de detoxificación, produce de similar manera un desbalance hormonal, que explica el deterioro en el crecimiento y finalmente la inducción de la muerte del insecto, luego de haber sido expuesto a plantas con actividad insecticidas (199; 200; 43).

Evaluaciones de suma importancia y que escasean en este tipo de trabajo, son los bioensayos de toxicidad que se realizan en modelos de animales y en organismos no objeto de control. En esta revisión solo se encontraron tres trabajos donde se evalúan la actividad de plantas y a su vez algún indicador de este tipo; con Chironmus calligraphus (36) y Artemia sp (42,64). Sin embargo los estudios de toxicidad aguda u oral casi siempre, se encuentran realizados con plantas de interés puramente medicinal y no como complementos de estudios de actividad insecticida.

La toxicidad de una molécula se debe a la naturaleza de su estructura química y no a su origen (23) y no podemos considerar a los productos de origen vegetal como productos inocuos solo por ser naturales. Si bien es cierto que estudios realizados plantean que plantas medicinales comunes pueden ser tóxicas bajo el efecto de sobredosis (201-203) y que en todos los casos que las fracciones responsables de estos síntomas son metabolitos secundarios, todo extracto, aceite esencial o aislamiento, en las dosis específicas puede causar el efecto deseado; como el 4-terpineol encuentra actividad insecticida contra infestaciones oculares de Demodex folliculorum en personas de avanzada edad (204) o un efecto gastroprotector del 1,8 cineol (205)

Por lo que todos los estudios que se realicen con candidatos naturales vienen a corroborar la posible utilización o no de productos vegetales para el control de insectos.

Patentes de productos provenientes de plantas con actividad insecticida

Las investigaciones realizadas con respecto a la actividad insecticida de plantas deben continuar incrementándose. En revisión realizada con respecto a la temática en un período 1992- 2010, el autor resalta la preocupación de que de los 358 artículos consultados, solo 24 correspondían a autores latinoamericanos(206). Si bien, es necesario incrementar las investigaciones, estas deben trascender más allá de las publicaciones científicas. Lograr la producción y registro de formulaciones con este tipo de actividad debe ser una meta para nuestros países. En revisión realizada sobre patentes de repelentes a base de productos naturales (207) el autor plantea que el 73 % de todas las patentes encontradas hasta esa fecha pertenecían a China, Japón, Corea e India y estas fueron depositadas en los países de origen sin seguir a patentes posteriores. Solo 16 patentes de las 144 revisadas pertenecían a Estados Unidos y 3 a Brasil. En revisión realizada en el último trimestre del año 2016 en el sitio web http://www.freepatentsonline.com se encontraron 3 patentes de productos repelentes registrados por Canadá y más del doble de registros para Estados Unidos encontrados en el año 2011 (207). Para productos con actividad larvicida se realizaron 4 registros para Estados Unidos, 2 para Brasil y uno para Panamá

Si consideramos que las evaluaciones en condiciones de laboratorio son escasas, la producción de formulados naturales para el control de mosquitos es más insuficiente todavía en nuestra región. Lograr la evaluación e identificación de las plantas mas promisorias para el control, además de la producción y registro de formulaciones con actividad insecticida contra mosquitos debe ser una meta a lograr en el futuro.

Los productos provenientes de plantas deben enfrentar diferentes inconvenientes entre los que se encuentran; lograr la explotación de recursos naturales sin afectar la diversidad del ecosistema en el tiempo, la relación costo beneficio y la competencia con los productos sintéticos. La potencial producción y aplicación de productos naturales, solo se podrá realizar cuando cada país localice sus candidatos promisorios, estudien toda la posible acción insecticida tanto de los aceites esenciales como de extractos y complementen sus estudios con los bioensayos de toxicidad, además de realizar una correcta valoración económica del recurso a explotar. Esto permitirá estructurar una base sólida con miras a la obtención de formulaciones con calidad garantizada y alto valor agregado.

Los productos naturales, no pretenden reemplazar completamente a los insecticidas sintéticos, los cuales son de indiscutible necesidad para disminuir las poblaciones de vectores en momentos de brotes epidémicos, pero su estudio, obtención y uso, de los más activos y sostenibles permitirá contar con alternativas seguras y accesibles a todos.

Referencias

1. Diaz LA, Qualia A, Flores FS, Contiagiani MS. Virus West Nile en Argentina: un agente infeccioso emergente que plantea nuevos desafíos. Hornero. 2011 Ene; 26(1): 5-28. [ Links ]

2. Shepard DS, Coudeville L, Halasa YA, Zambrano B, Dayan GH. Economic Impact of Dengue Illness in the Americas. Am J Trop Med Hyg. 2011 Feb; 84(2): 200-207. [ Links ]

3. Corrales E, Troyo A, Calderón O. Chikunguya: un virus que nos acecha. Act Méd. Costarricense. 2015 Ene; 57(1): 7-15. [ Links ]

4. Fauci A S, Morens, D M. Zika Virus in the Americas - Yet Another Arbovirus Threat. N Eng J Med. 2016 Feb; 37(4): 601-604. [ Links ]

5. Kourí G, Pelegrino JL, Munster BM, Guzmán GM. Sociedad, economía, inequidades y dengue. Rev Cubana Med Trop. 2007 Dic; 59(3): 177-85. [ Links ]

6. Marquetti MC, Leyva M, Bisset JA, García A. Recipientes asociados a la infestación por Aedes aegypti en el municipio La Lisa. Rev Cubana Med Trop. 2009 Sep; 61(3): 232-8. [ Links ]

7. Bisset JA, Rodríguez MM, Moya M, Ricardo Y, Montada D, Gato R et al. Efectividad de formulaciones de insecticidas para el control de adultos de Aedes aegypti en La Habana, Cuba. Rev Cubana Med Tropical. 2011 May; 63(2): 166-70. [ Links ]

8. Bisset JA, Rodríguez MM, Hernández H, Valdéz V, Fuentes I, Hurtado D. Resistencia a insecticidas y sus mecanismos bioquímicos en Aedes aegypti del municipio Boyeros en los años 2010 y 2012. Rev Cubana Med Tropical. 2016 Abr; 68 (1): 82-94. [ Links ]

9. Baly A, Toledo ME, Rodriguez K. Costs of dengue prevention and incremental cost of dengue outbreak control in Guantanamo, Cuba. Trop Med Int Health. 2012 Ene; 17(1): 123-132. [ Links ]

10. OMS Directrices para la lucha contra las intoxicaciones. Programa Internacional de Seguridad de las Sustancias Químicas. Malta: Organización Mundial de la Salud. 1998. [ Links ]

11. Grisales N, Poupardin R, Gomez S, Fonseca-Gonzalez I, Ranson H, Lenhart A. Temephos resistance in Aedes aegypti in Colombia compromises Dengue Vector Control. PLoS Negl Trop Dis. 2013 Sep; 7(9): e2438. [ Links ]

12. Melo-Santos MAV, Varjal-Melo JJM, Araújo AP, Gomesa TCS, Paiva MHS, Regis LN, et al. Resistance to the organophosphate temephos: Mechanisms, evolution and reversion in an Aedes aegypti laboratory strain from Brazil. Acta Trop. 2010 Feb; 113(2): 180-9. [ Links ]

13. Albrieu-Llinás GA, Seccacini E, Gardenal CN, Licastro S. Current resistance status to temephos in Aedes aegypti from different regions of Argentina. Mem Inst Oswaldo Cruz. 2010 Feb; 105(1): 113-6. [ Links ]

14. Rodríguez MM, Bisset JA Ricardo Y, Pérez O, Montada D, Figueredo D, Fuentes I. Resistencia a insecticidas organofosforados en Aedes aegypti (Diptera: Culicidae) de Santiago de Cuba, 1997-2009. Rev Cubana Med Trop. 2010 Sep; 62(3): 217-23. [ Links ]

15. Montada D, Diéguez L, Llambias JJ, Bofill M, Codina A, Estévez S. Tratamiento con K-Othrine WG250 (deltametrina) en un área con alta infestación de Aedes aegypti. Rev Cubana de Med Trop. 2012 Jul; 64(3): 330-334. [ Links ]

16. Montada D, Bisset D, Lazcano D, Castex M, Leyva M, San Blas O, González I. Efectividad del Sipertrin en el control de Aedes aegypti en Santa Clara, Villa clara. Rev Cubana Med Trop. 2013 Sept; 65(3): 350-360. [ Links ]

17. DNVLA, 2012. Manual de Normas y Procedimientos técnicos. Para la Vigilancia y lucha antivectorial. Editorial Ciencias Médicas La Habana, Cuba. [ Links ]

18. Roark RC. Some promising insecticidal plants. Econ Bot. 1947 Oct; 1(4): 437-45. [ Links ]

19. Sukumar K, Perich MJ, Boobar LR. Botanical derivatives in mosquito control: a review. J Am Mosq Control Assoc. 1991 Jun; 7(2): 210-37. [ Links ]

20. Shaalan EAS, Canyonb D, Younesc MWF, Abdel- Wahaba H, Mansoura AH. A review of botanical phytochemicals with mosquitocidal potential. Environ Int. 2005 Oct; 3(8): 1149-66. [ Links ]

21. Ghosh A, Chowhury N, Chandra G. Plants extracts as potential mosquito larvicides. Indian J. Med. Res. 2012 May; 135(5): 581-598. [ Links ]

22. Noleto Diaz C, Fernandez D. Essential oils and their compounds as Aedes aegypti L (Díptera Culicidae) larvicides: review. Parasitol Res. 2014 Feb; 113(2): 565-92. doi: 10.1007/s00436-013-3687-6. [ Links ]

23. Silva G. Insecticidas vegetales. 2002. En: En: http://ipmworld.umn.edu/cancelado/Spchapters/GSilvaSp.htm (11-12-2006). [ Links ]

24. Brundtland Report. 20 March 1987. ONU. Disponible en http://www.cfr.org/economic-development/report-world-commission-environment-development-our- common-future-brundtland-report/p26349mLinks ]

25. Chung IM, Song HK, Yeo MA, Moon HI. Composition and immunotoxicity activity of major essential oils from stems of Allium victorialis L. var. platyphyllum Makino against Aedes aegypti L. Immunopharmacol Immunotoxicol. 2011 Sep; 33(3): 480-3. doi: 10.3109/08923973.2010.539615. [ Links ]

26. Phasomkusolsil S, Soonwera M. Potential larvicidal and pupacidal activities of herbal essential oils against Culex quinquefasciatus say and Anopheles minimus (Theobald). Southeast Asian J Trop Med Public Health. 2010 Nov; 41(6): 1342-51. [ Links ]

27. Hafeez F Akram W, Shaalan EA. Mosquito larvicidal activity of citrus limonoids against Aedes albopictus. Parasitol Res. 2011 Jul; 109(1): 221-9. doi: 10.1007/ s00436-010-2228-9. [ Links ]

28. Mathew J, Thoppil JE. Chemical composition and mosquito larvicidal activities of Salvia essential oils. Pharm Biol. 2011 May; 49(5): 456-63. doi: 10.3109/13880209.2010.523427. [ Links ]

29. Pitarokili D, Michaelakis A, Koliopoulos G, Giatropoulos A, Tzakou O. Chemical composition, larvicidal evaluation, and adult repellency of endemic Greek Thymus essential oils against the mosquito vector of West Nile virus. Parasitol Res. 2011 Aug; 109(2): 425-30. doi: 10.1007/s00436-011-2271-1. [ Links ]

30. Leyva M, Marquetti MC, Tacoronte JE, Scull R, Tiomno O, Mesa A, Montada D. Actividad larvicida de aceites esenciales de plantas contra Aedes aegypti (L) (Díptera: Culicidae). Rev Biomed. 2009 Ene; 20(1): 5-13. [ Links ]

31. Leyva M, Tiomno O, Tacoronte JE, Marquetti MC, Montada D. Essential Plant Oils and Insecticidal Activity in Culex quinquefasciatus. Insecticides - Pest Engineering. [En línea] 2012 Ed Intech; P. 221- 238. ISBN 978-953-307-895-3. [ Links ]

32. Dos Santos E, de Carvalho C, Costa A, Conceic¸˜a, Prado F, Goulart, AE. Bioactivity evaluation of plant extracts used in indigenous medicine against the snail, Biomphalaria glabrata, and the larvae of Aedes aegypti. Evid-Based Complem Alternat Med. 2012 Sep; 2012(1): 1-9. doi: 10.1155/2012/846583. [ Links ]

33. Granados-Echegoyen C A, Pérez-Pacheco R, Ruiz- Flores P, Alonso-Hernández N, Granados- Echegoyen H. Extractos botánicos para el control de larvas de mosquito Culex quinquefasciatus (Say) (Diptera: Culicidae). En: Memorias del XXXVI Congreso Nacional de Control Biológico Oaxaca, México. 2013 P. 206-211. [ Links ]

34. Porto KRA, Roel AR, Silva MM, Coelho RM, Scheleder EJD, Jeller AH. Atividade larvicida do óleo de Anacardium humile Saint Hill sobre Aedes aegypti (Linnaeus, 1762) (Diptera, Culicidae). Rev Soc Bras Med Trop. 2008 Nov; 41(6): 586-9. [ Links ]

35. De Mendonça FA, da Silva KF, dos Santos KK, Ribeiro Júnior KA, Sant’Ana AE. Activities of some Brazilian plants against larvae of the mosquito Aedes aegypti. Fitoterapia. 2005 Dec; 76(7-8) :629-36. [ Links ]

36. Iannacone J, Alvariño L, Mansilla J. Actividad insecticida de cuatro extractos botánicos sobre larvas de los mosquitos Culex quinquefasciatus (Diptera: Culicidae) y Chironomus calligraphus (Diptera:Chironomidae) Wiñay Yachay. 2002; 6(1): 56-71. [ Links ]

37. Chantraine JM, Laurent D, Ballivian C, Saavedra G, Ibañez R, Vilaseca LA. Insecticidal activity of essential oils on Aedes aegypti larvae. Phytoterap Res. 1998 Ago; 12(5): 350-4. [ Links ]

38. Cole ER. Estudo fitoquímico do óleo essencial dos frutos da aroeira (Schinus terebinthifolia RADDI) e sua eficácia no combate ao dengue. MSc dissertation Federal University of the Espírito Santo - Brazil, Department of Chemistry, Center of Exact Sciences. 2008. [ Links ]

39. Silva AG, Almeida DL, Ronchi SN, Bento AC, Scherer R, Ramos AC, Cruz ZMA. The essential oil of Brazilian pepper, Schinus terebinthifolia Raddi in larval control of Stegomyia aegypti (Linnaeus, 1762). Parasit Vect. 2010 Ago; 3(79): 2-7. doi: 10.1186/1756-3305-3-79. [ Links ]

40. Pratti D, A Ramos A, Scherer R , Cruz Z , Silva A. Mechanistic basis for morphological damage induced by essential oil from Brazilian pepper tree, Schinus terebinthifolia, on larvae of Stegomyia aegypti, the dengue vector. Parasites & Vectors. 2015 Mar; 8(136): 1-10. doi: 10.1186/s13071-015-0746-0. [ Links ]

41. Lima MAA, Oliveira FFM, Gomes GA et al. Evaluation of larvicidal activity of the essential oils of plants species from Brazil against Aedes aegypti (Diptera: Culicidae). Afr J Biotechnol. 2011 Sep; 10(55): 11716-11720. [ Links ]

42. Souza TM, Farias DF, Soares BM, Viana MP, Lima GPG, Machado LKA et al. Toxicity of brazilian plant seed extracts to two strains of Aedes aegypti (Diptera: Culicidae) and nontarget animals. J. Med. Entomol. 2011 Jul; 48(4): 846-51. [ Links ]

43. Napoleão Th, Pontual E , Albuquerque T, de Lima Santos N, Araújo R , Cassandra L, do Amaral Ferraz Navarro D, Guedes Paiva PM. Effect of Myracrodruon urundeuva leaf lectin on survival and digestive enzymes of Aedes aegypti larvae. Parasitol Res. 2012 Feb; 110(2): 609-16. doi: 10.1007/s00436-011-2529- 7. [ Links ]

44. Garcez, Garcez F, Da Silva L, Hamerski L. Larvicidal activity against. Aedes aegypti of some plants native to the West-Central region of Brazil. Bioresour Technol. 2009 Dec; 100(24): 6647-50. doi: 10.1016/j. biortech.2009.06.092. [ Links ]

45. Aciole SDG, Piccoli CF, Duquel JE, Costa EV, Navarro-Silva MA, Marques FA, Maia BLNS, Pinheiro MLB, Rebelo MT. Insecticidal activity of three species of Guatteria (Annonaceae) against Aedes aegypti (Diptera: Culicidae). Rev Colomb Entomol. 2011 Jul; 37(2): 262-268. [ Links ]

46. Feitosa EMA, ArriagaAMC, SantiagoGMP, Lemos TLG, OliveiraMCF, Vasconcelos JN, et al. Chemical composition and larvicidal activity of Rollinia leptopetala (Annonaceae). J Braz Chem Soc. 2009 Feb; 20(2):375-378. [ Links ]

47. Smith Vera S, Zambrano DF, Méndez-Sanchez SC, Rodríguez-Sanabria F , Stashenko E, Duque Luna JE. Essential oils with insecticidal activity against larvae of Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2014 Jul; 113(7): 2647-54. doi: 10.1007/s00436-014- 3917-6. [ Links ]

48. Pérez-Pacheco R, Rodríguez C Lara-Reyna J, Montes R, Ramírez G. Toxicidad de aceites, esencias y extractos vegetales en larvas de mosquito Culex quinquefasciatus Say (Diptera: Culicidae). Acta Zool. Mex. 2004 Abr; 20(1): 141-52. [ Links ]

49. Granados-Echegoyen CA, Pérez-Pacheco R, Martinez Tomas S, Alonso-Hernández N, Delgado-Gamboa J. Efectividad biológica de extractos vegetales sobre larvas de mosquito Culex quinquefascictus (Say) (Diptera: Culicidae). Entomol Mex. 2012; 11 tomo 2 Editores Armando Equihua Martinez y col. [ Links ]

50. Bobadilla-Alvarez M, Zavaleta-Espejo G, Gil- Franco F, Pollack-Velásquez L, Sisniegas-Gonzáles M. Efecto bioinsecticida del extracto etanólico de las semillas de Annona cherimolia Miller (chirimoya) y A. muricata Linnaeus (guanábana) sobre larvas de IV estadio de Anopheles sp. Rev Per Biol. 2002 May; 9(2): 64-73. [ Links ]

51. Bobadilla M, Zavala F, Sisniegas M, Zavaleta G, Mostacero J, Taramona L. Evaluación larvicida de suspensiones acuosas de Annona muricata Linnaeus «guanábana» sobre Aedes aegypti Linnaeus (Diptera, Culicidae). Rev Peruana Biologia. 2004 Ene;12(1):145-152. [ Links ]

52. Sanabria L, Segovia EA, González N, Alcaraz P, Vera N de Bilbao. Actividad larvicida de extractos vegetales acuosos en larvas de Aedes aegypti (primeros ensayos). Mem. Inst. Investig. Cienc. Salud. 2009 Jun; 5(1): 26-31. [ Links ]

53. Parra GJ, García CM, Cotes JM. Actividad insecticida de extractos vegetales sobre Aedes aegypti (Diptera: Culicidae). Vector del dengue en Colombia. Rev CES Med. 2007 Ene; 21(1): 47-54. [ Links ]

54. González- Villegas R, Flores M, Guerrero E, Mendoza R, Cárdenas A, Aguirre LA et al. Efecto insecticida de extractos vegetales, sobre larvas de Culex tarsalis (Diptera: Culicidae) en laboratorio. Rev. Mex. Cienc. Agríc. 2013 Feb; 4(2): 273-284. [ Links ]

55. Amariles-Barrera S, García CM, Parra-Henao G. Actividad insecticida de extractos vegetales sobre larvas de Aedes aegypti, Diptera: Culicidae. Rev CES Med. 2013 Jul; 27(2): 193-203. [ Links ]

56. Díaz F, Morelos S, Carrascal M, Pájaro Y, Gómez H. Actividad larvicida de extractos etanólicos de Tabernaemontana cymosa y Trichilia hirta sobre larvas de estadio III y IV de Aedes aegypti (Diptera: Culicidae). Rev Cubana Plant Med. 2012 Jul;17(3). [ Links ]

57. Ciccia G, Coussio J, Mongelli E. Insecticidal activity against Aedes aegypti larvae of somemedicinal South American plants. J Ethnopharmacol. 2000 Sep; 72(1- 2): 185-9. [ Links ]

58. Albuquerque MR,Silveira E, Uchoöa D, Lemos T,Souza E,Santiago GM , Pessoa D. Chemical Composition and Larvicidal Activity of the Essential oils from Eupatorium betonicaeforme (D.C.) Baker (Asteraceae). J Agric Food Chem. 2004 Nov; 52(22): 6708-11. [ Links ]

59. Leyva M, Tacoronte JE, Marquetti MC, Scull R, Montada D, Rodríguez Y, Bruzón R. Actividad insecticida de aceites esenciales de plantas en larvas de Aedes aegypti (Diptera: Culicidae). Rev Cubana Med Trop. 2008 Ene; 60(1): 78-82. [ Links ]

60. Rozo Á, Zapata C, Bello, F. Evaluación del efecto tóxico de extractos de Eupatorium microphyllum L.F. (Asteraceae) sobre larvas de Aedes aegypti (Diptera: Culicidae) en condiciones de laboratorio. Rev. Cienc. Salud. Bogotá Colombia. 2008 May; 6(2): 64-73. [ Links ]

61. Marques M, Morais SM, Vieira ÍGP, Vieira MGS, Silva AR, De Almeida R. et al. Larvicidal Activity of Tagetes erecta against Aedes aegypti. J Am Mosq Control Assoc. 2011 Jun; 27(2): 156-8 doi: 10.2987/10-6056.1. [ Links ]

62. Ruiz C, Cachay M, Domínguez M, Velásquez C, Espinoza G, Ventosilla P. et al. Chemical composition, antioxidant and mosquito larvicidal activities of essential oils from Tagetes filifolia, Tagetes minuta and Tagetes elliptica from Perú. Planta Med. 2011 May; 77(12): 30. doi: 10.1055/s- 0031-1282361. [ Links ]

63. Vidal J, Carbajal A, Sisniegas M, Bobadilla M. Efecto tóxico de Argemone subfusiformis Ownb. y Tagetes patula Link sobre larvas del IV estadio y pupas de Aedes aegypti L. Rev. Peru. Biol. 2009 Feb; 15(2): 103-9. [ Links ]

64. Fontes UR Jr, Ramos CS, Serafín MR, Cavalcanti SCH, Alves PB, Lima GM et al. Evaluation of the lethality of Porophyllum ruderale essential oil against Biomphalaria glabrata, Aedes aegypti and Artemia salina. Afr J Biotechnol. 2012 Feb; 11(13): 3169-72. [ Links ]

65. Pizarro AP, Oliveira A, Parente J, Melo M, dos Santos CE, Lima PR. Utilization of the waste of sisal industry in the control of mosquito larvae. Rev Soc Bras Med Trop. 1999 Jan; 32(1): 23-9. [ Links ]

66. Nunes F, Leite J, Oliveira L, Sousa P, Menezes M, Moraes J, Mascarenhas S, Braga V. The larvicidal activity of Agave sisalana agianst L4 larvae Aedes aegypti is mediated by Internal necrosis and inhibition of nitric oxide production. Parasitol Res. 2015 Feb; 114(2): 543-9. doi: 10.1007/s00436-014-4216. [ Links ]

67. Costa JGM, Pessoa ODL, Menezes EA, Santiago GMP, Lemos TLG. Composition and larvicidal activity of essential oils from heartwood of Auxemma glazioviana Taub. (Boraginaceae). Flavour Fragr. 2004 Nov; 19(6): 529-31. doi: 10.1002/ffj.1332. [ Links ]

68. Santos RP, Nunes EP, Nascimento RF, Santiago GMP, Menezes GHA, Silveira ER, Pessoa ODL. Chemical composition and larvicidal activity of the essential oils of Cordia leucomalloides and Cordia curassavica from the northeast of Brazil. J Braz. Chem. Soc. 2006 Sep; 17(5): 1027-30. doi: 10.1590/ S0103-50532006000500030. [ Links ]

69. Granados-Echegoyen C, Pérez-Pacheco R, Soto- Hernández M, Ruiz-Vega J, Lagunez-Rivera L, Alonso-Hernandez N, Gato-Armas R. Inhibition of the growth and development of mosquito larvae of Culex quinquefasciatus (Diptera: Culicidae) treated with extract from leaves of Pseudocalymma alliaceum (Bignonaceae). Asian Pac J Trop Med. 2014 Ago; 7(8): 594-601. doi: 10.1016/S1995-7645(14)60101- 2. [ Links ]

70. Oliveira P, Ferreira J, Moura F, Lima G, de Oliveira F, P Oliveira PM, Conserva LM, Giulietti AM, Lyra R Larvicidal activity of 94 extracts from ten plant species of northeastern of Brazil against Aedes aegypti L. (Diptera: Culicidae). Parasitol Res. 2010 Jul; 107(2): 403-7. doi: 10.1007/s00436-010-1880-4. [ Links ]

71. Ali A, Tabanca N, Demircib B, Baserb K, Ellisc J, Grayd S et al. Composition mosquito larvicidal, biting deterrent andantifungal activity of essential oils of different plant parts of Cupressus arizonica var. glabra (Carolina Sapphire). Nat Prod Commun. 2013 Feb; 8(2): 257-60. [ Links ]

72. Amer A, Mehlhorn H. Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res. 2006 Sep; 99(4): 466-72. doi: 10.1007/s00436-006-0182-3. [ Links ]

73. Anholeti MC, Duprat RC, Figueiredo MR, Kaplan MC, Guerra Santos M, et al. Biocontrol evaluation of extracts and a major component, clusianone, from Clusia fluminensis Planch. & Triana against Aedes aegypti. Mem Inst Oswaldo Cruz. 2015 Ago; 110(5): 629-35. doi: 10.1590/0074-02760150103. [ Links ]

74. Lima GPG, Souza TM, Freire GP, Farias DF, Cunha AP, Ricardo NMPS, et al. Further insecticidal activities of essential oils from Lippia sidoides and Croton species against Aedes aegypti L. Parasitol Res. 2013 May; 112(5): 1953-8. doi: 10.1007/ s00436-013-3351-1. [ Links ]

75. Morais SM, Cavalcanti ESB, Bertini LM, Oliveira CLL, Rodrigues JRB, et al. Larvicidal activity of essential oils from Brazilian Croton species against Aedes aegypti L. J Am Mosq Control Assoc. 2006 Mar; 22(1): 161-4. doi: 10.2987/8756-971X(2006)2 2[161:LAOEOF]2.0.CO;2 [ Links ]

76. Santos G, Dutra K, Lira C, Lima B, Napoleão Th, Paiva P et al. Effects of Croton rhamnifolioides Essential oil on Aedes aegypti oviposition, larval toxicity and trypsin activity. Molecules. 2014 Oct; 19(10): 16573- 87. doi: 10.3390/molecules191016573. [ Links ]

77. Torres MC, Assunção JC, Santiago GMP, Andrade- Neto M, Silveira E, Costa-Lotuf LV. Larvicidal and Nematicidal activities of the leaf essential oil of Croton regelianus. Chem & Biod. 2008;5(12):2724-8. [ Links ]

78. Doria GAA, Silva WJ, Carvalho GA, Alves PB, Cavalcanti SCHA. Study of the larvicidal activity of two Croton species from northeastern Brazil against Aedes aegypti. Pharm Biol. 2010 Jun; 48(6): 615-20. doi: 10.3109/13880200903222952. [ Links ]

79. Silva WJ, Dória GAA, Maia RT, Nunes RS, Carvalho GA, Blank AF, et al. Effects of essential oils on Aedes aegypti larvae: alternatives to environmentally safe insecticides. Bioresour Technol. 2008 May; 99(8): 3251-5. doi: 10.1016/j.biortech.2007.05.064 [ Links ]

80. Santos HS, Santiago GMP, Oliveira JPP, Arriaga AMC, Marques DD, Lemos TLG. Chemical composition and larvicidal activity against Aedes aegypti of essential oils from Croton zehntneri. Nat Prod Commun. 2007; 2: 1233-36. [ Links ]

81. Góis RWS. Estudo fitoquímico e biológico de Bauhinia acuruana Moric. Dissertation, Federal University of Ceará 2010. [ Links ]

82. Trindade FTT, Stabeli RG, Pereira AA, Facundo VA, Silva AA. Copaifera multijuga ethanolic extracts, oil-resin, and its derivatives display larvicidal activity against Anopheles darlingi and Aedes aegypti (Diptera: Culicidae). Braz J Pharmacogn. 2013 May; 23(3): 464-70. doi: 10.1590/S0102- 695X2013005000038. [ Links ]

83. Prophiro J, Navarro da Silva M, Kanis LA, da Silva BM, Duque-Luna J E, da Silva OS. Evaluation of time toxicity, residual effect, and growth-inhibiting property of Carapa guianensis and Copaifera sp.in Aedes aegypti. Parasitol Res. 2012 Feb; 110(2): 713- 9. doi: 10.1007/s00436-011-2547-5. [ Links ]

84. Kanis LA, Somariva J, da Silva E, do Nascimento MP, Modolon K, Kulkamp-Guerreiro I et al. Parasitol Res. 2012 Mar; 110(3): 1173-8. doi: 10.1007/s00436- 011-2610-2. [ Links ]

85. Aguiar JCD, Santiago GMP, Lavor PL et al. Chemical constituents and larvicidal activity of Hymenaea courbaril fruit peel. Nat Prod Commun. 2010 Dec; 5(12): 1977-80. [ Links ]

86. García-Mateos R, Pérez- Pacheco R, Rodríguez- Hernández C, Soto-Hernández M. Toxicidad de alcaloides de Erythrina americana en larvas de mosquito Culex quinquefasciatus. Rev Fitotec Mex. 2004 Oct; 27(4): 297-303. [ Links ]

87. Kato N, da Costa E, Conceição S, Machado R, Martins de Oliveira A. Atividade larvicida de Myroxylon balsamum (óleo vermelho) e de terpenóides e fenilpropanóides. Quim Nova. 2004 Ene; 27(1): 46-49. [ Links ]

88. Costa JGM, Rodrigues FFG, Angélico EC et al. Chemical biological study of the essential oils of Hyptis martiusii, Lippia sidoides and Syzigium aromaticum against larvae of Aedes aegypti and Culex quinquefasciatus. Rev. bras. farmacogn. 2005 Oct; 15(4): 304-309. [ Links ]

89. Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP. Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz. 2004 Ago; 99(5): 541-4. [ Links ]

90. Granados-Echegoyen C, Pérez-Pacheco R, Alonso-Hernández N, Vásquez-López A, Lagunez-Rivera L, Rojas-Olivos, A. Chemical characterization and mosquito larvicidal activity of essential oil from leaves of Persea americana Mill (Lauraceae) against Culex quinquefasciatus (Say). Asian Pacific J Trop D. 2015 Jun; 5(6): 463-467. doi: 10.1016/S2222- 1808(15)60816-7. [ Links ]

91. Zhu J, Zeng X, O’neal M, Schultz G, Tucker B, Coats J et al. Mosquito larvicidal activity of botanical-based mosquito repellents. J Am Mosq Control Assoc. 2008 Mar; 24(1): 161-8. [ Links ]

92. Pimenta ATA, Santiago GMP, Arriaga AMC, Menezes GHA, Bezerra SB. Phytotochemical study and evaluation of larvicidal activity of Pterodon polygalaeflorus Benth (Leguminosae) against Aedes aegypti. Braz J Pharmacogn. 2006 Oct; 16(4): 501-505. [ Links ]

93. Magalhães LAM, Lima MP, Marques MOM, Facanali R, Pinto ACS, Tadei WP. Chemical composition and larvicidal activity against Aedes aegypti larvae of essential oils from four Guarea species. Molecules. 2010 Ago; 15(8): 5734-41. doi: 10.3390/ molecules15085734. [ Links ]

94. Rossi J, Prophiro J, Mendes A, Kanis L, Silva O. Efeito larvicida de extratos etanólicos de folhas secas e frutos maduros de Melia azedarach (Meliaceae) sobre Aedes albopictus Lat. Am. J. Pharm. 2007 Dic; 26(5): 737-40. [ Links ]

95. Martinez-Tomás, S. H., R. Perez-Pacheco, C. Rodriguez-Hernández, G. Ramirez-Valverde & J. Ruiz-Vega. Effects of an aqueous extract of Azadirachta indica on the growth of larvae and development of pupae of Culex quinquefasciatus. African Journal of Biotechnology. 2009 Sep; 8(17): 4245-50. [ Links ]

96. Ferreira P, Carvalho A, Farias D, Cariolano N, Melo V, Queiroz M et al. Larvicidal activity of the water extract of Moringa oleifera seeds against Aedes aegypti and its toxicity upon laboratory animals. An Acad Bras Cienc. 2009 Jun; 81(2): 207-16. [ Links ]

97. Pontual EV, de Lima Santos N, de Moura MC, Breitenbach L, do Amaral DM, Napoleão Th et al. Trypsin inhibitor from Moringa oleifera flowers interferes with survival and development of Aedes aegypti larvae and kills bacteria inhabitant of larvae midgut. Parasitol Res. 2014 Feb; 113(2): 727-33. doi: 10.1007/s00436-013-3702-y. [ Links ]

98. Pontual EV, Napoleão TH, Assis CRD, Bezerra RS, Xavier HS, Navarro DMAF et al. Effect of Moringa oleifera flower extract on larval trypsin and acethylcholinesterase activities in Aedes aegypti. Arch Insect Biochem Physiol. 2012 Mar; 79(3): 135- 52. doi: 10.1002/arch.21012. [ Links ]

99. Cordeiro Agra-Neto A, Napoleão T H, Pontual E V, de Lima Santos DN, Andrade Luz L, Fontes de Oliveira CM, et al. Effect of Moringa oleifera lectins on survival and enzyme activities of Aedes aegypti larvae susceptible and resistant to organophosphate. Parasitol Res. 2014 Ene; 113(1): 175-84. doi: 10.1007/s00436-013-3640-8. [ Links ]

100. Lucia A, Juan LW, Zerba EN, Harrand L, Marcó M, Masuh HM. Validation of models to estimate the fumigant and larvicidal activity of Eucalyptus essential oils against Aedes aegypti (Diptera: Culicidae). Parasitol Res. 2012 May; 110(5): 1675- 86. doi: 10.1007/s00436-011-2685-9. [ Links ]

101. Lucia A, Licastro S, Zerba E, Masuh H. Yield hemical composition, and bioactivity of essential oils from 12 species of Eucalyptus on Aedes aegypti larvae. Entomol Exp Appl. 2008 Oct; 129(1): 107-14. doi: 10.1111/j.1570-7458.2008.00757.x [ Links ]

102. Lucia A, Licastro S, Zerba E, Gonzalez Audino P, Masuh H. Sensitivity of Aedes aegypti adults (Diptera: Culicidae) to the vapors of Eucalyptus essential oils. Bioresour Technol. 2009 Dic; 100(23): 6083-7. doi: 10.1016/j.biortech.2009.02.075. [ Links ]

103. Lucia A, Audino PG, Seccacini E, Licastro S, Zerba E, Masuh H. Larvicidal effect of Eucalyptus grandis essential oil and turpentine and their major components on Aedes aegypti larvae. J Am Mosq Control Assoc. 2007 Sep; 23(3): 299-303. [ Links ]

104. Yáñez X, Pérez O, Meza H. Actividad larvicida del aceite esencial foliar de Eucaliptus globulus contra Aedes aegypti Linnaeus. Bistua. 2010 Ene; 8(1): 71-77. [ Links ]

105. Mora F, Avila J, Rojas L, Silva B. Chemical composition and larvicidal activity of Eugenia triquetra essential oil from Venezuelan Andes. Nat Prod Commun. 2010 Jun; 5(6): 965-8. [ Links ]

106. Noleto Dias C, Lima Alves LP, da Franca Rodrigues KA, Aranha Brito MC, dos Santos C, Mendonça do Amaral FM, et al. Chemical composition and larvicidal activity of essential oils extracted from brazilian legal amazon plants against Aedes aegypti L. (Diptera: Culicidae) Hind Publish Corp. Evidence-Based Complem Alter Med. 2015; 1-8. doi: 10.1155/2015/490765. [ Links ]

107. Gomes da Silva A, Corrêa Alves RC, Bezerra Filho CM, Bezerra-Silva PC, Morais dos Santos LM, Foglio MA et al. Chemical composition and larvicidal activity of the essential oil from leaves of Eugenia brejoensis Mazine (Myrtaceae). J Essent Oil Bear Plants. 2015 Nov; 18(6): 1441-47, DOI: 10.1080/0972060X.2014.1000390. [ Links ]

108. Marinho SC. Chemical study electrochemical evaluation and larvicidal activity of essential oil from leaves of Pimenta dioica Lindl front of Aedes aegypti (Linnaeus, 1762). Dissertation, Federal University of Paraíba 2010. Brasil. [ Links ]

109. Aciole SDG Avaliação da atividade inseticida dos óleos essenciais das plantas amazônicas Annonaceae, Boraginaceae e de mata atlântica Myrtaceae como alternativa de controle às larvas de Aedes aegypti (Linnaeus, 1762) (Diptera: Culicidae). Dissertation, University of Lisbon. 2009. [ Links ]

110. Vila R, Santana AI, Pérez-Rosés R. Composition and biological activity of the essential oil from leaves of Plinia cerrocampanensis, a new source of α-bisabolol. Bioresour Technol. 2010 Abr; 101(7): 2510-4. doi: 10.1016/j.biortech.2009.11.021. [ Links ]

111. Leyva M, French-Pacheco L, Quintana F, Montada D, Castex M, Hernandez A, Marquetti MM. Melaleuca quinquenervia (Cav.) S.T. Blake ((Myrtales: Myrtaceae): Natural alternative for mosquito control. Asian Pacific Journal of Tropical Medicine. 2016 Oct; 9(10): 968-972. [ Links ]

112. Leyva M, Tacoronte JE, Marquetti MC, Scull R, Tiomno O, Mesa A, Montada D. Utilización de aceites esenciales de pinaceas endemicas como una alternativa de control en Aedes aegypti. Rev. Cub. Med. Trop. 2009 Sep; 61(3): 239-43. [ Links ]

113. Leyva M, Marquetti MC, French L, Montada D, Tiomno O, Tacoronte JE. Efecto de un aceite de trementina obtenido de Pinus tropicalis Morelet 1851 sobre la biología de una cepa de Aedes (Stegomyia) aegypti Linnaeus 1762 resistente a insecticidas. Anales de Biologia. [en línea] 2013 Oct; Disponible en: URL: http://www.um.es/analesdebiologia/numeros/35/PDF/35_2013_11.pdfLinks ]

114. Leyva M, French L, Marquetti MC, Montada D, Castex M, Tiomno O, Tacoronte JE. Aceite de trementina modificado: un inhibidor de la actividad de las enzimas detoxificadoras en dos cepas de Aedes aegypti. Revbiomed. 2015 Ene; 26(1): 13-22. [ Links ]

115. Costa JGM, Santos PF, Brito SA, Rodrigues FFG, Coutinho HDM, Botelho MA et al. Composição química e toxicidade de óleos essenciais de espécies de Piper frente a larvas de Aedes aegypti L. (Diptera: Culicidae). Lat Am J Pharm. 2010 May; 29(3): 463-7. [ Links ]

116. Almeida RRP, Souto RNP, Bastos CN, Silva MHL, Maia JGS. Chemical variation in Piper aduncum and biological properties of its dillapiole-rich essential oil. Chem Biodivers. 2009 Sep; 6(9): 1427-34. doi: 10.1002/cbdv.200800212. [ Links ]

117. Oliveira G, Cardoso S, Lara C, Vieira T, Guimarães E, Figueiredo L et al. Chemical study and larvicidal activity against Aedes aegypti of essential oil of Piper aduncum L. (Piperaceae). Anais Acad Brasileira Ciênc. 2013 Nov; 85(4): 1227-1234 [ Links ]

118. Morais SM, Facundo VA, Bertini LM. Chemical composition and larvicidal activity of essential oils from Piper species. Biochem Syst Ecol. 2007 Oct; 35(10): 670-5. doi: 10.1016/j.bse.2007.05.002 [ Links ]

119. Nacimento JC, David JM, Barbosa LCA, Paula VF, Demuner AJ, David JP et al. Larvicidal activities and chemical composition of essential oils from Piper klotzschianum (Kunth) C DC. (Piperaceae). Pest Manag Sci. 2013 Nov; 69(11): 1267-71. doi: 10.1002/ps.3495. [ Links ]

120. Autran ES, Nevesb IA, da Silva CSB, GKN, Santosa CAG, da Câmarab D, Navarroa MAF. Chemical composition, oviposition deterrent and larvicidal activities against Aedes aegypti of essential oils from Piper marginatum Jacq. (Piperaceae). Bioresour Technol. 2009 Abr; 100(7): 2284-8. doi: 10.1016/j.biortech.2008.10.055. [ Links ]

121. Lavor PL, Santiago GM, Gois RW, Sousa LM, Bezerra GP, Romero NR. Larvicidal activity against Aedes aegypti of essential oils fromnortheast Brazil. Nat Prod Commun. 2012 Oct; 7(10): 1391-2. [ Links ]

122. Bazan-Calderon J, Ventura-Flores R, Kato M, Rojas-Idrogo C, Delgado-Paredes G. Actividad insecticida de Piper tuberculatum Jacq sobre Aedes aegypti L (Diptera: Culicidae) y Anopheles pseudopunctipennis Tehobal (Diptera: Culicidae). Anales de Biología [en línea] 2011; 33: 135-147. Disponibe en: URL: https://www.um.es/analesdebiologia/numeros/33/PDF/33_2011_16.pdfLinks ]

123. Morales-Saldaña J, Gómez N, Rovira J, Abrahams M. Actividad larvicida de la toronja, Citrus paradisi (Rutaceae) sobre dos vectores del dengue. Rev. Peru. Biol. 2007 Dic; 14(2): 297-299. [ Links ]

124. Cárdenas Castro E, Lugo L, Rozo A. Efecto toxico del extracto acuoso de Ruta graveolens L. (Rutaceae) sobre larvas de Anopheles albimanus Wiedemann, 1820 y Culex quinquefasciatus Say, 1823 (Diptera: Culicidae), en condiciones experimentales. Entomotropica. 2010 Abr; 25(1): 11-18. [ Links ]

125. Ferreira-Barreto C, Cavasin GC, Garcia da Silva HH, Garcia da Silva I. Estudo das alterações morfo-histológicas em larvas de Aedes aegypti (Díptera: Culicidae) submetidas ao extrato bruto etanólico de Sapindus saponaria Lin (Sapindaceae). Rev Patol Trop. 2006 Ene; 35(1): 37-57. [ Links ]

126. Garcia da Silva H, Garcia da Silva I, Geris dos Santos Ra, Rodrigues Filho E, Elias C. Larvicidal activity of tannins isolated of Magonia pubescens St. Hil. (Sapindaceae) against Aedes aegypti (Diptera, Culicidae). Rev Soc Brasileira Med Trop. 2004 Sep; 37(5): 396-9. [ Links ]

127. Souza LGS, Almeida MCS, Monte FJQ, Santiago GMP, Braz-Filho R, Lemos TLG et al. Chemical constituents of Capraria biflora (Scrophulariaceae) and larvicidal activity of essential oil. Quim Nova. 2012 Nov. 35(11): 2258-62. [ Links ]

128. Arriaga AMC, Rodrigues FEA, Lemos TLG, Oliveira MCF, Lima JQ, Santiago GMP et al. Composition and larvicidal activity of essential oil from Stemodia maritima L. Nat Prod Commun. 2007 Ene; 2(12): 1237-9 [ Links ]

129. Gosh A, Chowdhury N, Chandra G. Laboratory evaluation of a phytosteroid compound of mature leaves of Day Jasmine (Solanaceae: Solanales) against larvae of Culex quinquefasciatus (Diptera: Culicidae) and nontarget organisms. Parasitol Res. 2008 Jul; 103(2): 271-7. doi: 10.1007/s00436-008-0963-y. [ Links ]

130. Costa JGM, Rodrigues FFG, Sousa EO, Junior DMS, Campos AR, Coutinho HDM. Composition and larvicidal activity of the essential oils of Lantana camara and Lantana montevidensis. Chem Nat Comp. 2010 May; 46(2): 313-5 [ Links ]

131. Santiago GMP, Lemos TLG, Pessoa ODL et al. Larvicidal activity against Aedes aegypti L. (Diptera: Culicidae) of essential oils of Lippia species from Brazil. Nat Prod Commun. 2006; 1: 573- 6 [ Links ]

132. Gleiser R, Zygadlo A. Insecticidal properties of essential oils from Lippia turbinate and Lippia polystachya (Vervenacea) against Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res. 2007 Oct; 101(5): 1349-54. [ Links ]

133. Santos GKN, Dutra KA, Barros RA, Câmara CAG, Lira DD, Gusmão NB et al. Essential oils from Alpinia purpurata (Zingiberaceae): chemical composition, oviposition deterrence, larvicidal and antibacterial activity. Ind Crops Prod. 2012 Nov; 40: 254-60 doi:10.1016/j.indcrop.2012.03.020 [ Links ]

134. Sakhanokho HF, Sampson BJ, Tabanca N, Wedge DE, Demirci B, Baser KHC et al. Chemical composition, antifungal and insecticidal activities of Hedychium essential oils. Molecules. 2013 Abr; 18(4): 4308-27. doi: 10.3390/molecules18044308. [ Links ]

135. Gillij YG, Gleiser RM, Zygadlo J.A. Mosquito repellent activity of essential oils of aromatic plants growing in Argentina. Bioresour Technol. 2008 May; 99(7): 2507-15. [ Links ]

136. Gleiser R, Bonino M, Zygadlo A. Repellence of essential oils aromatic plants growing in Argentin against Aedes aegypti (Díptera: Culicidae). Parasitol Res. 2011 Ene; 108(1): 69-78. doi: 10.1007/s00436-010-2042-4. [ Links ]

137. Estrada G. Repelencia y composición química de aceites esenciales de plantas etnorepelentes a mosquitos en comunidades de Oaxaca, México. Tesis para optar por el grado académico de Maestra en Ciencias. 2014 Instituto Politécnico Nacional Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional, Oaxaca, Mexico. [ Links ]

138. Otiniano G, Roldán J. Actividad repelente y tiempo de protección experimental del aceite del endospermo de Ricinus communis (Euphorbiaceae) en Aedes aegypti. Rebiolest. 2014 Jul; 2(2): 48-60. [ Links ]

139. Cárdenas E, Riveros I, Lugo L. Efecto insecticida de cuatro aceites esenciales sobre adultos de Aedes aegypti y Anopheles albimanus en condiciones experimentales. Entomotropica. 2013 Abr; 28(1): 1-10. [ Links ]

140. Leyva M, Castex M, Montada D, Quintana D, Lezcano D, Marquetti MC, Companioni A, Anaya J, González I. Actividad repelente de formulaciones del aceite esencial de Melaleuca quinquenervia (Cav.) S.T. Blake (Myrtales:Myrtaceae) en mosquitos. Anales de Biologia. 2012; 34: 47-56. [ Links ]

141. Aguiar RWS, dos Santos SF, da Silva Morgado F, Ascencio SD, de Mendonça Lopes M, Viana KF, et al. Insecticidal and Repellent Activity of Siparuna guianensis Aubl. (Negramina) against Aedes aegypti and Culex quinquefasciatus. PLoS ONE. 2015 Feb; 10(2): 1-14. doi: 10.1371/journal. pone.0116765 [ Links ]

142. Santos E, Correia J, Muniz L, Meiado M, Albuquerque C. Oviposition activity of Aedes aegypti L. (Diptera: Culicidae) in response to different organic infusions. Neotrop Entomol. 2010 Mar; 39(2): 299-302. [ Links ]

143. De Lima Santos ND, Santana K, Napoleao TH, Novais Santos G, Breitenbach LC, Do Amaral DM et al. Oviposition stimulant and ovicidal activities of Moringa oleifera lectin on Aedes aegypti. Plos One. 2013 Sep; 7(9): 1-8. doi: 10.1371/ journal.pone.0044840. [ Links ]

144. Procopio TF, Fernandes KM, Pontual EV, Ximenes RM, de Oliveira ARC, Souza CdS, et al. Schinus terebinthifolius Leaf extract causes midgut damage, interfering with survival and development of Aedes aegypti Larvae. PLoS One. 2015 May; 10(5): e0126612. doi: 10.1371/journal.pone.0126612. [ Links ]

145. Leyva M, Marquetti MC, Tacoronte JÁ, Tiomno O, Montada D. Efecto inhibidor del aceite de trementina sobre el desarrollo de larvas de Aedes aegypti (Diptera: Culicidae). Rev Cub Med Trop. 2010 Sep; 62(3): 212-6. [ Links ]

146. Leyva M, French L, Marquetti MC, Montada D, Santos D, Hernandez A, Tacoronte JE. Actividad insecticida de aceite de trementina modificado en Culex quinquefasciatus y Aedes albopictus (Diptera:Culicidae) Rev Cub Med Trop. [en línea] 2015 Dic; 67(3) Disponible en: URL: http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S0375-07602015000300004&lng=es. [ Links ]

147. Barnard D, De Xue R. Laboratory evaluation of mosquito repellents against Aedes albopictus, Culex nigripalpus, and Ochlerotatus triseriatus (Diptera: Culicidae). J Med Entomol. 2004 Jul; 41(4): 726-30. [ Links ]

148. Witting-Bissinger B E, Stumpf C F, Donohue KV, Apperson C S, Roe RM. Novel arthropod repellent, BioUD, is an efficacious alternative to Deet 1. J Med Entomol. 2008 Sep; 45(5): 891-8. [ Links ]

149. Feaster J, Scialdone M, Todd R, Gonzalez Y, Foster J, Hallahan D. Dihydronepetalactones Deter Feeding Activity by Mosquitoes, Stable Flies, and Deer Ticks. J Med Entomol. 2009 Jul; 46(4): 832-40. [ Links ]

150. Scott J, Hossain T, Davidson C, Smith M, De Xue R. Laboratory evaluation of citronella, picaridin, and deet repellents against Psorophora ciliata And Psorophora howardii. J Am Mosq Control Assoc. 2014 Jun; 30(2): 136-7. [ Links ]

151. Da Silva AC, Lagos K, Maia FC, Souza da Silva L, Tadei W, Pohlit A. Adulticidal activity of dillapiol and semi-synthetic derivatives of dillapiol against Aedes aegypti (L.) (Culicidae). J Mosq Res. 2012 Ago; 2(1): 1-7. [ Links ]

152. Scott PC, Loye J. PMD, a Registered Botanical Mosquito Repellent with Deet-Like Efficacy. J Am Mosq Control Assoc. 2006 Sep; 22(3): 507-14. [ Links ]

153. Moore S, Darling S, Sihuincha M, Padilla N, Devine G. A low-cost repellent for malaria vectors in the Americas: results of two field trials in Guatemala and Peru. Malar J. 2007 Ago; 6(101): 1-6. [ Links ]

154. De Xue R, Barnard R, Arshad R. Laboratory evaluation of 21 insect repellents as larvicides and as oviposition deterrents of Aedes albopictus (Diptera: Culicidae). J Am Mosq Control Assoc. 2006 Mar; 22(1): 126-30. [ Links ]

155. Rodriguez SD, Drake L, Price DP, Hammond J, Hansen IA. The efficacy of some commercially available insect repellents for Aedes aegypti (Diptera: Culicidae) and Aedes albopictus (Diptera: Culicidae). J Insect Sci. 2015; 15(1): 140. doi: 10.1093/jisesa/iev125. [ Links ]

156. Oviedo R, Gonzalez L. Lista nacional de las plantas Invasoras y potencialmente invasoras en la República de Cuba. Bissea. 2015 May; 9(2): 90. [ Links ]

157. Ebadollahi A. Essential Oils Isolated from Myrtaceae Family as Natural Insecticides. Ann Review Res Biol. 2013; 3(3): 148-175. [ Links ]

158. Cantrell CL, Pridgeon JW, Fronczek FR, Becnel JJ. Structure-activity relationship studies on derivatives of Eudesmanolides from Inula helenium as toxicants against Aedes aegypti larvae and adults. Chem Biodivers. 2010 Jul; 7(7): 1681-97. doi: 10.1002/cbdv.201000031. [ Links ]

159. Céspedes CL, Torres P, Marín JC, Arciniegas A, Romo de Vivar A, Pérez-Castorena AL, Aranda E. Insect growth inhibition by tocotrienols and hydroquinones from Roldana barba-johannis. Phytochemistry. 2004 Jul; 65(13): 1963-75. [ Links ]

160. Burgueño-Tapia E, Castillo L, González-Coloma A, Joseph-Nathan P. Antifeedant and phytotoxic activity of the sesquiterpene p-benzoquinone perezone and some of its derivatives. J Chem Ecol. 2008 Jun; 34(6): 766-71. doi: 10.1007/s10886-008-9495-2. [ Links ]

161. Hincapié CA, Monsalve Z, Parada K, Lamilla C, Alarcón J, Céspedes CL et al. Insect growth regulatory activity of Blechnum chilense. Nat Prod Commun. 2011 Ago; 6(8): 1085-8. [ Links ]

162. Frederik Nijhout H. Insect Hormones. Princenton University. 1994. [ Links ]

163. William CM. Hormonal intercations between plants and insects. In Sondheimer E and Simeone JB (eds) Chemical Ecology. New York: Academic. Prees; 1970. P. 103-132. [ Links ]

164. Zanno PR, Miura I Nakanishi K, Elder DL. Structure of the insect phago repellent azadirachtin. J Amer Chem Soc. 1975 Abr; 97(7): 1975-77 doi: 10.1021/ja00840a073. [ Links ]

165. Wink M. Introduction: Biochemistry, role and biotechnology of secondary metabolites. In M Wink (ed). Biochemistry of Plant Secondary metabolism. Ann Plant Rev. 1999; 3: 1-16 [ Links ]

166. Enan EE. Insecticidal activity of essential oils: octopaminergic sites of action. Comp Biochem Physiol C Toxicol Pharmacol. 2001 Nov; 130(3): 325-37. [ Links ]

167. Xia Y, Wang G, Buscariollo D, Pitts J, Wenger RH, Zwiebel L. The molecular basis of olfactory-based behavior in Anopheles gambiae larvae. Proc Natl Acad Sci USA. 2008 Abr; 105(17): 6433-8. [ Links ]

168. Ditzen M M, Pellegrino LB. Insect odorant receptors are molecular targets of the insect repellent DEET. Science. 2008 Mar; 319(5871): 1838-42. doi: 10.1126/science.1153121. [ Links ]

169. Dickens J, Bohbot JD. Mini review: Mode of action of mosquito repellents. Pes Bioch Physiol. 2013 Jul; 106(3): 149-155. [ Links ]

170. Kwon Y, Kim SH, Ronderos DS, Lee Y, Akitake B, Woodward O et al. Drosophila TRPA1 channel is required to avoid the naturally occurring insect repellent citronellal. Curr Biol. 2010 Sep; 20(18): 1672-8. doi: 10.1016/j.cub.2010.08.016. [ Links ]

171. Sanford JL, Shields VDC, Dickens JC. Gustatory receptor neuron responds to DEET and other insect repellents in the yellow fever mosquito, Aedes aegypti. Naturwissenschaften. 2013 Mar; 100(3): 269-73. doi: 10.1007/s00114-013-1021-x. [ Links ]

172. Barasa SS, Ndiege IO, Lwande W, Hassanali A. Repellent activities of stereoisomers of p-menthane-3,8-diols against Anopheles gambiae (Diptera: Culicidae). J Med Entomol. 2002 Sep; 39(5): 736-41. [ Links ]

173. Carroll SP, Loye J. PMD, a registered botanical mosquito repellent with deet-like efficacy. J Am Mosq Control Assoc. 2006 Sep; 22(3): 507-14. [ Links ]

174. Zielinski-Gutierrez E, Raw R, Nasci S. Protection against mosquitoes, ticks and other insects and arthropods. In CDC Health Information for International Travel (“The Yellow Book”). Atlanta: Centres for Disease Control and Prevention; 2010. [ Links ]

175. Elango G, Rahuman A, Kamaraj C, Bagavan A, Zahir A. Adult emergence inhibition and adulticidal activity of leaf crude extracts against Japanese encephalitis vector, Culex quinquefascitus. J King Saud Univ Sci. 2012 Ene; 24(1): 73-80. [ Links ]

176. Dua V, Kumar A, Pandey A, Kumar S. Insecticidal and genotoxic activity of Psoralea corylifolia Linn(Fabaceae) against Culex quinquefasciatus say, 1823. Parasit Vectors. 2013 Feb; 6: 30. doi: 10.1186/1756-3305-6-30. [ Links ]

177. Gemeda N, Mokonnene W, Lemma H, Tadele A, Urga K, Addis G, et al. Insecticidal activity of some traditionally used Ethiopian medicinal plants against sheep ked Melophags ovinus. J Parasitol Res. 2014 Feb; 2014: 1-7. [ Links ]

178. Lee SE, Lee BH, Choi WS, Park BS, Kim JG, Campbell BC. Fumigant toxicity of volatile natural products from Korean spices and medicinal plants towards the rice weevil, Sitophilus oryzae (L.). Pest Manag Sci. 2001 Jun; 57(6): 548-53. [ Links ]

179. Abd El-Galeil SA, Mohamed MI, Badawey ME, El-Arami SA. Fumigant and contact toxicities of monoterpenes to Sitophilus oryzae (L.) and Tribolium castaneum (Herbst) and their inhibitory effects on acetylcholinesterase activity. J Chem Ecol. 2009 May; 35(5): 518-25. doi: 10.1007/s10886-009-9635-3. [ Links ]

180. Tripathy AK, Prajapati V, Aggarwal K, Kumar S. Toxicity, feeding deterrence and effect of activity of 1,8-cineole from Artemisia annua on progeny production of Tribolium castaneum (Coleoptera: Tenebrionidae). J Econ Entomol. 2001 Ago; 94(4): 979-83. doi: 10.1603/0022-0493-94.4.979 [ Links ]

181. Koul O, Singh G, Singh R, Singh J. Tribolium castaneum exposed to anethole vapours at high temperature. Biopestic Int. 2007 Dic; 3(2): 126-37. [ Links ]

182. Lee BH, Lee SE, Annis PC, Pratt SJ, Park BS, Tumaalii F. Fumigant toxicity of essential oils and monoterpenes against the red flour beetle, Tribolium castaneum Herbst. J Asian Pacific Entomol. 2002 Nov; 5(2): 237-40. [ Links ]

183. Choi WS, Park BS, Lee YH, Jang DY, Yoon HY, Lee SE. Fumigant toxicities of essential oils and monoterpenes against Lycoriella mali adults. Crop Protect. 2006 Abr; 25(4): 398-01. doi: 10.1016/j.cropro.2005.05.009 [ Links ]

184. Lee S, Peterson CJ, Coats JR. Fumigation toxicity of monoterpenoids to several stored product insects. J Stored Prod Res. 2003; 39(1): 77-85. doi: 10.1016/S0022-474X(02)00020-6 [ Links ]

185. Toloza AC, Zygadlo J, Mougabure G, Biurrun F, Zerba E, Picollo MI. Fumigant and repellent properties of essential oils and component compounds against permethrinresistant Pediculus humanus capitis (Anoplura: Pediculidae) from Argentina. J Med Entomol. 2006 Sep; 43(5): 889-95. [ Links ]

186. Yoon C, Kang SH, Yang JO, Noh DJ, Gandhi P, Kim GH. Repellent activity of citrus oils against the cockroaches Blattella germanica, Periplaneta americana and P fuliginosa. J Pestic Sci. 2009 Ene; 34(2): 77-88. [ Links ]

187. Park HM, Kim J, Chang KS, Kim BS, Yang YJ, Kim GH, et al. Larvicidal activity of Myrtaceae essential oils and their components against Aedes aegypti, acute toxicity on Daphnia magna, and aqueous residue. J Med Entomol. 2011 Mar; 48(2): 405-10. [ Links ]

188. Kim SI, Yoon JS, Jung JW, Hong KB, Ahn YJ, Kwon HW. Toxicity and repellency of origanum essential oil and its components against Tribolium castaneum (Coleoptera: Tenebrionidae) adults. J Asia-Pacific Entomol. 2010 Dic; 13(4): 369-73. [ Links ]

189. Kordali S, Kesdek M, Cakir A. Toxicity of monoterpenes against larvae and adults of Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae). Ind Crop Prod. 2007 Oct; 26(3): 278-97. doi: 10.1016/j.indcrop.2007.03.009 [ Links ]

190. Suthisut D, Fields PG, Chandrapatya A. Fumigant toxicity of essential oils from three Thai plants (Zingiberaceae) and their major compounds against Sitophilus zeamais, Tribolium castaneum and two parasitoids. J Stored Prod Res. 2011 Jul; 47(3): 222-30. [ Links ]

191. Talbert R, Wall R. Toxicity of essential and non-essential oils against the chewing louse, Bovicola (Werneckiella) ocellatus. Res Vet Sci. 2012 Oct; 93(2): 831-5. doi: 10.1016/j.rvsc.2011.11.006. [ Links ]

192. Tunaz H, Er MK, Isikber AA. Fumigant toxicity of plant essential oils and selected monoterpenoid components against the adult German cockroach, Blattella germanica (L.) (Dictyoptera: Blattellidae). Turk J Agric For. 2009 Mar; 33(2): 211-17. [ Links ]

193. Yang YC, Lee SH, Lee WJ, Choi DH, Ahn YJ. Ovicidal and adulticidal effects of Eugenia caryophyllata bud and leaf oil compounds on Pediculus capitis. J Agric Food Chem. 2003 Ago; 51(17): 4884-8. [ Links ]

194. Rattan RS. Mechanism of action of insecticidal secondary metabolites of plant origin. Crop Protection. 2010 Sep; 29(9): 913-20. doi: 10.1016/j.cropro.2010.05.008. [ Links ]

195. El-Wakeil N, Shalaby S, Abdou G, Sallam A. Pesticide-Residue Relationship and Its Adverse Effects on Occupational Workers Insecticides - Development of Safer and More Effective Technologies. Intech; 2013. doi: 10.5772/54338 [ Links ]

196. Baki MA, Akhtar N, Rahman MM, Islam MN, Hossain M, et al. Synergistic action of Wedelia calendulacea Less. plant extracts with lambda cyhalothrin on adult red flour beetle Tribolium castaneum Herbst. J. Agron. 2005 Oct; 4(1): 18-22. [ Links ]

197. Larson R. American Dietetic Association Complete food and nutrition guide. Estados Unidos: Ed. Whiley; 2007. [ Links ]

198. War AR, Paulraj MG, Ignacimuthu S. Synergistic Activity of Endosulfan with Neem Oil Formulation Against Tobacco Caterpillar Spodoptera litura (Fab.) (Lepidoptera: Noctuidae). J Entomol. 2011 Nov; 8(6): 530-538. doi: 10.3923/je.2011.530.538 [ Links ]

199. Macedo MLR, Freire MGM, Silva MBR, Coelho LCBB. Insecticidal action of Bauhinia monandra leaf lectin (BmoLL) against Anagasta kuehniella (Lepidoptera: Pyralidae), Zabrotes subfasciatus, and Callosobruchus maculatus (Coleoptera: Bruchidae). Comp Biochem Physiol A Mol Integr Physiol. 2007 Abr; 146(4): 486-98. doi: 10.1016/j.cbpa.2006.01.020 [ Links ]

200. Babu SR, Subrahmanyam B. Bio-potency of serine proteinase inhibitors from Acacia senegal seeds on digestive proteinases, larval growth, and development of Helicoverpa armigera (Hübner). Pest Biochem Physiol. 2010 Nov; 98(3): 349-358. [ Links ]

201. Dasgupta A. Review of abnormal laboratory test results and toxic effects due to use of herbal medicines American Journal of Clinical Pathology. 2003 Jul; 120(1): 127-37. [ Links ]

202. Mahan, K. & Escott-Stump. Nutrición y dietoterapia de Krause. México: Ed. Mc Graw-Hill Interamericana; 2000. [ Links ]

203. Larson, R. American Dietetic Association Complete food and nutrition guide. Estados Unidos: Ed. Whiley; 2007. [ Links ]

204. Tighe S, Gao Y-Y, Tseng SCG. Terpinen-4-ol is the most active ingredient of tea tree oil to kill Demodex mites. Trans Vis Sci Tech. 2013 Nov; 2(7): 2. [ Links ]

205. Rocha Caldas GF, Rodrigo da Silva A, Valença Araújo A, Lopes Lafayette SS, Silva Albuquerque G et al. Gastroprotective mechanisms of the monoterpene 1,8-Cineole (Eucalyptol). PLoS One. 2015 Ago; 10(8): 1-17 doi: 10.1371/journal.pone.0134558 [ Links ]

206. Vargas M. An update on published literature (period 1992-2010) and botanical categories on plant essential oils with effects on mosquitoes (Diptera: Culicidae). Boletín de Malariología y Salud Ambiental. 2012 Ago; 52(2): 143-193. [ Links ]

207. Pohlit AM, Lopes PN, Gama RA, Tadei, WP, Ferreira V. Patent literature on mosquito repellent inventions which contain plant essential oils - a Review. Planta Med. 2011 Abr; 77(6): 598-617. doi: 10.1055/s-0030-1270723. [ Links ]

MATERIAL COMPLEMENTARIO

Cuadro 1. Estudios realizados con aceites esenciales y extractos de plantas evaluando la actividad larvicida contra mosquitos en condiciones de laboratorio en el área de las Américas

Cuadro 2 Estudios de actividad adulticida y repelente de aceites esenciales y extractos de plantas en condiciones de laboratorio realizados en el área de las Américas 

Familia Especie de planta Parte utilizada País de origen Especie de mosquito Referencia
Asteraceae Achyrocline satureioidesR Hojas Argentina Ae. aegypti - 135
Acantholippia salsoloidesR NI Argentina Ae. aegypti - 136
Aloysia catamarcensisR NI Argentina Ae. aegypti - 136
Aloysia polystachyaR NI Argentina Ae. aegypti - 136
Lippia integrifoliaR NI Argentina Ae. aegypti - 136
Lippia junellianaR NI Argentina Ae. aegypti - 136
Baccharis spartioidesR Hojas Argentina Ae. aegypti - 135
Baccharis salicifoliaR NI Argentina Ae. aegypti - 136
Eupatorium bunnifoliumR NI Argentina Ae. aegypti - 136
Tagetes minutaR Hojas Argentina Ae. aegypti - 135
Tagetes pusillaR Hojas Argentina Ae. aegypti - 135
Tagetes filifoliaR NI Argentina Ae. aegypti - 136
Tagetes lucidaR Hojas México Cx. quinquefasciatus - 137
Porophyllum tagetoidesR Hojas México Cx. quinquefasciatus - 137
Burseraceae Bursera linaloeR Hojas México Cx quinquefasciatus - 137
Euphorbiaceae Ricinus communisR Semillas Perú Ae. aegypti - 138
Chenopodiaceae Chenopodium ambrosioidesR Hojas Argentina Ae. aegypti - 135
Cupressaceae Juniperus virginianaR Corteza Estados Unidos Ae. aegypti, An. Stephensi, Cx. quinquefasciatus - 72
Piperaceae Piper auritumR Hojas México Cx. quinquefasciatus - 137
Poaceae Cymbopogon citratusA Hojas Colombia Ae. aegypti, Anopheles albimanus - 139
Cymbopogon nardusA Hojas Colombia Ae aegypti, An. albimanus - 139
Lamiaceae Hyptis mutabilisR Hojas Argentina Ae. aegypti - 135
Minthostachys mollisR Hojas Argentina Ae. aegypti - 135
Rosmarinus officinalisR Hojas Argentina Ae. aegypti - 135
Satureja macrostemaR Hojas México Cx quinquefasciatus - 137
Lauraceae Aniba rosaeodoraR Hojas Brasil Ae. aegypti, An. Stephensi, Cx. quinquefasciatus - 72
Litsea glaucencensR Hojas México Cx. quinquefasciatus - 137
Myrtaceae Eucalyptus salignaR Hojas Argentina Ae. aegypti - 135
Eucalyptus gunniiA Hojas Argentina Ae. aegypti - 102
Eucalyptus tereticornisA Hojas Argentina Ae. aegypti - 102
Eucayptus grandisA Hojas Argentina Ae. aegypti - 102
Eucalyptus camaldulensisA Hojas Argentina Ae. aegypti - 102
Eucalyptus dunniA Hojas Argentina Ae. aegypti - 102
Eucalyptus cinereaA Hojas Argentina Ae. aegypti - 102
Eucalyptus salignaA Hojas Argentina Ae. aegypti - 102
Eucalyptus globulusA Hojas Argentina Colombia Ae. Aegypti Ae. aegypti, An. albimanus (102) (139)
Eucalyptus sideroxylonA Hojas Argentina Ae. aegypti - 102
Eucalyptus viminalisA Hojas Argentina Ae aegypti - 102
Eugenia caryophyllataA Hojas Colombia Ae aegypti, Anopheles albimanus - 139
Melaleuca quinquenerviaR,A Hojas Cuba Ae. aegypti, Ae. albopictus, Cx. quinquefasciatus (140) (111)
Siparunaceae Siparuna guianensis R Hojas, Corteza y Fruto Brasil Ae. aegypti Cx. quinquefasciatus - 141
Schizaeaceae Anemia tomentosaR Hojas Argentina Ae. aegypti - 135
Verbenaceae Acantholippia seriphioidesR Hojas Argentina Ae. aegypti - 135
Aloysia citriodoraR Hojas Argentina Ae. aegypti - 135
Aloysia triphyllaR Hojas México Cx. quinquefasciatus - 137
Lantana camaraR Hojas México Cx. quinquefasciatus - 137
Lippia turbinataA Hojas Colombia Cx. quinquefasciatus - 132
Lippia polystachyaA Hojas Colombia Cx. quinquefasciatus - 132

Cuadro 3 Actividad ovicida e inhibidora del desarrollo de aceites esenciales y extractos de plantas en condiciones de laboratorio realizados en el área de las Américas 

Especie de planta Parte utilizada País de origen Especie de mosquito Referencia
Ovicida
Anacardiaceae Anacardium occidentaleI Hojas Brasil Ae. aegypti - 142
Euphorbiaceae Croton rhamnifolioidesA Hojas Brasil Ae. aegypti - 76
Solanaceae Solanum tuberosumI Cascara Brasil Ae. aegypti - 142
Poaceae Panicum maximumI Hierba Brasil Ae. aegypti - 142
Moringaceae Moringa oleiferaA Flores Brasil Ae. aegypti - 143
Inhibidora del desarrollo
Anacardiaceae Schinus terebinthifolius1 Hojas Brasil Ae. aegypti - 144
Meliaceae Carapa guianensisA Semilla Brasil Ae. aegypti - 81
Myrtaceae Melaleuca quinquenerviaA Hojas Cuba Ae aegypti, Ae albopictus, Cx quinquefasciatus - 111
Leguminosae Copaifera spA NI Brasil Ae aegypti - 81
Bigonaceae Pseudocalymma alliaceum1,2,4,5 Hojas México Cx quinquefasciatus (33) (69)
Lauraceae Persea americanaA Hojas México Cx quinquefasciatus - 90
Pinaceae Aceite trementina modificado Resina Cuba Ae. aegypti, Cx. quinquefasciatus, Ae. albopictus (113) (114) (145) (146)

Cuadro 4 Estudios de actividad adulticida y repelente de aislamientos y productos comerciales con aceites esenciales en condiciones de laboratorio realizados en el área de las Américas 

Nombre del producto Ingrediente natural País de estudio Especie de mosquito Referencia
Bite Blocker Aceite de soya al 2% Estados Unidos Ae albopictus Cx nigripalpus, Ochlerotatus - 147
ByGone, GonE!, Natrapel 10% citronella (R) triseriatus
Neem Aura, Sunswat, MosquitoSafe 25% geraniol(R)
Repel 3,8-diolparamentano 26%(R)
BioUD, 7.75% 2-undecanone(R) Estados Unidos Ae. albopictus - 148
DHN 1, DHN 2, PMD 2 diastómeros derivados de la dihidronepectalona y 3,8-diolparamentano (R) Estados Unidos Ae. aegypti, An. albimanus - 149
Fresh Insect Repellent Citronela 10%(R) Estados Unidos Psorophora howardii, Psorophora ciliata - 150
Dilapiol, isodilapiol, metil, etil, propil ,y butil-2 propano1-(2´,3´-dimetoxi- 4´,5´-metildioxifenil), óxido de dilapiol (A) Brasil Ae. aegypti - 151
Off! Botanical 3,8-diolparamentano 10%(R) Estados Unidos Ae. aegypti - 152
formulacion 3,8-diolparamentano 15 % y aceite de Cymbopogon citratus Perú y Guatemala An. darlingi - 153
Alfresco Lavandula officinalis, lavandula hybrida (R) Estados Unidos Ae. albopictus - 154
Ballet Mosquito Repellent Olibanum, eucaliptus, geraniol y citronela(R)
Bite Blocker Aceite de soya, geranio y vainillina (R)
Bygone canola, eucalipto, abedul, geranio, romero, hierbabuena(R)
GonE! Sabila, aceite de soya, eucalipto, salvia, lavanda, romero(R)
MosquitoSafe Geraniol, sabila(R) Estados Unidos Ae. albopictus - 154
Natrapel Citronella (R)
Neem Aura Sabila, agracejo, manzanilla, mirra, Neem, anis, cedro, citrnella, agracejo, coco, lavanda, naranja(R)
Quwenling Eucalyptus macerlate citridae
Avon Skin-So-Soft Bug Guard citronela(R)
SunSwat Citronela, cedro, lavanda, enebro, tanaceto(R)
Cutter natural insect repellent Geraniol (5%) Soybean oil (2%) (R) Mexico Ae aegypti, Ae albopictus
EcoSmart organic insect repellent Geraniol(1.0%), Rosemary oil (0.5%), Cinnamon oil (0.5%), Lemongrass oil (0.5%) (R) - 155
Cutter lemon eucalyptus Oil of lemon eucalyptus (30%) p-menthane-3-8- diol (65%) (R)
Avon Skin So Soft Bug Guard Oil of citronella (10%) (R)

Recibido: 22 de Marzo de 2017; Aprobado: 22 de Abril de 2017

*Autor para correspondencia: Maureen Leyva Silva, Control de Vectores, Instituto Medicina Tropical Pedro Kourí, Autopista Novia del Mediodia Km 6 1/2. La Habana, Cuba. E-mail:maureen@ipk.sld.cu

Creative Commons License Este es un artículo publicado en acceso abierto bajo una licencia Creative Commons